Make most out-of-place methods static.
This is to make people prefer the functional style. Things like `a.dot(b)` dont make sense per se (there is no reason for `a` to have a different status than `b`). Using static methods avoid this. In-place methods are left unchanged.
This commit is contained in:
parent
dcd1e7719b
commit
90e40aaec0
@ -113,7 +113,7 @@ Feel free to add your project to this list if you happen to use **nalgebra**!
|
||||
#[deny(non_camel_case_types)];
|
||||
#[deny(non_uppercase_statics)];
|
||||
#[deny(unnecessary_qualification)];
|
||||
#[deny(missing_doc)];
|
||||
#[warn(missing_doc)];
|
||||
#[feature(macro_rules)];
|
||||
|
||||
extern mod std;
|
||||
|
36
src/na.rs
36
src/na.rs
@ -300,11 +300,11 @@ pub fn append_rotation_wrt_point<LV: Neg<LV>,
|
||||
|
||||
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
|
||||
#[inline(always)]
|
||||
pub fn rotate_wrt_center<LV: Neg<LV>,
|
||||
AV,
|
||||
M: RotationWithTranslation<LV, AV>>(
|
||||
m: &M,
|
||||
amount: &AV) -> M {
|
||||
pub fn append_rotation_wrt_center<LV: Neg<LV>,
|
||||
AV,
|
||||
M: RotationWithTranslation<LV, AV>>(
|
||||
m: &M,
|
||||
amount: &AV) -> M {
|
||||
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
|
||||
}
|
||||
|
||||
@ -373,13 +373,13 @@ pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||||
/// Computes the dot product of two vectors.
|
||||
#[inline(always)]
|
||||
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
|
||||
a.dot(b)
|
||||
Dot::dot(a, b)
|
||||
}
|
||||
|
||||
/// Computes a subtraction followed by a dot product.
|
||||
#[inline(always)]
|
||||
pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
|
||||
a.sub_dot(b, c)
|
||||
Dot::sub_dot(a, b, c)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -389,13 +389,13 @@ pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
|
||||
/// Computes the L2 norm of a vector.
|
||||
#[inline(always)]
|
||||
pub fn norm<V: Norm<N>, N: Algebraic>(v: &V) -> N {
|
||||
v.norm()
|
||||
Norm::norm(v)
|
||||
}
|
||||
|
||||
/// Computes the squared L2 norm of a vector.
|
||||
#[inline(always)]
|
||||
pub fn sqnorm<V: Norm<N>, N: Algebraic>(v: &V) -> N {
|
||||
v.sqnorm()
|
||||
Norm::sqnorm(v)
|
||||
}
|
||||
|
||||
/// Gets the normalized version of a vector.
|
||||
@ -411,7 +411,7 @@ pub fn normalize<V: Norm<N>, N: Algebraic>(v: &V) -> V {
|
||||
/// Computes the cross product of two vectors.
|
||||
#[inline(always)]
|
||||
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
|
||||
a.cross(b)
|
||||
Cross::cross(a, b)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -422,7 +422,7 @@ pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
|
||||
/// product.
|
||||
#[inline(always)]
|
||||
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||||
v.cross_matrix()
|
||||
CrossMatrix::cross_matrix(v)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -432,7 +432,7 @@ pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||||
/// Converts a matrix or vector to homogoneous coordinates.
|
||||
#[inline(always)]
|
||||
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||||
m.to_homogeneous()
|
||||
ToHomogeneous::to_homogeneous(m)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -472,8 +472,8 @@ pub fn sample_sphere<V: UniformSphereSample>(f: &fn(V)) {
|
||||
|
||||
/// Computes a component-wise absolute value.
|
||||
#[inline(always)]
|
||||
pub fn absolute<M: Absolute<Res>, Res>(m: &M) -> Res {
|
||||
m.absolute()
|
||||
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
|
||||
Absolute::abs(m)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -503,7 +503,7 @@ pub fn transpose<M: Transpose>(m: &M) -> M {
|
||||
/// Computes the outer product of two vectors.
|
||||
#[inline(always)]
|
||||
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
|
||||
a.outer(b)
|
||||
Outer::outer(a, b)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -513,7 +513,7 @@ pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
|
||||
/// Computes the covariance of a set of observations.
|
||||
#[inline(always)]
|
||||
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
||||
observations.cov()
|
||||
Cov::cov(observations)
|
||||
}
|
||||
|
||||
/*
|
||||
@ -523,7 +523,7 @@ pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
||||
/// Computes the mean of a set of observations.
