Add polar decomposition method to main matrix decomposition interface
Add one more test for decomposition of polar decomposition of rectangular matrix
This commit is contained in:
parent
6ac6e7f75e
commit
ac94fbe831
@ -1,8 +1,8 @@
|
||||
use crate::storage::Storage;
|
||||
use crate::{
|
||||
Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
|
||||
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, RealField, Schur, SymmetricEigen,
|
||||
SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
|
||||
DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, OMatrix, RealField, Schur,
|
||||
SymmetricEigen, SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
|
||||
};
|
||||
|
||||
/// # Rectangular matrix decomposition
|
||||
@ -17,6 +17,7 @@ use crate::{
|
||||
/// | LU with partial pivoting | `P⁻¹ * L * U` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
|
||||
/// | LU with full pivoting | `P⁻¹ * L * U * Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
|
||||
/// | SVD | `U * Σ * Vᵀ` | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
|
||||
/// | Polar (Left Polar) | `P' * U` | `U` is semi-unitary/unitary and `P'` is a positive semi-definite Hermitian Matrix
|
||||
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
/// Computes the bidiagonalization using householder reflections.
|
||||
pub fn bidiagonalize(self) -> Bidiagonal<T, R, C>
|
||||
@ -186,6 +187,38 @@ impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
||||
{
|
||||
SVD::try_new_unordered(self.into_owned(), compute_u, compute_v, eps, max_niter)
|
||||
}
|
||||
|
||||
/// Attempts to compute the Polar Decomposition of a `matrix
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||||
/// * `max_niter` − maximum total number of iterations performed by the algorithm
|
||||
pub fn polar(
|
||||
self,
|
||||
eps: T::RealField,
|
||||
max_niter: usize,
|
||||
) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
|
||||
where
|
||||
R: DimMin<C>,
|
||||
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
|
||||
DefaultAllocator: Allocator<T, R, C>
|
||||
+ Allocator<T, DimMinimum<R, C>, R>
|
||||
+ Allocator<T, DimMinimum<R, C>>
|
||||
+ Allocator<T, R, R>
|
||||
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>
|
||||
+ Allocator<T, C>
|
||||
+ Allocator<T, R>
|
||||
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
|
||||
+ Allocator<T, DimMinimum<R, C>, C>
|
||||
+ Allocator<T, R, DimMinimum<R, C>>
|
||||
+ Allocator<T, DimMinimum<R, C>>
|
||||
+ Allocator<T::RealField, DimMinimum<R, C>>
|
||||
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
||||
{
|
||||
SVD::try_new_unordered(self.into_owned(), true, true, eps, max_niter)
|
||||
.and_then(|svd| svd.to_polar())
|
||||
}
|
||||
}
|
||||
|
||||
/// # Square matrix decomposition
|
||||
|
@ -641,33 +641,26 @@ where
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>
|
||||
+ Allocator<T, R, DimMinimum<R, C>>
|
||||
+ Allocator<T::RealField, DimMinimum<R, C>>,
|
||||
{
|
||||
/// converts SVD results to a polar form
|
||||
|
||||
pub fn to_polar(&self) -> Result<(OMatrix<T, R, R>, OMatrix<T, R, C>), &'static str>
|
||||
where DefaultAllocator: Allocator<T, R, C> //result
|
||||
/// converts SVD results to Polar decomposition form of the original Matrix
|
||||
/// A = P'U
|
||||
/// The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition)
|
||||
/// Returns None if the SVD hasn't been calculated
|
||||
pub fn to_polar(&self) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
|
||||
where
|
||||
DefaultAllocator: Allocator<T, R, C> //result
|
||||
+ Allocator<T, DimMinimum<R, C>, R> // adjoint
|
||||
+ Allocator<T, DimMinimum<R, C>> // mapped vals
|
||||
+ Allocator<T, R, R> // square matrix & result
|
||||
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>> // ?
|
||||
,
|
||||
+ Allocator<T, R, R> // result
|
||||
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>, // square matrix
|
||||
{
|
||||
match (&self.u, &self.v_t) {
|
||||
(Some(u), Some(v_t)) => Ok((
|
||||
(Some(u), Some(v_t)) => Some((
|
||||
u * OMatrix::from_diagonal(&self.singular_values.map(|e| T::from_real(e)))
|
||||
* u.adjoint(),
|
||||
u * v_t,
|
||||
)),
|
||||
(None, None) => Err("SVD solve: U and V^t have not been computed."),
|
||||
(None, _) => Err("SVD solve: U has not been computed."),
|
||||
(_, None) => Err("SVD solve: V^t has not been computed."),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -443,12 +443,22 @@ fn svd_sorted() {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn svd_polar_decomposition() {
|
||||
fn dynamic_square_matrix_polar_decomposition() {
|
||||
|
||||
let m = DMatrix::<f64>::new_random(4, 4);
|
||||
let m = DMatrix::<f64>::new_random(10, 10);
|
||||
let svd = m.clone().svd(true, true);
|
||||
let (p,u) = svd.to_polar().unwrap();
|
||||
|
||||
assert_relative_eq!(m, p*u, epsilon = 1.0e-5);
|
||||
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn dynamic_rectangular_matrix_polar_decomposition() {
|
||||
|
||||
let m = DMatrix::<f64>::new_random(7, 5);
|
||||
let svd = m.clone().svd(true, true);
|
||||
let (p,u) = svd.to_polar().unwrap();
|
||||
|
||||
assert_relative_eq!(m, p*u, epsilon = 1.0e-5);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user