diff --git a/nalgebra-sparse/Cargo.toml b/nalgebra-sparse/Cargo.toml index 3a4f08c1..988850d2 100644 --- a/nalgebra-sparse/Cargo.toml +++ b/nalgebra-sparse/Cargo.toml @@ -17,3 +17,5 @@ proptest = { version = "0.10", optional = true } [dev-dependencies] itertools = "0.9" +matrixcompare = "0.1.3" +nalgebra = { version="0.23", path = "../", features = ["compare"] } diff --git a/nalgebra-sparse/src/csc.rs b/nalgebra-sparse/src/csc.rs index f77bfaef..11b96a6f 100644 --- a/nalgebra-sparse/src/csc.rs +++ b/nalgebra-sparse/src/csc.rs @@ -115,7 +115,6 @@ impl CscMatrix { } } - /// An iterator over non-zero triplets (i, j, v). /// /// The iteration happens in column-major fashion, meaning that j increases monotonically, diff --git a/nalgebra-sparse/src/factorization/cholesky.rs b/nalgebra-sparse/src/factorization/cholesky.rs new file mode 100644 index 00000000..3e9c032e --- /dev/null +++ b/nalgebra-sparse/src/factorization/cholesky.rs @@ -0,0 +1,294 @@ +// TODO: Remove this allowance +#![allow(missing_docs)] + +use crate::pattern::SparsityPattern; +use crate::csc::CscMatrix; +use core::{mem, iter}; +use nalgebra::{U1, VectorN, Dynamic, Scalar, RealField}; +use num_traits::Zero; +use std::sync::Arc; +use std::ops::Add; + +pub struct CscSymbolicCholesky { + // Pattern of the original matrix that was decomposed + m_pattern: Arc, + l_pattern: SparsityPattern, + // u in this context is L^T, so that M = L L^T + u_pattern: SparsityPattern +} + +impl CscSymbolicCholesky { + pub fn factor(pattern: &Arc) -> Self { + assert_eq!(pattern.major_dim(), pattern.minor_dim(), + "Major and minor dimensions must be the same (square matrix)."); + + // TODO: Temporary stopgap solution to make things work until we can refactor + #[derive(Copy, Clone, PartialEq, Eq, Debug)] + struct DummyVal; + impl Zero for DummyVal { + fn zero() -> Self { + DummyVal + } + + fn is_zero(&self) -> bool { + true + } + } + + impl Add for DummyVal { + type Output = Self; + + fn add(self, rhs: DummyVal) -> Self::Output { + rhs + } + } + + let dummy_vals = vec![DummyVal; pattern.nnz()]; + let dummy_csc = CscMatrix::try_from_pattern_and_values(Arc::clone(pattern), dummy_vals) + .unwrap(); + let (l, u) = nonzero_pattern(&dummy_csc); + // TODO: Don't clone unnecessarily + Self { + m_pattern: Arc::clone(pattern), + l_pattern: l.pattern().as_ref().clone(), + u_pattern: u.pattern().as_ref().clone() + } + } + + pub fn l_pattern(&self) -> &SparsityPattern { + &self.l_pattern + } +} + +pub struct CscCholesky { + // Pattern of the original matrix + m_pattern: Arc, + l_factor: CscMatrix, + u_pattern: SparsityPattern, + work_x: Vec, + work_c: Vec +} + +#[derive(Debug, PartialEq, Eq, Clone)] +pub enum CholeskyError { + +} + +impl CscCholesky { + + pub fn factor(matrix: &CscMatrix) -> Result { + let symbolic = CscSymbolicCholesky::factor(&*matrix.pattern()); + assert_eq!(symbolic.l_pattern.nnz(), symbolic.u_pattern.nnz(), + "u is just the transpose of l, so should have the same nnz"); + + let l_nnz = symbolic.l_pattern.nnz(); + let l_values = vec![T::zero(); l_nnz]; + let l_factor = CscMatrix::try_from_pattern_and_values(Arc::new(symbolic.l_pattern), l_values) + .unwrap(); + + let mut factorization = CscCholesky { + m_pattern: symbolic.m_pattern, + l_factor, + u_pattern: symbolic.u_pattern, + work_x: vec![T::zero(); matrix.nrows()], + // Fill with MAX so that things hopefully totally fail if values are not + // overwritten. Might be easier to debug this way + work_c: vec![usize::MAX, matrix.ncols()], + }; + + factorization.refactor(matrix.values())?; + Ok(factorization) + } + + pub fn refactor(&mut self, values: &[T]) -> Result<(), CholeskyError> { + self.decompose_left_looking(values) + } + + pub fn l(&self) -> &CscMatrix { + &self.l_factor + } + + pub fn take_l(self) -> CscMatrix { + self.l_factor + } + + /// Perform a numerical left-looking cholesky decomposition of a matrix with the same structure as the + /// one used to initialize `self`, but with different non-zero values provided by `values`. + fn decompose_left_looking(&mut self, values: &[T]) -> Result<(), CholeskyError> { + assert!