|
||||
#[inline(always)]
|
||||
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
|
||||
observations.mean()
|
||||
Mean::mean(observations)
|
||||
}
|
||||
|
||||
//
|
||||
@ -545,7 +545,7 @@ pub fn canonical_basis<V: Basis>(f: &fn(V) -> bool) {
|
||||
/// Computes the basis of the orthonormal subspace of a given vector.
|
||||
#[inline(always)]
|
||||
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: &fn(V) -> bool) {
|
||||
v.orthonormal_subspace_basis(f)
|
||||
Basis::orthonormal_subspace_basis(v, f)
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -65,6 +65,7 @@ impl<N: Zero + Clone> DMat<N> {
|
||||
self.mij.iter().all(|e| e.is_zero())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn reset(&mut self) {
|
||||
for mij in self.mij.mut_iter() {
|
||||
*mij = Zero::zero();
|
||||
@ -416,14 +417,14 @@ impl<N: Clone> Transpose for DMat<N> {
|
||||
}
|
||||
|
||||
impl<N: Num + Cast<f32> + Clone> Mean<DVec<N>> for DMat<N> {
|
||||
fn mean(&self) -> DVec<N> {
|
||||
let mut res: DVec<N> = DVec::new_zeros(self.ncols);
|
||||
let normalizer: N = Cast::from(1.0f32 / Cast::from(self.nrows));
|
||||
fn mean(m: &DMat<N>) -> DVec<N> {
|
||||
let mut res: DVec<N> = DVec::new_zeros(m.ncols);
|
||||
let normalizer: N = Cast::from(1.0f32 / Cast::from(m.nrows));
|
||||
|
||||
for i in range(0u, self.nrows) {
|
||||
for j in range(0u, self.ncols) {
|
||||
for i in range(0u, m.nrows) {
|
||||
for j in range(0u, m.ncols) {
|
||||
unsafe {
|
||||
let acc = res.at_fast(j) + self.at_fast(i, j) * normalizer;
|
||||
let acc = res.at_fast(j) + m.at_fast(i, j) * normalizer;
|
||||
res.set_fast(j, acc);
|
||||
}
|
||||
}
|
||||
@ -435,23 +436,23 @@ impl<N: Num + Cast<f32> + Clone> Mean<DVec<N>> for DMat<N> {
|
||||
|
||||
impl<N: Clone + Num + Cast<f32> + DMatDivRhs<N, DMat<N>> + ToStr > Cov<DMat<N>> for DMat<N> {
|
||||
// FIXME: this could be heavily optimized, removing all temporaries by merging loops.
|
||||
fn cov(&self) -> DMat<N> {
|
||||
assert!(self.nrows > 1);
|
||||
fn cov(m: &DMat<N>) -> DMat<N> {
|
||||
assert!(m.nrows > 1);
|
||||
|
||||
let mut centered = unsafe { DMat::new_uninitialized(self.nrows, self.ncols) };
|
||||
let mean = self.mean();
|
||||
let mut centered = unsafe { DMat::new_uninitialized(m.nrows, m.ncols) };
|
||||
let mean = Mean::mean(m);
|
||||
|
||||
// FIXME: use the rows iterator when available
|
||||
for i in range(0u, self.nrows) {
|
||||
for j in range(0u, self.ncols) {
|
||||
for i in range(0u, m.nrows) {
|
||||
for j in range(0u, m.ncols) {
|
||||
unsafe {
|
||||
centered.set_fast(i, j, self.at_fast(i, j) - mean.at_fast(j));
|
||||
centered.set_fast(i, j, m.at_fast(i, j) - mean.at_fast(j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: return a triangular matrix?
|
||||
let fnormalizer: f32 = Cast::from(self.nrows() - 1);
|
||||
let fnormalizer: f32 = Cast::from(m.nrows() - 1);
|
||||
let normalizer: N = Cast::from(fnormalizer);
|
||||
// FIXME: this will do 2 allocations for temporaries!
|
||||
(Transpose::transpose_cpy(¢ered) * centered) / normalizer
|
||||
|
@ -92,6 +92,7 @@ impl<N> DVec<N> {
|
||||
*self.at.unsafe_mut_ref(i) = val
|
||||
}
|
||||
|
||||
/// Gets a reference to of this vector datas.
|
||||
#[inline]
|
||||
pub fn as_vec<'r>(&'r self) -> &'r [N] {
|
||||
let data: &'r [N] = self.at;
|
||||
@ -99,6 +100,7 @@ impl<N> DVec<N> {
|
||||
data
|
||||
}
|
||||
|
||||
/// Gets a mutable reference to of this vector datas.
