Add tests and basis generation.
This commit is contained in:
parent
39707b42dc
commit
890cdb73f2
10
Makefile
10
Makefile
|
@ -1,7 +1,11 @@
|
|||
nalgebra_lib_path=lib
|
||||
all:
|
||||
rust build src/nalgebra.rc --out-dir lib # rustpkg install
|
||||
rust build src/nalgebra.rc --out-dir $(nalgebra_lib_path)
|
||||
|
||||
test:
|
||||
rust test src/nalgebra.rc
|
||||
|
||||
doc:
|
||||
rust doc src/nalgebra.rc --output-dir doc
|
||||
rust test src/nalgebra.rc
|
||||
|
||||
.PHONY:doc
|
||||
.PHONY:doc, test
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
use core::num::{Zero, Algebraic};
|
||||
use core::num::{Zero, One, Algebraic};
|
||||
use core::rand::{Rand, Rng, RngUtil};
|
||||
use std::cmp::FuzzyEq;
|
||||
use traits::dot::Dot;
|
||||
use traits::dim::Dim;
|
||||
use traits::basis::Basis;
|
||||
use traits::norm::Norm;
|
||||
|
||||
#[deriving(Eq)]
|
||||
pub struct Vec1<T>
|
||||
|
@ -33,12 +35,28 @@ impl<T:Copy + Mul<T, T> + Add<T, T> + Algebraic> Dot<T> for Vec1<T>
|
|||
{
|
||||
fn dot(&self, other : &Vec1<T>) -> T
|
||||
{ self.x * other.x }
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Add<T, T> + Quot<T, T> + Algebraic>
|
||||
Norm<T> for Vec1<T>
|
||||
{
|
||||
fn sqnorm(&self) -> T
|
||||
{ self.dot(self) }
|
||||
|
||||
fn norm(&self) -> T
|
||||
{ self.sqnorm().sqrt() }
|
||||
|
||||
fn normalized(&self) -> Vec1<T>
|
||||
{ Vec1(self.x / self.norm()) }
|
||||
|
||||
fn normalize(&mut self) -> T
|
||||
{
|
||||
let l = self.norm();
|
||||
|
||||
self.x /= l;
|
||||
|
||||
l
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:Copy + Neg<T>> Neg<Vec1<T>> for Vec1<T>
|
||||
|
@ -59,6 +77,15 @@ impl<T:Copy + Zero> Zero for Vec1<T>
|
|||
{ self.x.is_zero() }
|
||||
}
|
||||
|
||||
impl<T: Copy + One> Basis for Vec1<T>
|
||||
{
|
||||
fn canonical_basis() -> ~[Vec1<T>]
|
||||
{ ~[ Vec1(One::one()) ] } // FIXME: this should be static
|
||||
|
||||
fn orthogonal_subspace_basis(&self) -> ~[Vec1<T>]
|
||||
{ ~[] }
|
||||
}
|
||||
|
||||
impl<T:FuzzyEq<T>> FuzzyEq<T> for Vec1<T>
|
||||
{
|
||||
fn fuzzy_eq(&self, other: &Vec1<T>) -> bool
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
use core::num::{Zero, Algebraic};
|
||||
use core::num::{Zero, One, Algebraic};
|
||||
use core::rand::{Rand, Rng, RngUtil};
|
||||
use std::cmp::FuzzyEq;
|
||||
use traits::dot::Dot;
|
||||
use traits::dim::Dim;
|
||||
use traits::cross::Cross;
|
||||
use traits::basis::Basis;
|
||||
use traits::norm::Norm;
|
||||
use dim1::vec1::Vec1;
|
||||
|
||||
#[deriving(Eq)]
|
||||
|
@ -38,12 +40,33 @@ impl<T:Copy + Mul<T, T> + Add<T, T> + Algebraic> Dot<T> for Vec2<T>
|
|||
{
|
||||
fn dot(&self, other : &Vec2<T>) -> T
|
||||
{ self.x * other.x + self.y * other.y }
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Add<T, T> + Quot<T, T> + Algebraic>
|
||||
Norm<T> for Vec2<T>
|
||||
{
|
||||
fn sqnorm(&self) -> T
|
||||
{ self.dot(self) }
|
||||
|
||||
fn norm(&self) -> T
|
||||
{ self.sqnorm().sqrt() }
|
||||
|
||||
fn normalized(&self) -> Vec2<T>
|
||||
{
|
||||
let l = self.norm();
|
||||
|
||||
Vec2(self.x / l, self.y / l)
|
||||
}
|
||||
|
||||
fn normalize(&mut self) -> T
|
||||
{
|
||||
let l = self.norm();
|
||||