( + values.len() >= self.m_pattern.nnz(), + // TODO: Improve error message + "The set of values is too small." + ); + + let n = self.l_factor.nrows(); + + // Reset `work_c` to the column pointers of `l`. + self.work_c.clear(); + self.work_c.extend_from_slice(self.l_factor.col_offsets()); + + unsafe { + for k in 0..n { + // Scatter the k-th column of the original matrix with the values provided. + let range_begin = *self.m_pattern.major_offsets().get_unchecked(k); + let range_end = *self.m_pattern.major_offsets().get_unchecked(k + 1); + let range_k = range_begin..range_end; + + *self.work_x.get_unchecked_mut(k) = T::zero(); + for p in range_k.clone() { + let irow = *self.m_pattern.minor_indices().get_unchecked(p); + + if irow >= k { + *self.work_x.get_unchecked_mut(irow) = *values.get_unchecked(p); + } + } + + for &j in self.u_pattern.lane(k) { + let factor = -*self + .l_factor + .values() + .get_unchecked(*self.work_c.get_unchecked(j)); + *self.work_c.get_unchecked_mut(j) += 1; + + if j < k { + let col_j = self.l_factor.col(j); + let col_j_entries = col_j.row_indices().iter().zip(col_j.values()); + for (&z, val) in col_j_entries { + if z >= k { + *self.work_x.get_unchecked_mut(z) += val.inlined_clone() * factor; + } + } + } + } + + let diag = *self.work_x.get_unchecked(k); + + if diag > T::zero() { + let denom = diag.sqrt(); + + { + let (offsets, _, values) = self.l_factor.csc_data_mut(); + *values + .get_unchecked_mut(*offsets.get_unchecked(k)) = denom; + } + + + let mut col_k = self.l_factor.col_mut(k); + let (col_k_rows, col_k_values) = col_k.rows_and_values_mut(); + let col_k_entries = col_k_rows.iter().zip(col_k_values); + for (&p, val) in col_k_entries { + *val = *self.work_x.get_unchecked(p) / denom; + *self.work_x.get_unchecked_mut(p) = T::zero(); + } + } else { + // self.ok = false; + // TODO: Return indefinite error (i.e. encountered non-positive diagonal + unimplemented!() + } + } + } + + Ok(()) + } + +} + + + + +fn reach( + m: &CscMatrix, + j: usize, + max_j: usize, + tree: &[usize], + marks: &mut Vec, + out: &mut Vec, +) { + marks.clear(); + marks.resize(tree.len(), false); + + // TODO: avoid all those allocations. + let mut tmp = Vec::new(); + let mut res = Vec::new(); + + for &irow in m.col(j).row_indices() { + let mut curr = irow; + while curr != usize::max_value() && curr <= max_j && !marks[curr] { + marks[curr] = true; + tmp.push(curr); + curr = tree[curr]; + } + + tmp.append(&mut res); + mem::swap(&mut tmp, &mut res); + } + + // TODO: Is this right? + res.sort_unstable(); + + out.append(&mut res); +} + +fn nonzero_pattern( + m: &CscMatrix +) -> (CscMatrix, CscMatrix) { + // TODO: In order to stay as faithful as possible to the original implementation, + // we here return full matrices, whereas we actually only need to construct sparsity patterns + + let etree = elimination_tree(m); + let (nrows, ncols) = (m.nrows(), m.ncols()); + let mut rows = Vec::with_capacity(m.nnz()); + // TODO: Use a Vec here instead + let mut cols = unsafe { VectorN::new_uninitialized_generic(Dynamic::new(nrows), U1) }; + let mut marks = Vec::new(); + + // NOTE: the following will actually compute the non-zero pattern of + // the transpose of l. + for i in 0..nrows { + cols[i] = rows.len(); + reach(m, i, i, &etree, &mut marks, &mut rows); + } + + // TODO: Get rid of this in particular + let mut vals = Vec::with_capacity(rows.len()); + unsafe { + vals.set_len(rows.len()); + } + vals.shrink_to_fit(); + + // TODO: Remove this unnecessary conversion by using Vec throughout + let mut cols: Vec<_> = cols.iter().cloned().collect(); + cols.push(rows.len()); + + let u = CscMatrix::try_from_csc_data(nrows, ncols, cols, rows, vals).unwrap(); + // TODO: Avoid this transpose + let l = u.transpose(); + + (l, u) +} + +fn elimination_tree(m: &CscMatrix) -> Vec { + let nrows = m.nrows(); + let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect(); + let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect(); + + for k in 0..nrows { + for &irow