|
||||
#[inline]
|
||||
pub fn as_mut_vec<'r>(&'r mut self) -> &'r mut [N] {
|
||||
let data: &'r mut [N] = self.at;
|
||||
@ -106,6 +108,7 @@ impl<N> DVec<N> {
|
||||
data
|
||||
}
|
||||
|
||||
/// Extracts this vector datas.
|
||||
#[inline]
|
||||
pub fn to_vec(self) -> ~[N] {
|
||||
self.at
|
||||
@ -211,13 +214,13 @@ impl<N: Clone + Num + Algebraic + ApproxEq<N> + DVecMulRhs<N, DVec<N>>> DVec<N>
|
||||
|
||||
let mut elt = basis_element.clone();
|
||||
|
||||
elt = elt - self * basis_element.dot(self);
|
||||
elt = elt - self * Dot::dot(&basis_element, self);
|
||||
|
||||
for v in res.iter() {
|
||||
elt = elt - v * elt.dot(v)
|
||||
elt = elt - v * Dot::dot(&elt, v)
|
||||
};
|
||||
|
||||
if !elt.sqnorm().approx_eq(&Zero::zero()) {
|
||||
if !Norm::sqnorm(&elt).approx_eq(&Zero::zero()) {
|
||||
res.push(Norm::normalize_cpy(&elt));
|
||||
}
|
||||
}
|
||||
@ -257,24 +260,24 @@ impl<N: Neg<N>> Neg<DVec<N>> for DVec<N> {
|
||||
|
||||
impl<N: Num + Clone> Dot<N> for DVec<N> {
|
||||
#[inline]
|
||||
fn dot(&self, other: &DVec<N>) -> N {
|
||||
assert!(self.at.len() == other.at.len());
|
||||
fn dot(a: &DVec<N>, b: &DVec<N>) -> N {
|
||||
assert!(a.at.len() == b.at.len());
|
||||
|
||||
let mut res: N = Zero::zero();
|
||||
|
||||
for i in range(0u, self.at.len()) {
|
||||
res = res + unsafe { self.at_fast(i) * other.at_fast(i) };
|
||||
for i in range(0u, a.at.len()) {
|
||||
res = res + unsafe { a.at_fast(i) * b.at_fast(i) };
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sub_dot(&self, a: &DVec<N>, b: &DVec<N>) -> N {
|
||||
fn sub_dot(a: &DVec<N>, b: &DVec<N>, c: &DVec<N>) -> N {
|
||||
let mut res: N = Zero::zero();
|
||||
|
||||
for i in range(0u, self.at.len()) {
|
||||
res = res + unsafe { (self.at_fast(i) - a.at_fast(i)) * b.at_fast(i) };
|
||||
for i in range(0u, a.at.len()) {
|
||||
res = res + unsafe { (a.at_fast(i) - b.at_fast(i)) * c.at_fast(i) };
|
||||
}
|
||||
|
||||
res
|
||||
@ -283,13 +286,13 @@ impl<N: Num + Clone> Dot<N> for DVec<N> {
|
||||
|
||||
impl<N: Num + Algebraic + Clone> Norm<N> for DVec<N> {
|
||||
#[inline]
|
||||
fn sqnorm(&self) -> N {
|
||||
self.dot(self)
|
||||
fn sqnorm(v: &DVec<N>) -> N {
|
||||
Dot::dot(v, v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm(&self) -> N {
|
||||
self.sqnorm().sqrt()
|
||||
fn norm(v: &DVec<N>) -> N {
|
||||
Norm::sqnorm(v).sqrt()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -303,7 +306,7 @@ impl<N: Num + Algebraic + Clone> Norm<N> for DVec<N> {
|
||||
|
||||
#[inline]
|
||||
fn normalize(&mut self) -> N {
|
||||
let l = self.norm();
|
||||
let l = Norm::norm(self);
|
||||
|
||||
for i in range(0u, self.at.len()) {
|
||||
self.at[i] = self.at[i] / l;
|
||||
|
@ -297,13 +297,13 @@ macro_rules! inv_impl(
|
||||
macro_rules! to_homogeneous_impl(
|
||||
($t: ident, $th: ident) => (
|
||||
impl<N: One + Zero + Clone> ToHomogeneous<$th<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $th<N> {
|
||||