|
||||
self.x /= l;
|
||||
self.y /= l;
|
||||
|
||||
l
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Sub<T, T>> Cross<Vec1<T>> for Vec2<T>
|
||||
|
@ -70,6 +93,19 @@ impl<T:Copy + Zero> Zero for Vec2<T>
|
|||
{ self.x.is_zero() && self.y.is_zero() }
|
||||
}
|
||||
|
||||
impl<T: Copy + One + Zero + Neg<T>> Basis for Vec2<T>
|
||||
{
|
||||
fn canonical_basis() -> ~[Vec2<T>]
|
||||
{
|
||||
// FIXME: this should be static
|
||||
~[ Vec2(One::one(), Zero::zero()),
|
||||
Vec2(Zero::zero(), One::one()) ]
|
||||
}
|
||||
|
||||
fn orthogonal_subspace_basis(&self) -> ~[Vec2<T>]
|
||||
{ ~[ Vec2(-self.y, self.x) ] }
|
||||
}
|
||||
|
||||
impl<T:FuzzyEq<T>> FuzzyEq<T> for Vec2<T>
|
||||
{
|
||||
fn fuzzy_eq(&self, other: &Vec2<T>) -> bool
|
||||
|
|
|
@ -128,7 +128,7 @@ Inv for Mat3<T>
|
|||
- self.m12 * minor_m21_m33
|
||||
+ self.m13 * minor_m21_m32;
|
||||
|
||||
assert!(det.is_zero());
|
||||
assert!(!det.is_zero());
|
||||
|
||||
*self = Mat3(
|
||||
(minor_m22_m33 / det),
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
use core::num::{Zero, Algebraic};
|
||||
use core::num::{Zero, One, Algebraic, abs};
|
||||
use core::rand::{Rand, Rng, RngUtil};
|
||||
use std::cmp::FuzzyEq;
|
||||
use traits::dim::Dim;
|
||||
use traits::dot::Dot;
|
||||
use traits::cross::Cross;
|
||||
use traits::basis::Basis;
|
||||
use traits::norm::Norm;
|
||||
|
||||
#[deriving(Eq)]
|
||||
pub struct Vec3<T>
|
||||
|
@ -44,12 +46,34 @@ impl<T:Copy + Mul<T, T> + Add<T, T> + Algebraic> Dot<T> for Vec3<T>
|
|||
{
|
||||
fn dot(&self, other : &Vec3<T>) -> T
|
||||
{ self.x * other.x + self.y * other.y + self.z * other.z }
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Add<T, T> + Quot<T, T> + Algebraic>
|
||||
Norm<T> for Vec3<T>
|
||||
{
|
||||
fn sqnorm(&self) -> T
|
||||
{ self.dot(self) }
|
||||
|
||||
fn norm(&self) -> T
|
||||
{ self.sqnorm().sqrt() }
|
||||
|
||||
fn normalized(&self) -> Vec3<T>
|
||||
{
|
||||
let l = self.norm();
|
||||
|
||||
Vec3(self.x / l, self.y / l, self.z / l)
|
||||
}
|
||||
|
||||
fn normalize(&mut self) -> T
|
||||
{
|
||||
let l = self.norm();
|
||||
|
||||
self.x /= l;
|
||||
self.y /= l;
|
||||
self.z /= l;
|
||||
|
||||
l
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:Copy + Mul<T, T> + Sub<T, T>> Cross<Vec3<T>> for Vec3<T>
|
||||
|
@ -76,6 +100,30 @@ impl<T:Copy + Zero> Zero for Vec3<T>
|
|||
{ self.x.is_zero() && self.y.is_zero() && self.z.is_zero() }
|
||||
}
|
||||
|
||||
impl<T: Copy + One + Zero + Neg<T> + Ord + Mul<T, T> + Sub<T, T> + Add<T, T> +
|
||||
Quot<T, T> + Algebraic>
|
||||
Basis for Vec3<T>
|
||||
{
|
||||
fn canonical_basis() -> ~[Vec3<T>]
|
||||
{
|
||||
// FIXME: this should be static
|
||||
~[ Vec3(One::one(), Zero::zero(), Zero::zero()),
|
||||
Vec3(Zero::zero(), One::one(), Zero::zero()),
|
||||
Vec3(Zero::zero(), Zero::zero(), One::one()) ]
|
||||
}
|
||||
|
||||
fn orthogonal_subspace_basis(&self) -> ~[Vec3<T>]
|
||||
{
|
||||
let a =
|
||||
if (abs(self.x) > abs(self.y))
|
||||
{ Vec3(self.z, Zero::zero(), -self.x).normalized() }
|
||||
else
|
||||
{ Vec3(Zero::zero(), -self.z, self.y).normalized() };
|
||||
|
||||
