Merge pull request #147 from dshizzle/master
Implemented Cholesky decomposition
This commit is contained in:
commit
a14393be43
|
@ -150,7 +150,8 @@ pub use structs::{
|
||||||
|
|
||||||
pub use linalg::{
|
pub use linalg::{
|
||||||
qr,
|
qr,
|
||||||
householder_matrix
|
householder_matrix,
|
||||||
|
cholesky
|
||||||
};
|
};
|
||||||
|
|
||||||
mod structs;
|
mod structs;
|
||||||
|
|
|
@ -115,3 +115,51 @@ pub fn eigen_qr<N, V, VS, M>(m: &M, eps: &N, niter: usize) -> (M, V)
|
||||||
|
|
||||||
(eigenvectors, eigenvalues.diag())
|
(eigenvectors, eigenvalues.diag())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Cholesky decomposition G of a square symmetric positive definite matrix A, such that A = G * G^T
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
/// * `m` - square symmetric positive definite matrix to decompose
|
||||||
|
pub fn cholesky<N, V, VS, M>(m: &M) -> Result<M, &'static str>
|
||||||
|
where N: BaseFloat,
|
||||||
|
VS: Indexable<usize, N> + Norm<N>,
|
||||||
|
M: Indexable<(usize, usize), N> + SquareMat<N, V> + Add<M, Output = M> +
|
||||||
|
Sub<M, Output = M> + ColSlice<VS> +
|
||||||
|
ApproxEq<N> + Copy {
|
||||||
|
|
||||||
|
let mut out = m.clone().transpose();
|
||||||
|
|
||||||
|
if !ApproxEq::approx_eq(&out, &m) {
|
||||||
|
return Err("Cholesky: Input matrix is not symmetric");
|
||||||
|
}
|
||||||
|
|
||||||
|
for i in 0..out.nrows() {
|
||||||
|
for j in 0..(i+1) {
|
||||||
|
|
||||||
|
let mut sum: N = out[(i,j)];
|
||||||
|
|
||||||
|
for k in 0..j {
|
||||||
|
sum = sum - out[(i, k)] * out[(j, k)];
|
||||||
|
}
|
||||||
|
|
||||||
|
if i > j {
|
||||||
|
out[(i, j)] = sum / out[(j, j)];
|
||||||
|
}
|
||||||
|
else if sum > N::zero() {
|
||||||
|
out[(i,i)] = sum.sqrt();
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return Err("Cholesky: Input matrix is not positive definite to machine precision");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for i in 0..out.nrows() {
|
||||||
|
for j in i+1..out.ncols() {
|
||||||
|
out[(i,j)] = N::zero();
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
return Ok(out);
|
||||||
|
}
|
|
@ -1,4 +1,4 @@
|
||||||
|
|
||||||
pub use self::decompositions::{qr, eigen_qr, householder_matrix};
|
pub use self::decompositions::{qr, eigen_qr, householder_matrix, cholesky};
|
||||||
|
|
||||||
mod decompositions;
|
mod decompositions;
|
||||||
|
|
91
tests/mat.rs
91
tests/mat.rs
|
@ -3,7 +3,7 @@ extern crate rand;
|
||||||
|
|
||||||
use rand::random;
|
use rand::random;
|
||||||
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3,
|
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot2, Rot3, Persp3, PerspMat3, Ortho3,
|
||||||
OrthoMat3, DMat, DVec, Row, Col, BaseFloat};
|
OrthoMat3, DMat, DVec, Row, Col, BaseFloat, Diag};
|
||||||
|
|
||||||
macro_rules! test_inv_mat_impl(
|
macro_rules! test_inv_mat_impl(
|
||||||
($t: ty) => (
|
($t: ty) => (
|
||||||
|
@ -41,6 +41,28 @@ macro_rules! test_qr_impl(
|
||||||
);
|
);
|
||||||
);
|
);
|
||||||
|
|
||||||
|
macro_rules! test_cholesky_impl(
|
||||||
|
($t: ty) => (
|
||||||
|
for _ in (0usize .. 10000) {
|
||||||
|
|
||||||
|
// construct symmetric positive definite matrix
|
||||||
|
let mut randmat : $t = random();
|
||||||
|
let mut diagmat : $t = Diag::from_diag(&na::diag(&randmat));
|
||||||
|
|
||||||
|
diagmat = na::abs(&diagmat) + 1.0;
|
||||||
|
randmat = randmat * diagmat * na::transpose(&randmat);
|
||||||
|
|
||||||
|
let result = na::cholesky(&randmat);
|
||||||
|
|
||||||
|
assert!(result.is_ok());
|
||||||
|
|
||||||
|
let v = result.unwrap();
|
||||||
|
let recomp = v * na::transpose(&v);
|
||||||
|
assert!(na::approx_eq(&randmat, &recomp));
|
||||||
|
}
|
||||||
|
);
|
||||||
|
);
|
||||||
|
|
||||||
// NOTE: deactivated untile we get a better convergence rate.
|
// NOTE: deactivated untile we get a better convergence rate.
|
||||||
// macro_rules! test_eigen_qr_impl(
|
// macro_rules! test_eigen_qr_impl(
|
||||||
// ($t: ty) => {
|
// ($t: ty) => {
|
||||||
|
@ -600,3 +622,70 @@ fn test_ortho() {
|
||||||
assert!(na::approx_eq(&pm.znear(), &24.0));
|
assert!(na::approx_eq(&pm.znear(), &24.0));
|
||||||
assert!(na::approx_eq(&pm.zfar(), &61.0));
|
assert!(na::approx_eq(&pm.zfar(), &61.0));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_const() {
|
||||||
|
|
||||||
|
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 3.0);
|
||||||
|
let g : Mat3<f64> = Mat3::<f64>::new(1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0);
|
||||||
|
|
||||||
|
let result = na::cholesky(&a);
|
||||||
|
|
||||||
|
assert!(result.is_ok());
|
||||||
|
|
||||||
|
let v = result.unwrap();
|
||||||
|
assert!(na::approx_eq(&v, &g));
|
||||||
|
|
||||||
|
let recomp = v * na::transpose(&v);
|
||||||
|
assert!(na::approx_eq(&recomp, &a));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_not_spd() {
|
||||||
|
|
||||||
|
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0);
|
||||||
|
|
||||||
|
let result = na::cholesky(&a);
|
||||||
|
|
||||||
|
assert!(result.is_err());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_not_symmetric() {
|
||||||
|
|
||||||
|
let a : Mat2<f64> = Mat2::<f64>::new(1.0, 1.0, -1.0, 1.0);
|
||||||
|
|
||||||
|
let result = na::cholesky(&a);
|
||||||
|
|
||||||
|
assert!(result.is_err());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_mat1() {
|
||||||
|
test_cholesky_impl!(Mat1<f64>);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_mat2() {
|
||||||
|
test_cholesky_impl!(Mat2<f64>);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_mat3() {
|
||||||
|
test_cholesky_impl!(Mat3<f64>);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_mat4() {
|
||||||
|
test_cholesky_impl!(Mat4<f64>);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_mat5() {
|
||||||
|
test_cholesky_impl!(Mat5<f64>);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cholesky_mat6() {
|
||||||
|
test_cholesky_impl!(Mat6<f64>);
|
||||||
|
}
|
Loading…
Reference in New Issue