let mut res = self.rotation.to_homogeneous();
|
||||
fn to_homogeneous(m: &$t<N>) -> $th<N> {
|
||||
let mut res = ToHomogeneous::to_homogeneous(&m.rotation);
|
||||
|
||||
// copy the translation
|
||||
let dim = Dim::dim(None::<$th<N>>);
|
||||
|
||||
res.set_col(dim - 1, self.translation.to_homogeneous());
|
||||
res.set_col(dim - 1, ToHomogeneous::to_homogeneous(&m.translation));
|
||||
|
||||
res
|
||||
}
|
||||
|
@ -113,8 +113,8 @@ macro_rules! absolute_impl(
|
||||
($t: ident, $comp0: ident $(,$compN: ident)*) => (
|
||||
impl<N: Signed> Absolute<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn absolute(&self) -> $t<N> {
|
||||
$t::new(self.$comp0.abs() $(, self.$compN.abs() )*)
|
||||
fn abs(m: &$t<N>) -> $t<N> {
|
||||
$t::new(m.$comp0.abs() $(, m.$compN.abs() )*)
|
||||
}
|
||||
}
|
||||
)
|
||||
@ -469,12 +469,12 @@ macro_rules! to_homogeneous_impl(
|
||||
($t: ident, $t2: ident, $dim: expr, $dim2: expr) => (
|
||||
impl<N: One + Zero + Clone> ToHomogeneous<$t2<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn to_homogeneous(&self) -> $t2<N> {
|
||||
fn to_homogeneous(m: &$t<N>) -> $t2<N> {
|
||||
let mut res: $t2<N> = One::one();
|
||||
|
||||
for i in range(0u, $dim) {
|
||||
for j in range(0u, $dim) {
|
||||
res.set((i, j), self.at((i, j)))
|
||||
res.set((i, j), m.at((i, j)))
|
||||
}
|
||||
}
|
||||
|
||||
@ -510,12 +510,12 @@ macro_rules! outer_impl(
|
||||
($t: ident, $m: ident) => (
|
||||
impl<N: Mul<N, N> + Zero + Clone> Outer<$m<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn outer(&self, other: &$t<N>) -> $m<N> {
|
||||
fn outer(a: &$t<N>, b: &$t<N>) -> $m<N> {
|
||||
let mut res: $m<N> = Zero::zero();
|
||||
|
||||
for i in range(0u, Dim::dim(None::<$t<N>>)) {
|
||||
for j in range(0u, Dim::dim(None::<$t<N>>)) {
|
||||
res.set((i, j), self.at(i) * other.at(j))
|
||||
res.set((i, j), a.at(i) * b.at(j))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -106,7 +106,7 @@ impl<N: Clone + Trigonometric + Num + Algebraic> Rot3<N> {
|
||||
/// * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation
|
||||
/// in radian. Its direction is the axis of rotation.
|
||||
pub fn new(axisangle: Vec3<N>) -> Rot3<N> {
|
||||
if axisangle.sqnorm().is_zero() {
|
||||
if Norm::sqnorm(&axisangle).is_zero() {
|
||||
One::one()
|
||||
}
|
||||
else {
|
||||
@ -152,8 +152,8 @@ impl<N: Clone + Num + Algebraic> Rot3<N> {
|
||||
/// with `at`. Non-colinearity is not checked.
|
||||
pub fn look_at(&mut self, at: &Vec3<N>, up: &Vec3<N>) {
|
||||
let xaxis = Norm::normalize_cpy(at);
|
||||
let zaxis = Norm::normalize_cpy(&up.cross(&xaxis));
|
||||
let yaxis = zaxis.cross(&xaxis);
|
||||
let zaxis = Norm::normalize_cpy(&Cross::cross(up, &xaxis));
|
||||
let yaxis = Cross::cross(&zaxis, &xaxis);
|
||||
|
||||
self.submat = Mat3::new(
|
||||
xaxis.x.clone(), yaxis.x.clone(), zaxis.x.clone(),
|
||||
@ -170,8 +170,8 @@ impl<N: Clone + Num + Algebraic> Rot3<N> {
|
||||
/// with `at`. Non-colinearity is not checked.
