enabled complex eigenvalues for lapack
This commit is contained in:
parent
b656faa233
commit
9f8cfa207a
|
@ -69,8 +69,8 @@ where
|
||||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||||
);
|
);
|
||||||
|
|
||||||
let ljob = if left_eigenvectors { b'V' } else { b'T' };
|
let ljob = if left_eigenvectors { b'V' } else { b'N' };
|
||||||
let rjob = if eigenvectors { b'V' } else { b'T' };
|
let rjob = if eigenvectors { b'V' } else { b'N' };
|
||||||
|
|
||||||
let (nrows, ncols) = m.shape_generic();
|
let (nrows, ncols) = m.shape_generic();
|
||||||
let n = nrows.value();
|
let n = nrows.value();
|
||||||
|
@ -232,22 +232,27 @@ where
|
||||||
/// The complex eigenvalues of the given matrix.
|
/// The complex eigenvalues of the given matrix.
|
||||||
///
|
///
|
||||||
/// Panics if the eigenvalue computation does not converge.
|
/// Panics if the eigenvalue computation does not converge.
|
||||||
pub fn complex_eigenvalues(mut m: OMatrix<T, D, D>) -> OVector<Complex<T>, D>
|
pub fn complex_eigenvalues(mut m: OMatrix<T, D, D>, left_eigenvectors: bool, eigenvectors: bool)
|
||||||
|
-> (OVector<Complex<T>, D>, Option<OMatrix<T, D, D>>, Option<OMatrix<T, D, D>>)
|
||||||
where
|
where
|
||||||
DefaultAllocator: Allocator<Complex<T>, D>,
|
DefaultAllocator: Allocator<Complex<T>, D> + Allocator<Complex<T>, D, D>,
|
||||||
{
|
{
|
||||||
assert!(
|
assert!(
|
||||||
m.is_square(),
|
m.is_square(),
|
||||||
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
||||||
);
|
);
|
||||||
|
|
||||||
let nrows = m.shape_generic().0;
|
let ljob = if left_eigenvectors { b'V' } else { b'N' };
|
||||||
|
let rjob = if eigenvectors { b'V' } else { b'N' };
|
||||||
|
|
||||||
|
let (nrows, ncols) = m.shape_generic();
|
||||||
let n = nrows.value();
|
let n = nrows.value();
|
||||||
|
|
||||||
let lda = n as i32;
|
let lda = n as i32;
|
||||||
|
|
||||||
// TODO: avoid the initialization?
|
// TODO: avoid the initialization?
|
||||||
let mut wr = Matrix::zeros_generic(nrows, Const::<1>);
|
let mut wr = Matrix::zeros_generic(nrows, Const::<1>);
|
||||||
|
// TODO: Tap into the workspace.
|
||||||
let mut wi = Matrix::zeros_generic(nrows, Const::<1>);
|
let mut wi = Matrix::zeros_generic(nrows, Const::<1>);
|
||||||
|
|
||||||
let mut info = 0;
|
let mut info = 0;
|
||||||
|
@ -255,8 +260,8 @@ where
|
||||||
let mut placeholder2 = [T::zero()];
|
let mut placeholder2 = [T::zero()];
|
||||||
|
|
||||||
let lwork = T::xgeev_work_size(
|
let lwork = T::xgeev_work_size(
|
||||||
b'T',
|
ljob,
|
||||||
b'T',
|
rjob,
|
||||||
n as i32,
|
n as i32,
|
||||||
m.as_mut_slice(),
|
m.as_mut_slice(),
|
||||||
lda,
|
lda,
|
||||||
|
@ -273,9 +278,102 @@ where
|
||||||
|
|
||||||
let mut work = vec![T::zero(); lwork as usize];
|
let mut work = vec![T::zero(); lwork as usize];
|
||||||
|
|
||||||
|
match (left_eigenvectors, eigenvectors) {
|
||||||
|
(true, true) => {
|
||||||
|
// TODO: avoid the initializations?
