Merge pull request #1067 from metric-space/qz-decomposition-lapack

QZ-decomposition
This commit is contained in:
Sébastien Crozet 2022-04-30 10:02:28 +02:00 committed by GitHub
commit a850592f7b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 783 additions and 0 deletions

View File

@ -0,0 +1,350 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use simba::scalar::RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Const, Dim};
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
use lapack;
/// Generalized eigenvalues and generalized eigenvectors (left and right) of a pair of N*N real square matrices.
///
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Serialize")
)
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Deserialize<'de>,
OMatrix<T, D, D>: Deserialize<'de>")
)
)]
#[derive(Clone, Debug)]
pub struct GeneralizedEigen<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
alphar: OVector<T, D>,
alphai: OVector<T, D>,
beta: OVector<T, D>,
vsl: OMatrix<T, D, D>,
vsr: OMatrix<T, D, D>,
}
impl<T: Scalar + Copy, D: Dim> Copy for GeneralizedEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OMatrix<T, D, D>: Copy,
OVector<T, D>: Copy,
{
}
impl<T: GeneralizedEigenScalar + RealField + Copy, D: Dim> GeneralizedEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
{
/// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors
/// via the raw returns from LAPACK's dggev and sggev routines
///
/// Panics if the method did not converge.
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.")
}
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
/// dggev and sggev routines
///
/// Returns `None` if the method did not converge.
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
assert!(
a.is_square() && b.is_square(),
"Unable to compute the generalized eigenvalues of non-square matrices."
);
assert!(
a.shape_generic() == b.shape_generic(),
"Unable to compute the generalized eigenvalues of two square matrices of different dimensions."
);
let (nrows, ncols) = a.shape_generic();
let n = nrows.value();
let mut info = 0;
let mut alphar = Matrix::zeros_generic(nrows, Const::<1>);
let mut alphai = Matrix::zeros_generic(nrows, Const::<1>);
let mut beta = Matrix::zeros_generic(nrows, Const::<1>);
let mut vsl = Matrix::zeros_generic(nrows, ncols);
let mut vsr = Matrix::zeros_generic(nrows, ncols);
let lwork = T::xggev_work_size(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut info,
);
lapack_check!(info);
let mut work = vec![T::zero(); lwork as usize];
T::xggev(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut work,
lwork,
&mut info,
);
lapack_check!(info);
Some(GeneralizedEigen {
alphar,
alphai,
beta,
vsl,
vsr,
})
}
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
///
/// Outputs two matrices.
/// The first output matrix contains the left eigenvectors of the generalized eigenvalues
/// as columns.
/// The second matrix contains the right eigenvectors of the generalized eigenvalues
/// as columns.
pub fn eigenvectors(&self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
where
DefaultAllocator:
Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D> + Allocator<(Complex<T>, T), D>,
{
/*
How the eigenvectors are built up:
Since the input entries are all real, the generalized eigenvalues if complex come in pairs
as a consequence of the [complex conjugate root thorem](https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem)
The Lapack routine output reflects this by expecting the user to unpack the real and complex eigenvalues associated
eigenvectors from the real matrix output via the following procedure
(Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns,
VR stands for the lapack real matrix output containing the right eigenvectors as columns)
If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
then
u(j) = VL(:,j)+i*VL(:,j+1)
u(j+1) = VL(:,j)-i*VL(:,j+1)
and
u(j) = VR(:,j)+i*VR(:,j+1)
v(j+1) = VR(:,j)-i*VR(:,j+1).
*/
let n = self.vsl.shape().0;
let mut l = self.vsl.map(|x| Complex::new(x, T::RealField::zero()));
let mut r = self.vsr.map(|x| Complex::new(x, T::RealField::zero()));
let eigenvalues = self.raw_eigenvalues();
let mut c = 0;
while c < n {
if eigenvalues[c].0.im.abs() != T::RealField::zero() && c + 1 < n {
// taking care of the left eigenvector matrix
l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| {
*r = Complex::new(r.re.clone(), i.clone());
});
l.column_mut(c + 1).zip_apply(&self.vsl.column(c), |i, r| {
*i = Complex::new(r.clone(), -i.re.clone());
});
// taking care of the right eigenvector matrix
r.column_mut(c).zip_apply(&self.vsr.column(c + 1), |r, i| {
*r = Complex::new(r.re.clone(), i.clone());
});
r.column_mut(c + 1).zip_apply(&self.vsr.column(c), |i, r| {
*i = Complex::new(r.clone(), -i.re.clone());
});
c += 2;
} else {
c += 1;
}
}
(l, r)
}
/// Outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta)
/// straight from LAPACK
#[must_use]
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
where
DefaultAllocator: Allocator<(Complex<T>, T), D>,
{
let mut out = Matrix::from_element_generic(
self.vsl.shape_generic().0,
Const::<1>,
(Complex::zero(), T::RealField::zero()),
);
for i in 0..out.len() {
out[i] = (Complex::new(self.alphar[i], self.alphai[i]), self.beta[i])
}
out
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by scalars for which Lapack implements the RealField GeneralizedEigen decomposition.
pub trait GeneralizedEigenScalar: Scalar {
#[allow(missing_docs)]
fn xggev(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
work: &mut [Self],
lwork: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xggev_work_size(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
info: &mut i32,
) -> i32;
}
macro_rules! generalized_eigen_scalar_impl (
($N: ty, $xggev: path) => (
impl GeneralizedEigenScalar for $N {
#[inline]
fn xggev(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
work: &mut [$N],
lwork: i32,
info: &mut i32) {
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info); }
}
#[inline]
fn xggev_work_size(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
info: &mut i32)
-> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, info); }
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
generalized_eigen_scalar_impl!(f32, lapack::sggev);
generalized_eigen_scalar_impl!(f64, lapack::dggev);