~[ a, a.cross(self) ]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T:FuzzyEq<T>> FuzzyEq<T> for Vec3<T>
|
||||
{
|
||||
fn fuzzy_eq(&self, other: &Vec3<T>) -> bool
|
||||
|
|
|
@ -27,9 +27,12 @@ pub use traits::cross::Cross;
|
|||
pub use traits::dim::Dim;
|
||||
pub use traits::inv::Inv;
|
||||
pub use traits::transpose::Transpose;
|
||||
pub use traits::basis::Basis;
|
||||
pub use traits::norm::Norm;
|
||||
|
||||
pub use traits::workarounds::rlmul::{RMul, LMul};
|
||||
pub use traits::workarounds::trigonometric::Trigonometric;
|
||||
pub use traits::workarounds::scalar_op::ScalarOp;
|
||||
|
||||
mod dim2
|
||||
{
|
||||
|
@ -68,10 +71,19 @@ mod traits
|
|||
mod inv;
|
||||
mod transpose;
|
||||
mod dim;
|
||||
mod basis;
|
||||
mod norm;
|
||||
|
||||
mod workarounds
|
||||
{
|
||||
mod rlmul;
|
||||
mod trigonometric;
|
||||
mod scalar_op;
|
||||
}
|
||||
}
|
||||
|
||||
mod tests
|
||||
{
|
||||
mod mat;
|
||||
mod vec;
|
||||
}
|
||||
|
|
148
src/ndim/nvec.rs
148
src/ndim/nvec.rs
|
@ -1,9 +1,12 @@
|
|||
use core::vec::{map_zip, from_elem, map, all, all2};
|
||||
use core::num::{Zero, One, Algebraic};
|
||||
use core::rand::{Rand, Rng, RngUtil};
|
||||
use core::num::{Zero, Algebraic};
|
||||
use core::vec::{map_zip, from_elem, map, all, all2};
|
||||
use std::cmp::FuzzyEq;
|
||||
use traits::dim::Dim;
|
||||
use traits::dot::Dot;
|
||||
use traits::norm::Norm;
|
||||
use traits::basis::Basis;
|
||||
use traits::workarounds::scalar_op::ScalarOp;
|
||||
|
||||
// D is a phantom parameter, used only as a dimensional token.
|
||||
// Its allows use to encode the vector dimension at the type-level.
|
||||
|
@ -24,25 +27,31 @@ impl<D: Dim, T> Dim for NVec<D, T>
|
|||
{ Dim::dim::<D>() }
|
||||
}
|
||||
|
||||
impl<D, T:Copy + Add<T,T>> Add<NVec<D, T>, NVec<D, T>> for NVec<D, T>
|
||||
impl<D, T: Clone> Clone for NVec<D, T>
|
||||
{
|
||||
fn clone(&self) -> NVec<D, T>
|
||||
{ NVec{ at: self.at.clone() } }
|
||||
}
|
||||
|
||||
impl<D, T: Copy + Add<T,T>> Add<NVec<D, T>, NVec<D, T>> for NVec<D, T>
|
||||
{
|
||||
fn add(&self, other: &NVec<D, T>) -> NVec<D, T>
|
||||
{ NVec { at: map_zip(self.at, other.at, | a, b | { *a + *b }) } }
|
||||
}
|
||||
|
||||
impl<D, T:Copy + Sub<T,T>> Sub<NVec<D, T>, NVec<D, T>> for NVec<D, T>
|
||||
impl<D, T: Copy + Sub<T,T>> Sub<NVec<D, T>, NVec<D, T>> for NVec<D, T>
|
||||
{
|
||||
fn sub(&self, other: &NVec<D, T>) -> NVec<D, T>
|
||||
{ NVec { at: map_zip(self.at, other.at, | a, b | *a - *b) } }
|
||||
}
|
||||
|
||||
impl<D, T:Copy + Neg<T>> Neg<NVec<D, T>> for NVec<D, T>
|
||||
impl<D, T: Copy + Neg<T>> Neg<NVec<D, T>> for NVec<D, T>
|
||||
{
|
||||
fn neg(&self) -> NVec<D, T>
|
||||
{ NVec { at: map(self.at, |a| -a) } }
|
||||
}
|
||||
|
||||
impl<D: Dim, T:Copy + Mul<T, T> + Add<T, T> + Algebraic + Zero>
|
||||
impl<D: Dim, T: Copy + Mul<T, T> + Add<T, T> + Algebraic + Zero>
|
||||
Dot<T> for NVec<D, T>
|
||||
{
|
||||
fn dot(&self, other: &NVec<D, T>) -> T
|
||||
|
@ -54,23 +63,142 @@ Dot<T> for NVec<D, T>
|
|||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T: Copy + Mul<T, T> + Quot<T, T> + Add<T, T> + Sub<T, T>>
|
||||
ScalarOp<T> for NVec<D, T>
|
||||
{
|
||||
fn scalar_mul(&self, s: &T) -> NVec<D, T>
|