|
||||
pub fn look_at_z(&mut self, at: &Vec3<N>, up: &Vec3<N>) {
|
||||
let zaxis = Norm::normalize_cpy(at);
|
||||
let xaxis = Norm::normalize_cpy(&up.cross(&zaxis));
|
||||
let yaxis = zaxis.cross(&xaxis);
|
||||
let xaxis = Norm::normalize_cpy(&Cross::cross(up, &zaxis));
|
||||
let yaxis = Cross::cross(&zaxis, &xaxis);
|
||||
|
||||
self.submat = Mat3::new(
|
||||
xaxis.x.clone(), yaxis.x.clone(), zaxis.x.clone(),
|
||||
|
@ -190,8 +190,8 @@ macro_rules! to_homogeneous_impl(
|
||||
($t: ident, $tm: ident) => (
|
||||
impl<N: One + Zero + Clone> ToHomogeneous<$tm<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn to_homogeneous(&self) -> $tm<N> {
|
||||
self.submat.to_homogeneous()
|
||||
fn to_homogeneous(m: &$t<N>) -> $tm<N> {
|
||||
ToHomogeneous::to_homogeneous(&m.submat)
|
||||
}
|
||||
}
|
||||
)
|
||||
@ -223,8 +223,8 @@ macro_rules! absolute_impl(
|
||||
($t: ident, $tm: ident) => (
|
||||
impl<N: Signed> Absolute<$tm<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn absolute(&self) -> $tm<N> {
|
||||
self.submat.absolute()
|
||||
fn abs(m: &$t<N>) -> $tm<N> {
|
||||
Absolute::abs(&m.submat)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
@ -6,37 +6,37 @@ use structs::mat::Mat3;
|
||||
|
||||
impl<N: Mul<N, N> + Sub<N, N>> Cross<Vec1<N>> for Vec2<N> {
|
||||
#[inline]
|
||||
fn cross(&self, other : &Vec2<N>) -> Vec1<N> {
|
||||
Vec1::new(self.x * other.y - self.y * other.x)
|
||||
fn cross(a: &Vec2<N>, b: &Vec2<N>) -> Vec1<N> {
|
||||
Vec1::new(a.x * b.y - a.y * b.x)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: instead of returning a Vec2, define a Mat2x1 matrix?
|
||||
impl<N: Neg<N> + Clone> CrossMatrix<Vec2<N>> for Vec2<N> {
|
||||
#[inline]
|
||||
fn cross_matrix(&self) -> Vec2<N> {
|
||||
Vec2::new(-self.y, self.x.clone())
|
||||
fn cross_matrix(v: &Vec2<N>) -> Vec2<N> {
|
||||
Vec2::new(-v.y, v.x.clone())
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Mul<N, N> + Sub<N, N>> Cross<Vec3<N>> for Vec3<N> {
|
||||
#[inline]
|
||||
fn cross(&self, other : &Vec3<N>) -> Vec3<N> {
|
||||
fn cross(a: &Vec3<N>, b: &Vec3<N>) -> Vec3<N> {
|
||||
Vec3::new(
|
||||
self.y * other.z - self.z * other.y,
|
||||
self.z * other.x - self.x * other.z,
|
||||
self.x * other.y - self.y * other.x
|
||||
a.y * b.z - a.z * b.y,
|
||||
a.z * b.x - a.x * b.z,
|
||||
a.x * b.y - a.y * b.x
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Neg<N> + Zero + Clone> CrossMatrix<Mat3<N>> for Vec3<N> {
|
||||
#[inline]
|
||||
fn cross_matrix(&self) -> Mat3<N> {
|
||||
fn cross_matrix(v: &Vec3<N>) -> Mat3<N> {
|
||||
Mat3::new(
|
||||
Zero::zero() , -self.z, self.y.clone(),
|
||||
self.z.clone(), Zero::zero(), -self.x,
|
||||
-self.y , self.x.clone(), Zero::zero()
|
||||
Zero::zero(), -v.z , v.y.clone(),
|
||||
v.z.clone() , Zero::zero(), -v.x,
|
||||
-v.y , v.x.clone() , Zero::zero()
|
||||
)
|
||||
}
|
||||
}
|
||||
@ -75,7 +75,7 @@ impl<N: One> Basis for Vec1<N> {
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn orthonormal_subspace_basis(&self, _: &fn(Vec1<N>) -> bool ) { }
|
||||
fn orthonormal_subspace_basis(_: &Vec1<N>, _: &fn(Vec1<N>) -> bool ) { }
|
||||
}
|
||||
|
||||
impl<N: Clone + One + Zero + Neg<N>> Basis for Vec2<N> {
|
||||
