Merge pull request #297 from Wallacoloo/fix/master-below-typo
Fix spelling of "below" (in method documentation)
This commit is contained in:
commit
9066ce484d
@ -163,7 +163,7 @@ macro_rules! svd_impl(
|
||||
|
||||
/// Computes the pseudo-inverse of the decomposed matrix.
|
||||
///
|
||||
/// All singular value bellow epsilon will be set to zero instead of being inverted.
|
||||
/// All singular value below epsilon will be set to zero instead of being inverted.
|
||||
#[inline]
|
||||
pub fn pseudo_inverse(&self, epsilon: $t) -> MatrixMN<$t, C, R> {
|
||||
let nrows = self.u.data.shape().0;
|
||||
|
@ -70,7 +70,7 @@ impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
|
||||
|
||||
// So we do some special cases for common fixed-size vectors of dimension lower than 8
|
||||
// because the `for` loop bellow won't be very efficient on those.
|
||||
// because the `for` loop below won't be very efficient on those.
|
||||
if (R::is::<U2>() || R2::is::<U2>()) &&
|
||||
(C::is::<U1>() || C2::is::<U1>()) {
|
||||
unsafe {
|
||||
|
@ -410,7 +410,7 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
/// * `self`: the first quaternion to interpolate from.
|
||||
/// * `other`: the second quaternion to interpolate toward.
|
||||
/// * `t`: the interpolation parameter. Should be between 0 and 1.
|
||||
/// * `epsilon`: the value bellow which the sinus of the angle separating both quaternion
|
||||
/// * `epsilon`: the value below which the sinus of the angle separating both quaternion
|
||||
/// must be to return `None`.
|
||||
#[inline]
|
||||
pub fn try_slerp(&self, other: &UnitQuaternion<N>, t: N, epsilon: N) -> Option<UnitQuaternion<N>> {
|
||||
|
@ -253,9 +253,9 @@ impl<N: Real, R: DimMin<C>, C: Dim> SVD<N, R, C>
|
||||
let denom = (m11 + m22).hypot(m12) + (m11 - m22).hypot(m12);
|
||||
|
||||
// NOTE: v1 is the singular value that is the closest to m22.
|
||||
// This prevents cancellation issues when constructing the vector `csv` bellow. If we chose
|
||||
// otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrofic
|
||||
// cancellation on `v1 * v1 - m11 * m11` bellow.
|
||||
// This prevents cancellation issues when constructing the vector `csv` below. If we chose
|
||||
// otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrophic
|
||||
// cancellation on `v1 * v1 - m11 * m11` below.
|
||||
let v1 = two * m11 * m22 / denom;
|
||||
let v2 = half * denom;
|
||||
|
||||
@ -543,7 +543,7 @@ impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
|
||||
/// Computes the rank of this matrix.
|
||||
///
|
||||
/// All singular values bellow `eps` are considered equal to 0.
|
||||
/// All singular values below `eps` are considered equal to 0.
|
||||
pub fn rank(&self, eps: N) -> usize {
|
||||
let svd = SVD::new(self.clone_owned(), false, false);
|
||||
svd.rank(eps)
|
||||
@ -551,7 +551,7 @@ impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
||||
|
||||
/// Computes the pseudo-inverse of this matrix.
|
||||
///
|
||||
/// All singular values bellow `eps` are considered equal to 0.
|
||||
/// All singular values below `eps` are considered equal to 0.
|
||||
pub fn pseudo_inverse(self, eps: N) -> MatrixMN<N, C, R>
|
||||
where DefaultAllocator: Allocator<N, C, R> {
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user