Merge pull request #147 from dshizzle/master
Implemented Cholesky decomposition
This commit is contained in:
commit
a14393be43
|
@ -150,7 +150,8 @@ pub use structs::{
|
|||
|
||||
pub use linalg::{
|
||||
qr,
|
||||
householder_matrix
|
||||
householder_matrix,
|
||||
cholesky
|
||||
};
|
||||
|
||||
mod structs;
|
||||
|
|
|
@ -115,3 +115,51 @@ pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V)
|
|||
|
||||
(eigenvectors, eigenvalues.diag())
|
||||
}
|
||||
|
||||
/// Cholesky decomposition G of a square symmetric positive definite matrix A, such that A = G * G^T
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `m` - square symmetric positive definite matrix to decompose
|
||||
pub fn cholesky<N, V, VS, M>(m: &M) -> Result<M, &'static str>
|
||||
where N: BaseFloat,
|
||||
VS: Indexable<usize, N> + Norm<N>,
|
||||
M: Indexable<(usize, usize), N> + SquareMat<N, V> + Add<M, Output = M> +
|
||||
Sub<M, Output = M> + ColSlice<VS> +
|
||||
ApproxEq<N> + Copy {
|
||||
|
||||
let mut out = m.clone().transpose();
|
||||
|
||||
if !ApproxEq::approx_eq(&out, &m) {
|
||||
return Err("Cholesky: Input matrix is not symmetric");
|
||||
}
|
||||
|
||||
for i in 0..out.nrows() {
|
||||
for j in 0..(i+1) {
|
||||
|
||||
let mut sum: N = out[(i,j)];
|
||||
|
||||
for k in 0..j {
|
||||
sum = sum - out[(i, k)] * out[(j, k)];
|
||||
}
|
||||
|
||||
if i > j {
|
||||
out[(i, j)] = sum / out[(j, j)];
|
||||
}
|
||||
else if sum > N::zero() {
|
||||
out[(i,i)] = sum.sqrt();
|
||||
}
|
||||
else {
|
||||
return Err("Cholesky: Input matrix is not positive definite to machine precision");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..out.nrows() {
|
||||
for j in i+1..out.ncols() {
|
||||
out[(i,j)] = N::zero();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return Ok(out);
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
|
||||
pub use self::decompositions::{qr, eigen_qr, householder_matrix};
|
||||
pub use self::decompositions::{qr, eigen_qr, householder_matrix, cholesky};
|
||||
|
||||
mod decompositions;
|
||||
|
|
91
tests/mat.rs
91
tests/mat.rs
|
@ -3,7 +3,7 @@ extern crate rand;
|
|||
|
||||
use rand::random;
|
||||
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3,
|
||||
OrthoMat3, DMat, DVec, Row, Col, BaseFloat};
|
||||
OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag};
|
||||
|
||||
macro_rules! test_inv_mat_impl(
|
||||
($t: ty) => (
|
||||
|
@ -41,6 +41,28 @@ macro_rules! test_qr_impl(
|
|||
);
|
||||
);
|
||||
|
||||
macro_rules! test_cholesky_impl(
|
||||
($t: ty) => (
|
||||
for _ in (0usize .. 10000) {
|
||||
|
||||
// construct symmetric positive definite matrix
|
||||
let mut randmat : $t = random();
|
||||
let mut diagmat : $t = Diag::from_diag(&na::diag(&randmat));
|
||||
|
||||
diagmat = na::abs(&diagmat) + 1.0;
|
||||
randmat = randmat * diagmat * na::transpose(&randmat);
|
||||
|
||||
let result = na::cholesky(&randmat);
|
||||
|
||||
assert!(result.is_ok());
|
||||
|
||||
let v = result.unwrap();
|
||||
let recomp = v * na::transpose(&v);
|
||||
assert!(na::approx_eq(&randmat, &recomp));
|
||||
}
|
||||
);
|
||||
);
|
||||
|
||||
// NOTE: deactivated untile we get a better convergence rate.
|
||||
// macro_rules! test_eigen_qr_impl(
|
||||
// ($t: ty) => {
|
||||
|
@ -600,3 +622,70 @@ fn test_ortho() {
|
|||
assert!(na::approx_eq(&pm.znear(), &24.0));
|
||||
assert!(na::approx_eq(&pm.zfar(), &61.0));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_const() {
|
||||
|
||||
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 3.0);
|
||||
let g : Mat3<f64> = Mat3::<f64>::new(1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0);
|
||||
|
||||
let result = na::cholesky(&a);
|
||||
|
||||
assert!(result.is_ok());
|
||||
|
||||
let v = result.unwrap();
|
||||
assert!(na::approx_eq(&v, &g));
|
||||
|
||||
let recomp = v * na::transpose(&v);
|
||||
assert!(na::approx_eq(&recomp, &a));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_not_spd() {
|
||||
|
||||
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0);
|
||||
|
||||
let result = na::cholesky(&a);
|
||||
|
||||
assert!(result.is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_not_symmetric() {
|
||||
|
||||
let a : Mat2<f64> = Mat2::<f64>::new(1.0, 1.0, -1.0, 1.0);
|
||||
|
||||
let result = na::cholesky(&a);
|
||||
|
||||
assert!(result.is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_mat1() {
|
||||
test_cholesky_impl!(Mat1<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_mat2() {
|
||||
test_cholesky_impl!(Mat2<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_mat3() {
|
||||
test_cholesky_impl!(Mat3<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_mat4() {
|
||||
test_cholesky_impl!(Mat4<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_mat5() {
|
||||
test_cholesky_impl!(Mat5<f64>);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cholesky_mat6() {
|
||||
test_cholesky_impl!(Mat6<f64>);
|
||||
}
|
Loading…
Reference in New Issue