Change the SVD methods to return a Result instead of panicking

This commit is contained in:
João Costa 2018-10-08 22:13:56 +01:00 committed by Sébastien Crozet
parent 4d7b215146
commit 8b1aa2078c
2 changed files with 80 additions and 64 deletions

View File

@ -485,34 +485,40 @@ where
/// Rebuild the original matrix. /// Rebuild the original matrix.
/// ///
/// This is useful if some of the singular values have been manually modified. Panics if the /// This is useful if some of the singular values have been manually modified.
/// right- and left- singular vectors have not been computed at construction-time. /// Returns `Err` if the right- and left- singular vectors have not been
pub fn recompose(self) -> MatrixMN<N, R, C> { /// computed at construction-time.
let mut u = self.u.expect("SVD recomposition: U has not been computed."); pub fn recompose(self) -> Result<MatrixMN<N, R, C>, &'static str> {
let v_t = self.v_t match (self.u, self.v_t) {
.expect("SVD recomposition: V^t has not been computed."); (Some(_u), Some(_v_t)) => {
let mut u = _u;
let v_t = _v_t;
for i in 0..self.singular_values.len() { for i in 0..self.singular_values.len() {
let val = self.singular_values[i]; let val = self.singular_values[i];
u.column_mut(i).mul_assign(val); u.column_mut(i).mul_assign(val);
} }
Ok(u * v_t)
u * v_t }
(None, None) => Err("SVD recomposition: U and V^t have not been computed."),
(None, _) => Err("SVD recomposition: U has not been computed."),
(_, None) => Err("SVD recomposition: V^t has not been computed.")
}
} }
/// Computes the pseudo-inverse of the decomposed matrix. /// Computes the pseudo-inverse of the decomposed matrix.
/// ///
/// Any singular value smaller than `eps` is assumed to be zero. /// Any singular value smaller than `eps` is assumed to be zero.
/// Panics if the right- and left- singular vectors have not been computed at /// Returns `Err` if the right- and left- singular vectors have not
/// construction-time. /// been computed at construction-time.
pub fn pseudo_inverse(mut self, eps: N) -> MatrixMN<N, C, R> pub fn pseudo_inverse(mut self, eps: N) -> Result<MatrixMN<N, C, R>, &'static str>
where where
DefaultAllocator: Allocator<N, C, R>, DefaultAllocator: Allocator<N, C, R>,
{ {
assert!( if eps < N::zero() {
eps >= N::zero(), Err("SVD pseudo inverse: the epsilon must be non-negative.")
"SVD pseudo inverse: the epsilon must be non-negative." }
); else {
for i in 0..self.singular_values.len() { for i in 0..self.singular_values.len() {
let val = self.singular_values[i]; let val = self.singular_values[i];
@ -523,35 +529,31 @@ where
} }
} }
self.recompose().transpose() self.recompose().map(|m| m.transpose())
}
} }
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown. /// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
/// ///
/// Any singular value smaller than `eps` is assumed to be zero. /// Any singular value smaller than `eps` is assumed to be zero.
/// Returns `None` if the singular vectors `U` and `V` have not been computed. /// Returns `Err` if the singular vectors `U` and `V` have not been computed.
// FIXME: make this more generic wrt the storage types and the dimensions for `b`. // FIXME: make this more generic wrt the storage types and the dimensions for `b`.
pub fn solve<R2: Dim, C2: Dim, S2>( pub fn solve<R2: Dim, C2: Dim, S2>(
&self, &self,
b: &Matrix<N, R2, C2, S2>, b: &Matrix<N, R2, C2, S2>,
eps: N, eps: N,
) -> MatrixMN<N, C, C2> ) -> Result<MatrixMN<N, C, C2>, &'static str>
where where
S2: Storage<N, R2, C2>, S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>, DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>, ShapeConstraint: SameNumberOfRows<R, R2>,
{ {
assert!( if eps < N::zero() {
eps >= N::zero(), Err("SVD solve: the epsilon must be non-negative.")
"SVD solve: the epsilon must be non-negative." }
); else {
let u = self.u match (&self.u, &self.v_t) {
.as_ref() (Some(u), Some(v_t)) => {
.expect("SVD solve: U has not been computed.");
let v_t = self.v_t
.as_ref()
.expect("SVD solve: V^t has not been computed.");
let mut ut_b = u.tr_mul(b); let mut ut_b = u.tr_mul(b);
for j in 0..ut_b.ncols() { for j in 0..ut_b.ncols() {
@ -567,7 +569,13 @@ where
} }
} }
v_t.tr_mul(&ut_b) Ok(v_t.tr_mul(&ut_b))
}
(None, None) => Err("SVD solve: U and V^t have not been computed."),
(None, _) => Err("SVD solve: U has not been computed."),
(_, None) => Err("SVD solve: V^t has not been computed.")
}
}
} }
} }
@ -623,7 +631,7 @@ where
/// Computes the pseudo-inverse of this matrix. /// Computes the pseudo-inverse of this matrix.
/// ///
/// All singular values below `eps` are considered equal to 0. /// All singular values below `eps` are considered equal to 0.
pub fn pseudo_inverse(self, eps: N) -> MatrixMN<N, C, R> pub fn pseudo_inverse(self, eps: N) -> Result<MatrixMN<N, C, R>, &'static str>
where where
DefaultAllocator: Allocator<N, C, R>, DefaultAllocator: Allocator<N, C, R>,
{ {