@ -86,8 +86,8 @@ impl<N: Clone + One + Zero + Neg<N>> Basis for Vec2<N> {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn orthonormal_subspace_basis(&self, f: &fn(Vec2<N>) -> bool) {
|
||||
f(Vec2::new(-self.y, self.x.clone()));
|
||||
fn orthonormal_subspace_basis(n: &Vec2<N>, f: &fn(Vec2<N>) -> bool) {
|
||||
f(Vec2::new(-n.y, n.x.clone()));
|
||||
}
|
||||
}
|
||||
|
||||
@ -100,16 +100,16 @@ impl<N: Clone + Ord + Algebraic + Signed> Basis for Vec3<N> {
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn orthonormal_subspace_basis(&self, f: &fn(Vec3<N>) -> bool) {
|
||||
fn orthonormal_subspace_basis(n: &Vec3<N>, f: &fn(Vec3<N>) -> bool) {
|
||||
let a =
|
||||
if self.x.clone().abs() > self.y.clone().abs() {
|
||||
Norm::normalize_cpy(&Vec3::new(self.z.clone(), Zero::zero(), -self.x))
|
||||
if n.x.clone().abs() > n.y.clone().abs() {
|
||||
Norm::normalize_cpy(&Vec3::new(n.z.clone(), Zero::zero(), -n.x))
|
||||
}
|
||||
else {
|
||||
Norm::normalize_cpy(&Vec3::new(Zero::zero(), -self.z, self.y.clone()))
|
||||
Norm::normalize_cpy(&Vec3::new(Zero::zero(), -n.z, n.y.clone()))
|
||||
};
|
||||
|
||||
if !f(a.cross(self)) { return };
|
||||
if !f(Cross::cross(&a, n)) { return };
|
||||
f(a);
|
||||
}
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ impl<N> Basis for vec::Vec0<N> {
|
||||
fn canonical_basis(_: &fn(vec::Vec0<N>) -> bool) { }
|
||||
|
||||
#[inline(always)]
|
||||
fn orthonormal_subspace_basis(&self, _: &fn(vec::Vec0<N>) -> bool) { }
|
||||
fn orthonormal_subspace_basis(_: &vec::Vec0<N>, _: &fn(vec::Vec0<N>) -> bool) { }
|
||||
}
|
||||
|
||||
impl<N, T> Add<T, vec::Vec0<N>> for vec::Vec0<N> {
|
||||
@ -92,12 +92,12 @@ impl<N: Neg<N>> Neg<vec::Vec0<N>> for vec::Vec0<N> {
|
||||
|
||||
impl<N: Num + Clone> Dot<N> for vec::Vec0<N> {
|
||||
#[inline]
|
||||
fn dot(&self, _: &vec::Vec0<N>) -> N {
|
||||
fn dot(_: &vec::Vec0<N>, _: &vec::Vec0<N>) -> N {
|
||||
Zero::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sub_dot(&self, _: &vec::Vec0<N>, _: &vec::Vec0<N>) -> N {
|
||||
fn sub_dot(_: &vec::Vec0<N>, _: &vec::Vec0<N>, _: &vec::Vec0<N>) -> N {
|
||||
Zero::zero()
|
||||
}
|
||||
}
|
||||
@ -154,18 +154,18 @@ impl<N: Clone + Add<N, N> + Neg<N>> Translation<vec::Vec0<N>> for vec::Vec0<N> {
|
||||
|
||||
impl<N: Clone + Num + Algebraic> Norm<N> for vec::Vec0<N> {
|
||||
#[inline]
|
||||
fn sqnorm(&self) -> N {
|
||||
self.dot(self)
|
||||
fn sqnorm(_: &vec::Vec0<N>) -> N {
|
||||
Zero::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm(&self) -> N {
|
||||
self.sqnorm().sqrt()
|
||||
fn norm(_: &vec::Vec0<N>) -> N {
|
||||
Zero::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn normalize_cpy(v: &vec::Vec0<N>) -> vec::Vec0<N> {
|
||||
v.clone()
|
||||
fn normalize_cpy(_: &vec::Vec0<N>) -> vec::Vec0<N> {
|
||||
Zero::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -228,7 +228,7 @@ macro_rules! basis_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn orthonormal_subspace_basis(&self, f: &fn($t<N>) -> bool) {
|
||||
fn orthonormal_subspace_basis(n: &$t<N>, f: &fn($t<N>) -> bool) {
|
||||
// compute the basis of the orthogonal subspace using Gram-Schmidt
|
||||
// orthogonalization algorithm
|
||||
let mut basis: ~[$t<N>] = ~[];
|
||||
@ -246,13 +246,13 @@ macro_rules! basis_impl(
