Reorganize matrix construction macros.
This commit is contained in:
parent
4c2192d9e0
commit
9a4cf0b69f
|
@ -22,11 +22,12 @@ use crate::base::dimension::{Dim, DimName, Dynamic, U1, U2, U3, U4, U5, U6};
|
|||
use crate::base::storage::Storage;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vector, VectorN};
|
||||
|
||||
/*
|
||||
*
|
||||
* Generic constructors.
|
||||
*
|
||||
*/
|
||||
/// # Generic constructors
|
||||
/// This set of matrix and vector construction functions are all generic
|
||||
/// with-regard to the matrix dimensions. They all expect to be given
|
||||
/// the dimension as inputs.
|
||||
///
|
||||
/// These functions should only be used when working on dimension-generic code.
|
||||
impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
|
@ -350,9 +351,6 @@ where
|
|||
*/
|
||||
macro_rules! impl_constructors(
|
||||
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
|
||||
impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
|
||||
where DefaultAllocator: Allocator<N $(, $Dims)*> {
|
||||
|
||||
/// Creates a new uninitialized matrix or vector.
|
||||
#[inline]
|
||||
pub unsafe fn new_uninitialized($($args: usize),*) -> Self {
|
||||
|
@ -577,48 +575,66 @@ macro_rules! impl_constructors(
|
|||
) -> Self {
|
||||
Self::from_distribution_generic($($gargs, )* distribution, rng)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
|
||||
where
|
||||
DefaultAllocator: Allocator<N $(, $Dims)*>,
|
||||
Standard: Distribution<N> {
|
||||
|
||||
/// Creates a matrix filled with random values.
|
||||
#[inline]
|
||||
#[cfg(feature = "std")]
|
||||
pub fn new_random($($args: usize),*) -> Self {
|
||||
pub fn new_random($($args: usize),*) -> Self
|
||||
where Standard: Distribution<N> {
|
||||
Self::new_random_generic($($gargs),*)
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
/// # Constructors of statically-sized vectors or statically-sized matrices
|
||||
impl<N: Scalar, R: DimName, C: DimName> MatrixMN<N, R, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, C>,
|
||||
{
|
||||
// FIXME: this is not very pretty. We could find a better call syntax.
|
||||
impl_constructors!(R, C; // Arguments for Matrix<N, ..., S>
|
||||
=> R: DimName, => C: DimName; // Type parameters for impl<N, ..., S>
|
||||
R::name(), C::name(); // Arguments for `_generic` constructors.
|
||||
); // Arguments for non-generic constructors.
|
||||
}
|
||||
|
||||
impl_constructors!(R, Dynamic;
|
||||
/// # Constructors of matrices with a dynamic number of columns
|
||||
impl<N: Scalar, R: DimName> MatrixMN<N, R, Dynamic>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, R, Dynamic>,
|
||||
{
|
||||
impl_constructors!(R, Dynamic;
|
||||
=> R: DimName;
|
||||
R::name(), Dynamic::new(ncols);
|
||||
ncols);
|
||||
}
|
||||
|
||||
impl_constructors!(Dynamic, C;
|
||||
/// # Constructors of dynamic vectors and matrices with a dynamic number of rows
|
||||
impl<N: Scalar, C: DimName> MatrixMN<N, Dynamic, C>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, C>,
|
||||
{
|
||||
impl_constructors!(Dynamic, C;
|
||||
=> C: DimName;
|
||||
Dynamic::new(nrows), C::name();
|
||||
nrows);
|
||||
}
|
||||
|
||||
impl_constructors!(Dynamic, Dynamic;
|
||||
/// # Constructors of fully dynamic matrices
|
||||
impl<N: Scalar> MatrixMN<N, Dynamic, Dynamic>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, Dynamic, Dynamic>,
|
||||
{
|
||||
impl_constructors!(Dynamic, Dynamic;
|
||||
;
|
||||
Dynamic::new(nrows), Dynamic::new(ncols);
|
||||
nrows, ncols);
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Constructors that don't necessarily require all dimensions
|
||||
* to be specified whon one dimension is already known.
|
||||
* to be specified when one dimension is already known.
|
||||
*
|
||||
*/
|
||||
macro_rules! impl_constructors_from_data(
|
||||
|
|
|
@ -54,7 +54,34 @@ pub type MatrixCross<N, R1, C1, R2, C2> =
|
|||
|
||||
/// The most generic column-major matrix (and vector) type.
|
||||
///
|
||||
/// It combines four type parameters:
|
||||
/// # Methods summary
|
||||
/// Because `Matrix` is the most generic types that groups all matrix and vectors of **nalgebra**
|
||||
/// this documentation page contains every single matrix/vector-related method. In order to make
|
||||
/// browsing this page simpler, the next subsections contain direct links to groups of methods
|
||||
/// related to a specific topic.
|
||||
///
|
||||
/// #### Vector and matrix construction
|
||||
/// - [Constructors of statically-sized vectors or statically-sized matrices](#constructors-of-statically-sized-vectors-or-statically-sized-matrices)
|
||||
/// (`Vector3`, `Matrix3x6`, etc.)