View File

@ -83,9 +83,11 @@ mod lapack_check;
mod cholesky;
mod eigen;
mod generalized_eigenvalues;
mod hessenberg;
mod lu;
mod qr;
mod qz;
mod schur;
mod svd;
mod symmetric_eigen;
@ -94,9 +96,11 @@ use num_complex::Complex;
pub use self::cholesky::{Cholesky, CholeskyScalar};
pub use self::eigen::Eigen;
pub use self::generalized_eigenvalues::GeneralizedEigen;
pub use self::hessenberg::Hessenberg;
pub use self::lu::{LUScalar, LU};
pub use self::qr::QR;
pub use self::qz::QZ;
pub use self::schur::Schur;
pub use self::svd::SVD;
pub use self::symmetric_eigen::SymmetricEigen;

321
nalgebra-lapack/src/qz.rs Normal file
View File

@ -0,0 +1,321 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use simba::scalar::RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Const, Dim};
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
use lapack;
/// QZ decomposition of a pair of N*N square matrices.
///
/// Retrieves the left and right matrices of Schur Vectors (VSL and VSR)
/// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the
/// decomposed input matrix `a` equals `VSL * S * VSL.transpose()` and
/// decomposed input matrix `b` equals `VSL * T * VSL.transpose()`.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Serialize")
)
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Deserialize<'de>,
OMatrix<T, D, D>: Deserialize<'de>")
)
)]
#[derive(Clone, Debug)]
pub struct QZ<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
alphar: OVector<T, D>,
alphai: OVector<T, D>,
beta: OVector<T, D>,
vsl: OMatrix<T, D, D>,
s: OMatrix<T, D, D>,
vsr: OMatrix<T, D, D>,
t: OMatrix<T, D, D>,
}
impl<T: Scalar + Copy, D: Dim> Copy for QZ<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OMatrix<T, D, D>: Copy,
OVector<T, D>: Copy,
{
}
impl<T: QZScalar + RealField, D: Dim> QZ<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
{
/// Attempts to compute the QZ decomposition of input real square matrices `a` and `b`.
///
/// i.e retrieves the left and right matrices of Schur Vectors (VSL and VSR)
/// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the
/// decomposed matrix `a` equals `VSL * S * VSL.transpose()` and
/// decomposed matrix `b` equals `VSL * T * VSL.transpose()`.
///
/// Panics if the method did not converge.
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
Self::try_new(a, b).expect("QZ decomposition: convergence failed.")
}
/// Computes the decomposition of input matrices `a` and `b` into a pair of matrices of Schur vectors
/// , a quasi-upper triangular matrix and an upper-triangular matrix .
///
/// Returns `None` if the method did not converge.
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
assert!(
a.is_square() && b.is_square(),
"Unable to compute the qz decomposition of non-square matrices."
);
assert!(
a.shape_generic() == b.shape_generic(),
"Unable to compute the qz decomposition of two square matrices of different dimensions."
);
let (nrows, ncols) = a.shape_generic();
let n = nrows.value();
let mut info = 0;
let mut alphar = Matrix::zeros_generic(nrows, Const::<1>);
let mut alphai = Matrix::zeros_generic(nrows, Const::<1>);
let mut beta = Matrix::zeros_generic(nrows, Const::<1>);
let mut vsl = Matrix::zeros_generic(nrows, ncols);
let mut vsr = Matrix::zeros_generic(nrows, ncols);
// Placeholders:
let mut bwork = [0i32];
let mut unused = 0;
let lwork = T::xgges_work_size(
b'V',
b'V',
b'N',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
&mut unused,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut bwork,
&mut info,
);
lapack_check!(info);
let mut work = vec![T::zero(); lwork as usize];
T::xgges(
b'V',
b'V',
b'N',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
&mut unused,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut work,
lwork,
&mut bwork,
&mut info,
);
lapack_check!(info);
Some(QZ {
alphar,
alphai,
beta,
vsl,
s: a,
vsr,
t: b,
})
}
/// Retrieves the left and right matrices of Schur Vectors (VSL and VSR)
/// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the
/// decomposed input matrix `a` equals `VSL * S * VSL.transpose()` and
/// decomposed input matrix `b` equals `VSL * T * VSL.transpose()`.
pub fn unpack(
self,
) -> (
OMatrix<T, D, D>,
OMatrix<T, D, D>,
OMatrix<T, D, D>,
OMatrix<T, D, D>,
) {
(self.vsl, self.s, self.t, self.vsr)
}
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta)
/// straight from LAPACK
#[must_use]
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
where
DefaultAllocator: Allocator<(Complex<T>, T), D>,
{
let mut out = Matrix::from_element_generic(
self.vsl.shape_generic().0,
Const::<1>,
(Complex::zero(), T::RealField::zero()),
);
for i in 0..out.len() {
out[i] = (
Complex::new(self.alphar[i].clone(), self.alphai[i].clone()),
self.beta[i].clone(),
)
}
out
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by scalars for which Lapack implements the RealField QZ decomposition.
pub trait QZScalar: Scalar {
#[allow(missing_docs)]
fn xgges(
jobvsl: u8,
jobvsr: u8,
sort: u8,
// select: ???
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
sdim: &mut i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
work: &mut [Self],
lwork: i32,
bwork: &mut [i32],
info: &mut i32,
);
#[allow(missing_docs)]
fn xgges_work_size(
jobvsl: u8,
jobvsr: u8,
sort: u8,
// select: ???
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
sdim: &mut i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
bwork: &mut [i32],
info: &mut i32,
) -> i32;
}
macro_rules! qz_scalar_impl (
($N: ty, $xgges: path) => (
impl QZScalar for $N {
#[inline]
fn xgges(jobvsl: u8,
jobvsr: u8,
sort: u8,
// select: ???
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
sdim: &mut i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
work: &mut [$N],
lwork: i32,
bwork: &mut [i32],
info: &mut i32) {
unsafe { $xgges(jobvsl, jobvsr, sort, None, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info); }
}
#[inline]
fn xgges_work_size(jobvsl: u8,
jobvsr: u8,
sort: u8,
// select: ???
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
sdim: &mut i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
bwork: &mut [i32],
info: &mut i32)
-> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
unsafe { $xgges(jobvsl, jobvsr, sort, None, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, bwork, info); }
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
qz_scalar_impl!(f32, lapack::sgges);
qz_scalar_impl!(f64, lapack::dgges);