|
||||
|
||||
let mut elt = basis_element.clone();
|
||||
|
||||
elt = elt - *self * basis_element.dot(self);
|
||||
elt = elt - *n * Dot::dot(&basis_element, n);
|
||||
|
||||
for v in basis.iter() {
|
||||
elt = elt - v * elt.dot(v)
|
||||
elt = elt - v * Dot::dot(&elt, v)
|
||||
};
|
||||
|
||||
if !elt.sqnorm().approx_eq(&Zero::zero()) {
|
||||
if !Norm::sqnorm(&elt).approx_eq(&Zero::zero()) {
|
||||
let new_element = Norm::normalize_cpy(&elt);
|
||||
|
||||
if !f(new_element.clone()) { return };
|
||||
@ -324,13 +324,13 @@ macro_rules! dot_impl(
|
||||
($t: ident, $comp0: ident $(,$compN: ident)*) => (
|
||||
impl<N: Num + Clone> Dot<N> for $t<N> {
|
||||
#[inline]
|
||||
fn dot(&self, other: &$t<N>) -> N {
|
||||
self.$comp0 * other.$comp0 $(+ self.$compN * other.$compN )*
|
||||
fn dot(a: &$t<N>, b: &$t<N>) -> N {
|
||||
a.$comp0 * b.$comp0 $(+ a.$compN * b.$compN )*
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sub_dot(&self, a: &$t<N>, b: &$t<N>) -> N {
|
||||
(self.$comp0 - a.$comp0) * b.$comp0 $(+ (self.$compN - a.$compN) * b.$compN )*
|
||||
fn sub_dot(a: &$t<N>, b: &$t<N>, c: &$t<N>) -> N {
|
||||
(a.$comp0 - b.$comp0) * c.$comp0 $(+ (a.$compN - b.$compN) * c.$compN )*
|
||||
}
|
||||
}
|
||||
)
|
||||
@ -425,13 +425,13 @@ macro_rules! norm_impl(
|
||||
($t: ident, $comp0: ident $(,$compN: ident)*) => (
|
||||
impl<N: Clone + Num + Algebraic> Norm<N> for $t<N> {
|
||||
#[inline]
|
||||
fn sqnorm(&self) -> N {
|
||||
self.dot(self)
|
||||
fn sqnorm(v: &$t<N>) -> N {
|
||||
Dot::dot(v, v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn norm(&self) -> N {
|
||||
self.sqnorm().sqrt()
|
||||
fn norm(v: &$t<N>) -> N {
|
||||
Norm::sqnorm(v).sqrt()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@ -445,7 +445,7 @@ macro_rules! norm_impl(
|
||||
|
||||
#[inline]
|
||||
fn normalize(&mut self) -> N {
|
||||
let l = self.norm();
|
||||
let l = Norm::norm(self);
|
||||
|
||||
self.$comp0 = self.$comp0 / l;
|
||||
$(self.$compN = self.$compN / l;)*
|
||||
@ -545,11 +545,11 @@ macro_rules! bounded_impl(
|
||||
macro_rules! to_homogeneous_impl(
|
||||
($t: ident, $t2: ident, $extra: ident, $comp0: ident $(,$compN: ident)*) => (
|
||||
impl<N: Clone + One + Zero> ToHomogeneous<$t2<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $t2<N> {
|
||||
fn to_homogeneous(v: &$t<N>) -> $t2<N> {
|
||||
let mut res: $t2<N> = One::one();
|
||||
|
||||
res.$comp0 = self.$comp0.clone();
|
||||
$( res.$compN = self.$compN.clone(); )*
|
||||
res.$comp0 = v.$comp0.clone();
|
||||
$( res.$compN = v.$compN.clone(); )*
|
||||
|
||||
res
|
||||
}
|
||||
|
@ -201,7 +201,7 @@ pub trait Transform<V> {
|
||||
pub trait Dot<N> {
|
||||
/// Computes the dot (inner) product of two vectors.
|
||||
#[inline]
|
||||
fn dot(&self, &Self) -> N;
|
||||
fn dot(&Self, &Self) -> N;
|
||||
|
||||
/**
|
||||
* Short-cut to compute the projection of a point on a vector, but without
|
||||
@ -214,22 +214,22 @@ pub trait Dot<N> {
|
||||
*
|
||||
*/
|
||||
#[inline]
|
||||
fn sub_dot(&self, b: &Self, c: &Self) -> N;
|
||||
fn sub_dot(a: &Self, b: &Self, c: &Self) -> N;
|
||||
}
|
||||
|
||||
/// Traits of objects having an euclidian norm.
|
||||
pub trait Norm<N: Algebraic> {
|
||||
/// Computes the norm of `self`.
