Add methods to compute the products of a single matrix components/rows/columns
This commit is contained in:
parent
2e9c8aef20
commit
97a79a994b
|
@ -11,6 +11,8 @@ This project adheres to [Semantic Versioning](https://semver.org/).
|
|||
- The conversion trait `From<Vec<T>>` and method `from_vec_storage` for `RowDVector`. See [#975](https://github.com/dimforge/nalgebra/issues/975)
|
||||
- Added implementation of `From` and `Into` for converting between `nalgebra` types and types from
|
||||
`glam 0.18`. These can be enabled by enabling the `convert-glam018` cargo features.
|
||||
- Added the methods `Matrix::product`, `::row_product`, `::row_product_tr`, and `::column_product` to compute the
|
||||
product of the components, rows, or columns, of a single matrix or vector.
|
||||
|
||||
## [0.29.0]
|
||||
### Breaking changes
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
use crate::allocator::Allocator;
|
||||
use crate::storage::RawStorage;
|
||||
use crate::{Const, DefaultAllocator, Dim, Matrix, OVector, RowOVector, Scalar, VectorSlice, U1};
|
||||
use num::Zero;
|
||||
use simba::scalar::{ClosedAdd, Field, SupersetOf};
|
||||
use num::{One, Zero};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, Field, SupersetOf};
|
||||
use std::mem::MaybeUninit;
|
||||
|
||||
/// # Folding on columns and rows
|
||||
|
@ -123,7 +123,9 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
|||
/// 4.0, 5.0, 6.0);
|
||||
/// assert_eq!(m.row_sum(), RowVector3::new(5.0, 7.0, 9.0));
|
||||
///
|
||||
/// let mint = Matrix3x2::new(1,2,3,4,5,6);
|
||||
/// let mint = Matrix3x2::new(1, 2,
|
||||
/// 3, 4,
|
||||
/// 5, 6);
|
||||
/// assert_eq!(mint.row_sum(), RowVector2::new(9,12));
|
||||
/// ```
|
||||
#[inline]
|
||||
|
@ -148,8 +150,10 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
|||
/// 4.0, 5.0, 6.0);
|
||||
/// assert_eq!(m.row_sum_tr(), Vector3::new(5.0, 7.0, 9.0));
|
||||
///
|
||||
/// let mint = Matrix3x2::new(1,2,3,4,5,6);
|
||||
/// assert_eq!(mint.row_sum_tr(), Vector2::new(9,12));
|
||||
/// let mint = Matrix3x2::new(1, 2,
|
||||
/// 3, 4,
|
||||
/// 5, 6);
|
||||
/// assert_eq!(mint.row_sum_tr(), Vector2::new(9, 12));
|
||||
/// ```
|
||||
#[inline]
|
||||
#[must_use]
|
||||
|
@ -173,8 +177,10 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
|||
/// 4.0, 5.0, 6.0);
|
||||
/// assert_eq!(m.column_sum(), Vector2::new(6.0, 15.0));
|
||||
///
|
||||
/// let mint = Matrix3x2::new(1,2,3,4,5,6);
|
||||
/// assert_eq!(mint.column_sum(), Vector3::new(3,7,11));
|
||||
/// let mint = Matrix3x2::new(1, 2,
|
||||
/// 3, 4,
|
||||
/// 5, 6);
|
||||
/// assert_eq!(mint.column_sum(), Vector3::new(3, 7, 11));
|
||||
/// ```
|
||||
#[inline]
|
||||
#[must_use]
|
||||
|
@ -189,6 +195,120 @@ impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
|||
})
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Product computation.
|
||||
*
|
||||
*/
|
||||
/// The product of all the elements of this matrix.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Matrix2x3;
|
||||
///
|
||||
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
||||
/// 4.0, 5.0, 6.0);
|
||||
/// assert_eq!(m.product(), 720.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn product(&self) -> T
|
||||
where
|
||||
T: ClosedMul + One,
|
||||
{
|
||||
self.iter().cloned().fold(T::one(), |a, b| a * b)
|
||||
}
|
||||
|
||||
/// The product of all the rows of this matrix.
|
||||
///
|
||||
/// Use `.row_sum_tr` if you need the result in a column vector instead.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::{Matrix2x3, Matrix3x2};
|
||||
/// # use nalgebra::{RowVector2, RowVector3};
|
||||
///
|
||||
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
||||
/// 4.0, 5.0, 6.0);
|
||||
/// assert_eq!(m.row_product(), RowVector3::new(4.0, 10.0, 18.0));
|
||||
///
|
||||
/// let mint = Matrix3x2::new(1, 2,
|
||||
/// 3, 4,
|
||||
/// 5, 6);
|
||||
/// assert_eq!(mint.row_product(), RowVector2::new(15, 48));
|
||||
/// ```
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn row_product(&self) -> RowOVector<T, C>
|
||||
where
|
||||
T: ClosedMul + One,
|
||||
DefaultAllocator: Allocator<T, U1, C>,
|
||||
{
|
||||
self.compress_rows(|col| col.product())
|
||||
}
|
||||
|
||||
/// The product of all the rows of this matrix. The result is transposed and returned as a column vector.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::{Matrix2x3, Matrix3x2};
|
||||
/// # use nalgebra::{Vector2, Vector3};
|
||||
///
|
||||
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
||||
/// 4.0, 5.0, 6.0);
|
||||
/// assert_eq!(m.row_product_tr(), Vector3::new(4.0, 10.0, 18.0));
|
||||
///
|
||||
/// let mint = Matrix3x2::new(1, 2,
|
||||
/// 3, 4,
|
||||
/// 5, 6);
|
||||
/// assert_eq!(mint.row_product_tr(), Vector2::new(15, 48));
|
||||
/// ```
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn row_product_tr(&self) -> OVector<T, C>
|
||||
where
|
||||
T: ClosedMul + One,
|
||||
DefaultAllocator: Allocator<T, C>,
|
||||
{
|
||||
self.compress_rows_tr(|col| col.product())
|
||||
}
|
||||
|
||||
/// The product of all the columns of this matrix.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::{Matrix2x3, Matrix3x2};
|
||||
/// # use nalgebra::{Vector2, Vector3};
|
||||
///
|
||||
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
||||
/// 4.0, 5.0, 6.0);
|
||||
/// assert_eq!(m.column_product(), Vector2::new(6.0, 120.0));
|
||||
///
|
||||
/// let mint = Matrix3x2::new(1, 2,
|
||||
/// 3, 4,
|
||||
/// 5, 6);
|
||||
/// assert_eq!(mint.column_product(), Vector3::new(2, 12, 30));
|
||||
/// ```
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn column_product(&self) -> OVector<T, R>
|
||||
where
|
||||
T: ClosedMul + One,
|
||||
DefaultAllocator: Allocator<T, R>,
|
||||
{
|
||||
let nrows = self.shape_generic().0;
|
||||
self.compress_columns(
|
||||
OVector::repeat_generic(nrows, Const::<1>, T::one()),
|
||||
|out, col| {
|
||||
out.component_mul_assign(&col);
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Variance computation.
|
||||
|
|
Loading…
Reference in New Issue