in m.col(k).row_indices() { + let mut i = irow; + + while i < k { + let i_ancestor = ancestor[i]; + ancestor[i] = k; + + if i_ancestor == usize::max_value() { + forest[i] = k; + break; + } + + i = i_ancestor; + } + } + } + + forest +} \ No newline at end of file diff --git a/nalgebra-sparse/src/factorization/mod.rs b/nalgebra-sparse/src/factorization/mod.rs new file mode 100644 index 00000000..6596f530 --- /dev/null +++ b/nalgebra-sparse/src/factorization/mod.rs @@ -0,0 +1,4 @@ +//! Matrix factorization for sparse matrices. +mod cholesky; + +pub use cholesky::*; \ No newline at end of file diff --git a/nalgebra-sparse/src/lib.rs b/nalgebra-sparse/src/lib.rs index c81b429b..9441fc96 100644 --- a/nalgebra-sparse/src/lib.rs +++ b/nalgebra-sparse/src/lib.rs @@ -89,6 +89,7 @@ pub mod csr; pub mod pattern; pub mod ops; pub mod convert; +pub mod factorization; pub(crate) mod cs; diff --git a/nalgebra-sparse/tests/unit_tests/cholesky.rs b/nalgebra-sparse/tests/unit_tests/cholesky.rs new file mode 100644 index 00000000..95550278 --- /dev/null +++ b/nalgebra-sparse/tests/unit_tests/cholesky.rs @@ -0,0 +1,93 @@ +#![cfg_attr(rustfmt, rustfmt_skip)] +use crate::common::{value_strategy, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ}; +use nalgebra_sparse::csc::CscMatrix; +use nalgebra_sparse::factorization::{CscCholesky}; +use nalgebra_sparse::proptest::csc; +use nalgebra::{Matrix5, Vector5, Cholesky, DMatrix}; + +use proptest::prelude::*; +use matrixcompare::assert_matrix_eq; + +fn positive_definite() -> impl Strategy> { + let csc_f64 = csc(value_strategy::(), + PROPTEST_MATRIX_DIM, + PROPTEST_MATRIX_DIM, + PROPTEST_MAX_NNZ); + csc_f64 + .prop_map(|x| { + // Add a small multiple of the identity to ensure positive definiteness + x.transpose() * &x + CscMatrix::identity(x.ncols()) + }) +} + +proptest! { + #[test] + fn cholesky_correct_for_positive_definite_matrices( + matrix in positive_definite() + ) { + let cholesky = CscCholesky::factor(&matrix).unwrap(); + let l = cholesky.take_l(); + let matrix_reconstructed = &l * l.transpose(); + + // TODO: Use matrixcompare instead + let diff = DMatrix::from(&(matrix_reconstructed - matrix)); + prop_assert!(diff.abs().max() < 1e-8); + + // TODO: Check that L is in fact lower triangular + } + +} + +// This is a test ported from nalgebra's "sparse" module, for the original CsCholesky impl +#[test] +fn cs_cholesky() { + let mut a = Matrix5::new( + 40.0, 0.0, 0.0, 0.0, 0.0, + 2.0, 60.0, 0.0, 0.0, 0.0, + 1.0, 0.0, 11.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 50.0, 0.0, + 1.0, 0.0, 0.0, 4.0, 10.0 + ); + a.fill_upper_triangle_with_lower_triangle(); + test_cholesky(a); + + let a = Matrix5::from_diagonal(&Vector5::new(40.0, 60.0, 11.0, 50.0, 10.0)); + test_cholesky(a); + + let mut a = Matrix5::new( + 40.0, 0.0, 0.0, 0.0, 0.0, + 2.0, 60.0, 0.0, 0.0, 0.0, + 1.0, 0.0, 11.0, 0.0, 0.0, + 1.0, 0.0, 0.0, 50.0, 0.0, + 0.0, 0.0, 0.0, 4.0, 10.0 + ); + a.fill_upper_triangle_with_lower_triangle(); + test_cholesky(a); + + let mut a = Matrix5::new( + 2.0, 0.0, 0.0, 0.0, 0.0, + 0.0, 2.0, 0.0, 0.0, 0.0, + 1.0, 1.0, 2.0, 0.0, 0.0, + 0.0, 0.0, 0.0, 2.0, 0.0, + 1.0, 1.0, 0.0, 0.0, 2.0 + ); + a.fill_upper_triangle_with_lower_triangle(); + // Test crate::new, left_looking, and up_looking implementations. + test_cholesky(a); +} + +fn test_cholesky(a: Matrix5) { + // TODO: Test "refactor" + + let cs_a = CscMatrix::from(&a); + + let chol_a = Cholesky::new(a).unwrap(); + let chol_cs_a = CscCholesky::factor(&cs_a).unwrap(); + + let l = chol_a.l(); + let cs_l = chol_cs_a.take_l(); + + let l = DMatrix::from_iterator(l.nrows(), l.ncols(), l.iter().cloned()); + let cs_l_mat = DMatrix::from(&cs_l); + assert_matrix_eq!(l, cs_l_mat, comp = abs, tol = 1e-12); +} \ No newline at end of file diff --git a/nalgebra-sparse/tests/unit_tests/mod.rs b/nalgebra-sparse/tests/unit_tests/mod.rs index cb32cd71..a1f25715 100644 --- a/nalgebra-sparse/tests/unit_tests/mod.rs +++ b/nalgebra-sparse/tests/unit_tests/mod.rs @@ -1,4 +1,5 @@ mod coo; +mod cholesky; mod ops; mod pattern; mod csr;