View File

@ -0,0 +1,72 @@
use na::dimension::Const;
use na::{DMatrix, OMatrix};
use nl::GeneralizedEigen;
use num_complex::Complex;
use simba::scalar::ComplexField;
use crate::proptest::*;
use proptest::{prop_assert, prop_compose, proptest};
prop_compose! {
fn f64_dynamic_dim_squares()
(n in PROPTEST_MATRIX_DIM)
(a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix<f64>, DMatrix<f64>){
(a,b)
}}
proptest! {
#[test]
fn ge((a,b) in f64_dynamic_dim_squares()){
let a_c = a.clone().map(|x| Complex::new(x, 0.0));
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
let n = a.shape_generic().0;
let ge = GeneralizedEigen::new(a.clone(), b.clone());
let (vsl,vsr) = ge.clone().eigenvectors();
for (i,(alpha,beta)) in ge.raw_eigenvalues().iter().enumerate() {
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
let l_b = b_c.clone() * *alpha;
prop_assert!(
relative_eq!(
((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()),
OMatrix::zeros_generic(n, Const::<1>),
epsilon = 1.0e-5));
prop_assert!(
relative_eq!(
(vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()),
OMatrix::zeros_generic(Const::<1>, n),
epsilon = 1.0e-5))
};
}
#[test]
fn ge_static(a in matrix4(), b in matrix4()) {
let ge = GeneralizedEigen::new(a.clone(), b.clone());
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
let (vsl,vsr) = ge.eigenvectors();
let eigenvalues = ge.raw_eigenvalues();
for (i,(alpha,beta)) in eigenvalues.iter().enumerate() {
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
let l_b = b_c.clone() * *alpha;
prop_assert!(
relative_eq!(
((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()),
OMatrix::zeros_generic(Const::<4>, Const::<1>),
epsilon = 1.0e-5));
prop_assert!(
relative_eq!((vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()),
OMatrix::zeros_generic(Const::<1>, Const::<4>),
epsilon = 1.0e-5))
}
}
}

View File

@ -1,6 +1,8 @@
mod cholesky;
mod generalized_eigenvalues;
mod lu;
mod qr;
mod qz;
mod real_eigensystem;
mod schur;
mod svd;

View File

@ -0,0 +1,34 @@
use na::DMatrix;
use nl::QZ;
use crate::proptest::*;
use proptest::{prop_assert, prop_compose, proptest};
prop_compose! {
fn f64_dynamic_dim_squares()
(n in PROPTEST_MATRIX_DIM)
(a in matrix(PROPTEST_F64,n,n), b in matrix(PROPTEST_F64,n,n)) -> (DMatrix<f64>, DMatrix<f64>){
(a,b)
}}
proptest! {
#[test]
fn qz((a,b) in f64_dynamic_dim_squares()) {
let qz = QZ::new(a.clone(), b.clone());
let (vsl,s,t,vsr) = qz.clone().unpack();
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7));
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7));
}
#[test]
fn qz_static(a in matrix4(), b in matrix4()) {
let qz = QZ::new(a.clone(), b.clone());
let (vsl,s,t,vsr) = qz.unpack();
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7));
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7));
}
}