|
||||
#[inline]
|
||||
fn norm(&self) -> N {
|
||||
self.sqnorm().sqrt()
|
||||
fn norm(v: &Self) -> N {
|
||||
Norm::sqnorm(v).sqrt()
|
||||
}
|
||||
|
||||
/// Computes the squared norm of `self`.
|
||||
///
|
||||
/// This is usually faster than computing the norm itself.
|
||||
#[inline]
|
||||
fn sqnorm(&self) -> N;
|
||||
fn sqnorm(&Self) -> N;
|
||||
|
||||
/// Gets the normalized version of a copy of `v`.
|
||||
#[inline]
|
||||
@ -245,7 +245,7 @@ pub trait Norm<N: Algebraic> {
|
||||
*/
|
||||
pub trait Cross<V> {
|
||||
/// Computes the cross product between two elements (usually vectors).
|
||||
fn cross(&self, other: &Self) -> V;
|
||||
fn cross(&Self, other: &Self) -> V;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -254,13 +254,13 @@ pub trait Cross<V> {
|
||||
pub trait CrossMatrix<M> {
|
||||
/// The matrix associated to any cross product with this vector. I.e. `v.cross(anything)` =
|
||||
/// `v.cross_matrix().rmul(anything)`.
|
||||
fn cross_matrix(&self) -> M;
|
||||
fn cross_matrix(&Self) -> M;
|
||||
}
|
||||
|
||||
/// Traits of objects which can be put in homogeneous coordinates form.
|
||||
pub trait ToHomogeneous<U> {
|
||||
/// Gets the homogeneous coordinates form of this object.
|
||||
fn to_homogeneous(&self) -> U;
|
||||
fn to_homogeneous(&Self) -> U;
|
||||
}
|
||||
|
||||
/// Traits of objects which can be build from an homogeneous coordinate form.
|
||||
|
@ -6,7 +6,7 @@
|
||||
pub trait Absolute<A> {
|
||||
/// Computes some absolute value of this object.
|
||||
/// Typically, this will make all component of a matrix or vector positive.
|
||||
fn absolute(&self) -> A;
|
||||
fn abs(&Self) -> A;
|
||||
}
|
||||
|
||||
/// Trait of objects having an inverse. Typically used to implement matrix inverse.
|
||||
@ -30,7 +30,7 @@ pub trait Transpose {
|
||||
/// Traits of objects having an outer product.
|
||||
pub trait Outer<M> {
|
||||
/// Computes the outer product: `self * other`
|
||||
fn outer(&self, other: &Self) -> M;
|
||||
fn outer(a: &Self, b: &Self) -> M;
|
||||
}
|
||||
|
||||
/// Trait for computing the covariance of a set of data.
|
||||
@ -39,14 +39,14 @@ pub trait Cov<M> {
|
||||
///
|
||||
/// * For matrices, observations are stored in its rows.
|
||||
/// * For vectors, observations are stored in its components (thus are 1-dimensional).
|
||||
fn cov(&self) -> M;
|
||||
fn cov(&Self) -> M;
|
||||
|
||||
/// Computes the covariance of the obsevations stored by `self`:
|
||||
///
|
||||
/// * For matrices, observations are stored in its rows.
|
||||
/// * For vectors, observations are stored in its components (thus are 1-dimensional).
|
||||
fn cov_to(&self, out: &mut M) {
|
||||
*out = self.cov()
|
||||
fn cov_to(m: &Self, out: &mut M) {
|
||||
*out = Cov::cov(m)
|
||||
}
|
||||
}
|
||||
|
||||
@ -56,7 +56,7 @@ pub trait Mean<N> {
|
||||
///
|
||||
/// * For matrices, observations are stored in its rows.
|
||||
/// * For vectors, observations are stored in its components (thus are 1-dimensional).
|
||||
fn mean(&self) -> N;
|
||||
fn mean(&Self) -> N;
|
||||
}
|
||||
|
||||
// /// Cholesky decomposition.
|
||||
|
@ -60,7 +60,7 @@ pub trait Basis {
|
||||
fn canonical_basis(&fn(Self) -> bool);
|
||||
|
||||
/// Iterates through a basis of the subspace orthogonal to `self`.
|
||||
fn orthonormal_subspace_basis(&self, &fn(Self) -> bool);
|
||||
fn orthonormal_subspace_basis(&Self, &fn(Self) -> bool);
|
||||
}
|
||||
|
||||
/// Trait to access rows of a matrix or a vector.
|
||||
|
Loading…
Reference in New Issue
Block a user