View File

@ -9,7 +9,7 @@ mod quickcheck_tests {
fn svd(m: DMatrix<f64>) -> bool { fn svd(m: DMatrix<f64>) -> bool {
if m.len() > 0 { if m.len() > 0 {
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
let recomp_m = svd.clone().recompose(); let recomp_m = svd.clone().recompose().unwrap();
let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap()); let (u, s, v_t) = (svd.u.unwrap(), svd.singular_values, svd.v_t.unwrap());
let ds = DMatrix::from_diagonal(&s); let ds = DMatrix::from_diagonal(&s);
@ -90,7 +90,7 @@ mod quickcheck_tests {
fn svd_pseudo_inverse(m: DMatrix<f64>) -> bool { fn svd_pseudo_inverse(m: DMatrix<f64>) -> bool {
if m.len() > 0 { if m.len() > 0 {
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
let pinv = svd.pseudo_inverse(1.0e-10); let pinv = svd.pseudo_inverse(1.0e-10).unwrap();
if m.nrows() > m.ncols() { if m.nrows() > m.ncols() {
println!("{}", &pinv * &m); println!("{}", &pinv * &m);
@ -117,10 +117,10 @@ mod quickcheck_tests {
let b1 = DVector::new_random(n); let b1 = DVector::new_random(n);
let b2 = DMatrix::new_random(n, nb); let b2 = DMatrix::new_random(n, nb);
let sol1 = svd.solve(&b1, 1.0e-7); let sol1 = svd.solve(&b1, 1.0e-7).unwrap();
let sol2 = svd.solve(&b2, 1.0e-7); let sol2 = svd.solve(&b2, 1.0e-7).unwrap();
let recomp = svd.recompose(); let recomp = svd.recompose().unwrap();
if !relative_eq!(m, recomp, epsilon = 1.0e-6) { if !relative_eq!(m, recomp, epsilon = 1.0e-6) {
println!("{}{}", m, recomp); println!("{}{}", m, recomp);
} }
@ -262,22 +262,22 @@ fn svd_singular_horizontal() {
fn svd_zeros() { fn svd_zeros() {
let m = DMatrix::from_element(10, 10, 0.0); let m = DMatrix::from_element(10, 10, 0.0);
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
assert_eq!(m, svd.recompose()); assert_eq!(Ok(m), svd.recompose());
} }
#[test] #[test]
fn svd_identity() { fn svd_identity() {
let m = DMatrix::<f64>::identity(10, 10); let m = DMatrix::<f64>::identity(10, 10);
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
assert_eq!(m, svd.recompose()); assert_eq!(Ok(m), svd.recompose());
let m = DMatrix::<f64>::identity(10, 15); let m = DMatrix::<f64>::identity(10, 15);
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
assert_eq!(m, svd.recompose()); assert_eq!(Ok(m), svd.recompose());
let m = DMatrix::<f64>::identity(15, 10); let m = DMatrix::<f64>::identity(15, 10);
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
assert_eq!(m, svd.recompose()); assert_eq!(Ok(m), svd.recompose());
} }
#[test] #[test]
@ -294,7 +294,7 @@ fn svd_with_delimited_subproblem() {
m[(8,8)] = 16.0; m[(3,9)] = 17.0; m[(8,8)] = 16.0; m[(3,9)] = 17.0;
m[(9,9)] = 18.0; m[(9,9)] = 18.0;
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
assert!(relative_eq!(m, svd.recompose(), epsilon = 1.0e-7)); assert!(relative_eq!(m, svd.recompose().unwrap(), epsilon = 1.0e-7));
// Rectangular versions. // Rectangular versions.
let mut m = DMatrix::<f64>::from_element(15, 10, 0.0); let mut m = DMatrix::<f64>::from_element(15, 10, 0.0);
@ -309,10 +309,10 @@ fn svd_with_delimited_subproblem() {
m[(8,8)] = 16.0; m[(3,9)] = 17.0; m[(8,8)] = 16.0; m[(3,9)] = 17.0;
m[(9,9)] = 18.0; m[(9,9)] = 18.0;
let svd = m.clone().svd(true, true); let svd = m.clone().svd(true, true);
assert!(relative_eq!(m, svd.recompose(), epsilon = 1.0e-7)); assert!(relative_eq!(m, svd.recompose().unwrap(), epsilon = 1.0e-7));
let svd = m.transpose().svd(true, true); let svd = m.transpose().svd(true, true);
assert!(relative_eq!(m.transpose(), svd.recompose(), epsilon = 1.0e-7)); assert!(relative_eq!(m.transpose(), svd.recompose().unwrap(), epsilon = 1.0e-7));
} }
#[test] #[test]
@ -328,7 +328,15 @@ fn svd_fail() {
println!("Singular values: {}", svd.singular_values); println!("Singular values: {}", svd.singular_values);
println!("u: {:.5}", svd.u.unwrap()); println!("u: {:.5}", svd.u.unwrap());
println!("v: {:.5}", svd.v_t.unwrap()); println!("v: {:.5}", svd.v_t.unwrap());
let recomp = svd.recompose(); let recomp = svd.recompose().unwrap();
println!("{:.5}{:.5}", m, recomp); println!("{:.5}{:.5}", m, recomp);
assert!(relative_eq!(m, recomp, epsilon = 1.0e-5)); assert!(relative_eq!(m, recomp, epsilon = 1.0e-5));
} }
#[test]
fn svd_err() {
let m = DMatrix::from_element(10, 10, 0.0);
let svd = m.clone().svd(false, false);
assert_eq!(Err("SVD recomposition: U and V^t have not been computed."), svd.clone().recompose());
assert_eq!(Err("SVD pseudo inverse: the epsilon must be non-negative."), svd.clone().pseudo_inverse(-1.0));
}