|
||||
/// - [Constructors of fully dynamic matrices](#constructors-of-fully-dynamic-matrices) (`DMatrix`)
|
||||
/// - [Constructors of dynamic vectors and matrices with a dynamic number of rows](#constructors-of-dynamic-vectors-and-matrices-with-a-dynamic-number-of-rows)
|
||||
/// (`DVector`, `MatrixXx3`, etc.)
|
||||
/// - [Constructors of matrices with a dynamic number of columns](#constructors-of-matrices-with-a-dynamic-number-of-columns)
|
||||
/// (`Matrix2xX`, etc.)
|
||||
/// - [Generic constructors](#generic-constructors)
|
||||
/// (For code generic wrt. the vectors or matrices dimensions.)
|
||||
/// #### Matrix decomposition
|
||||
/// - [Rectangular matrix decomposition](#rectangular-matrix-decomposition) (Applicable to square matrices too)
|
||||
/// - [Square matrix decomposition](#square-matrix-decomposition)
|
||||
///
|
||||
/// #### Vector and matrix slicing
|
||||
/// - [Slicing based on index and length](#slicing-based-on-index-and-length)
|
||||
/// - [Mutable slicing based on index and length](#mutable-slicing-based-on-index-and-length)
|
||||
/// - [Slicing based on ranges](#slicing-based-on-ranges)
|
||||
/// - [Mutable slicing based on ranges](#mutable-slicing-based-on-ranges)
|
||||
///
|
||||
/// # Type parameters
|
||||
/// The generic `Matrix` type has four type parameters:
|
||||
/// - `N`: for the matrix components scalar type.
|
||||
/// - `R`: for the matrix number of rows.
|
||||
/// - `C`: for the matrix number of columns.
|
||||
|
@ -75,26 +102,30 @@ pub type MatrixCross<N, R1, C1, R2, C2> =
|
|||
/// Note that mixing `Dynamic` with type-level unsigned integers is allowed. Actually, a
|
||||
/// dynamically-sized column vector should be represented as a `Matrix<N, Dynamic, U1, S>` (given
|
||||
/// some concrete types for `N` and a compatible data storage type `S`).
|
||||
///
|
||||
/// # Documentation by feature
|
||||
/// Because `Matrix` is the most generic types that groups all matrix and vectors of **nalgebra**
|
||||
/// this documentation page contains every single matrix/vector-related method. In order to make
|
||||
/// browsing this page simpler, the next subsections contain direct links to groups of methods
|
||||
/// related to a specific topic.
|
||||
///
|
||||
/// #### Matrix decomposition
|
||||
/// - [Rectangular matrix decomposition](#rectangular-matrix-decomposition).
|
||||
/// - [Square matrix decomposition](#square-matrix-decomposition).
|
||||
///
|
||||
/// #### Matrix slicing
|
||||
/// - [Slicing](#slicing)
|
||||
/// - [Mutable slicing](#mutable-slicing)
|
||||
/// - [Range-based slicing](#range-based-slicing), [mutable range-based slicing](#mutable-range-based-slicing).
|
||||
#[repr(C)]
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct Matrix<N: Scalar, R: Dim, C: Dim, S> {
|
||||
/// The data storage that contains all the matrix components and informations about its number
|
||||
/// of rows and column (if needed).
|
||||
/// The data storage that contains all the matrix components. Disappointed?
|
||||
///
|
||||
/// Well, if you came here to see how you can access the matrix components,
|
||||
/// you may be in luck: you can access the individual components of all vectors with compile-time
|
||||
/// dimensions <= 6 using field notation like this:
|
||||
/// `vec.x`, `vec.y`, `vec.z`, `vec.w`, `vec.a`, `vec.b`. Reference and assignation work too:
|
||||
/// ```.ignore
|
||||
/// let mut v = Vector3::new(1.0, 2.0, 3.0);
|
||||
/// vec.x = 10.0;
|
||||
/// my_function(&vec.z);
|
||||
/// println!("{}", vec.y + 30.0);
|
||||
/// ```
|
||||
/// Similarly, for matrices with compile-time dimensions <= 6, you can use field notation
|
||||
/// like this: `mat.m11`, `mat.m42`, etc. The first digit identifies the row to address
|
||||
/// and the second digit identifies the column to address. So `mat.m13` identifies the component
|
||||
/// at the first row and third column (note that the count of rows and columns start at 1 instead
|
||||
/// of 0 here. This is so we match the mathematical notation).
|
||||
///
|
||||
/// For all matrices and vectors, independently from their size, individual components can
|
||||
/// be accessed and modified using indexing: `vec[20]`, `mat[(20, 19)]`. Here the indexing
|
||||
/// starts at 0 as you would expect.
|
||||
pub data: S,
|
||||
|
||||
_phantoms: PhantomData<(N, R, C)>,
|
||||
|
|
Loading…
Reference in New Issue