|
||||||
|
let mut vl = Matrix::zeros_generic(nrows, ncols);
|
||||||
|
let mut vr = Matrix::zeros_generic(nrows, ncols);
|
||||||
|
|
||||||
T::xgeev(
|
T::xgeev(
|
||||||
b'T',
|
ljob,
|
||||||
b'T',
|
rjob,
|
||||||
|
n as i32,
|
||||||
|
m.as_mut_slice(),
|
||||||
|
lda,
|
||||||
|
wr.as_mut_slice(),
|
||||||
|
wi.as_mut_slice(),
|
||||||
|
&mut vl.as_mut_slice(),
|
||||||
|
n as i32,
|
||||||
|
&mut vr.as_mut_slice(),
|
||||||
|
n as i32,
|
||||||
|
&mut work,
|
||||||
|
lwork,
|
||||||
|
&mut info,
|
||||||
|
);
|
||||||
|
lapack_panic!(info);
|
||||||
|
|
||||||
|
let mut res = Matrix::zeros_generic(nrows, Const::<1>);
|
||||||
|
|
||||||
|
for i in 0..res.len() {
|
||||||
|
res[i] = Complex::new(wr[i].clone(), wi[i].clone());
|
||||||
|
}
|
||||||
|
|
||||||
|
return (res, Some(vl), Some(vr))
|
||||||
|
}
|
||||||
|
(true, false) => {
|
||||||
|
// TODO: avoid the initialization?
|
||||||
|
let mut vl = Matrix::zeros_generic(nrows, ncols);
|
||||||
|
|
||||||
|
T::xgeev(
|
||||||
|
ljob,
|
||||||
|
rjob,
|
||||||
|
n as i32,
|
||||||
|
m.as_mut_slice(),
|
||||||
|
lda,
|
||||||
|
wr.as_mut_slice(),
|
||||||
|
wi.as_mut_slice(),
|
||||||
|
&mut vl.as_mut_slice(),
|
||||||
|
n as i32,
|
||||||
|
&mut placeholder2,
|
||||||
|
1 as i32,
|
||||||
|
&mut work,
|
||||||
|
lwork,
|
||||||
|
&mut info,
|
||||||
|
);
|
||||||
|
lapack_panic!(info);
|
||||||
|
|
||||||
|
let mut res = Matrix::zeros_generic(nrows, Const::<1>);
|
||||||
|
|
||||||
|
for i in 0..res.len() {
|
||||||
|
res[i] = Complex::new(wr[i].clone(), wi[i].clone());
|
||||||
|
}
|
||||||
|
|
||||||
|
return (res, Some(vl), None)
|
||||||
|
}
|
||||||
|
(false, true) => {
|
||||||
|
// TODO: avoid the initialization?
|
||||||
|
let mut vr = Matrix::zeros_generic(nrows, ncols);
|
||||||
|
|
||||||
|
T::xgeev(
|
||||||
|
ljob,
|
||||||
|
rjob,
|
||||||
|
n as i32,
|
||||||
|
m.as_mut_slice(),
|
||||||
|
lda,
|
||||||
|
wr.as_mut_slice(),
|
||||||
|
wi.as_mut_slice(),
|
||||||
|
&mut placeholder1,
|
||||||
|
1 as i32,
|
||||||
|
&mut vr.as_mut_slice(),
|
||||||
|
n as i32,
|
||||||
|
&mut work,
|
||||||
|
lwork,
|
||||||
|
&mut info,
|
||||||
|
);
|
||||||
|
lapack_panic!(info);
|
||||||
|
|
||||||
|
let mut res = Matrix::zeros_generic(nrows, Const::<1>);
|
||||||
|
|
||||||
|
for i in 0..res.len() {
|
||||||
|
res[i] = Complex::new(wr[i].clone(), wi[i].clone());
|
||||||
|
}
|
||||||
|
|
||||||
|
return (res, None, Some(vr))
|
||||||
|
}
|
||||||
|
(false, false) => {
|
||||||
|
T::xgeev(
|
||||||
|
ljob,
|
||||||
|
rjob,
|
||||||
n as i32,
|
n as i32,
|
||||||
m.as_mut_slice(),
|
m.as_mut_slice(),
|
||||||
lda,
|
lda,
|
||||||
|
@ -297,7 +395,10 @@ where
|
||||||
res[i] = Complex::new(wr[i].clone(), wi[i].clone());
|
res[i] = Complex::new(wr[i].clone(), wi[i].clone());
|
||||||
}
|
}
|
||||||
|
|
||||||
res
|
return (res, None, None)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The determinant of the decomposed matrix.
|
/// The determinant of the decomposed matrix.
|
||||||
|
|
Loading…
Reference in New Issue