||||
{ NVec { at: map(self.at, |a| a * *s) } }
|
||||
|
||||
fn scalar_div(&self, s: &T) -> NVec<D, T>
|
||||
{ NVec { at: map(self.at, |a| a / *s) } }
|
||||
|
||||
fn scalar_add(&self, s: &T) -> NVec<D, T>
|
||||
{ NVec { at: map(self.at, |a| a + *s) } }
|
||||
|
||||
fn scalar_sub(&self, s: &T) -> NVec<D, T>
|
||||
{ NVec { at: map(self.at, |a| a - *s) } }
|
||||
|
||||
fn scalar_mul_inplace(&mut self, s: &T)
|
||||
{
|
||||
for uint::range(0u, Dim::dim::<D>()) |i|
|
||||
{ self.at[i] *= *s; }
|
||||
}
|
||||
|
||||
fn scalar_div_inplace(&mut self, s: &T)
|
||||
{
|
||||
for uint::range(0u, Dim::dim::<D>()) |i|
|
||||
{ self.at[i] /= *s; }
|
||||
}
|
||||
|
||||
fn scalar_add_inplace(&mut self, s: &T)
|
||||
{
|
||||
for uint::range(0u, Dim::dim::<D>()) |i|
|
||||
{ self.at[i] += *s; }
|
||||
}
|
||||
|
||||
fn scalar_sub_inplace(&mut self, s: &T)
|
||||
{
|
||||
for uint::range(0u, Dim::dim::<D>()) |i|
|
||||
{ self.at[i] -= *s; }
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T: Copy + Mul<T, T> + Add<T, T> + Quot<T, T> + Algebraic + Zero +
|
||||
Clone>
|
||||
Norm<T> for NVec<D, T>
|
||||
{
|
||||
fn sqnorm(&self) -> T
|
||||
{ self.dot(self) }
|
||||
|
||||
fn norm(&self) -> T
|
||||
{ self.sqnorm().sqrt() }
|
||||
|
||||
fn normalized(&self) -> NVec<D, T>
|
||||
{
|
||||
let mut res : NVec<D, T> = self.clone();
|
||||
|
||||
res.normalize();
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn normalize(&mut self) -> T
|
||||
{
|
||||
let l = self.norm();
|
||||
|
||||
for uint::range(0u, Dim::dim::<D>()) |i|
|
||||
{ self.at[i] /= l; }
|
||||
|
||||
l
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: Dim,
|
||||
T: Copy + One + Zero + Neg<T> + Ord + Mul<T, T> + Sub<T, T> + Add<T, T> +
|
||||
Quot<T, T> + Algebraic + Clone + FuzzyEq<T>>
|
||||
Basis for NVec<D, T>
|
||||
{
|
||||
fn canonical_basis() -> ~[NVec<D, T>]
|
||||
{
|
||||
let dim = Dim::dim::<D>();
|
||||
let mut res : ~[NVec<D, T>] = ~[];
|
||||
|
||||
for uint::range(0u, dim) |i|
|
||||
{
|
||||
let mut basis_element : NVec<D, T> = Zero::zero();
|
||||
|
||||
basis_element.at[i] = One::one();
|
||||
|
||||
res.push(basis_element);
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn orthogonal_subspace_basis(&self) -> ~[NVec<D, T>]
|
||||
{
|
||||
// compute the basis of the orthogonal subspace using Gram-Schmidt
|
||||
// orthogonalization algorithm
|
||||
let dim = Dim::dim::<D>();
|
||||
let mut res : ~[NVec<D, T>] = ~[];
|
||||
|
||||
for uint::range(0u, dim) |i|
|
||||
{
|
||||
let mut basis_element : NVec<D, T> = Zero::zero();
|
||||
|
||||
basis_element.at[i] = One::one();
|
||||
|
||||
if (res.len() == dim - 1)
|
||||
{ break; }
|
||||
|
||||
let mut elt = basis_element.clone();
|
||||
|
||||
elt -= self.scalar_mul(&basis_element.dot(self));
|
||||
|
||||
for res.each |v|
|
||||
{ elt -= v.scalar_mul(&elt.dot(v)) };
|
||||
|
||||
if (!elt.sqnorm().fuzzy_eq(&Zero::zero()))
|
||||
{ res.push(elt.normalized()); }
|
||||
}
|
||||
|
||||
assert!(res.len() == dim - 1);
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: I dont really know how te generalize the cross product int
|
||||
// n-dimensions…
|
||||
// impl<T:Copy + Mul<T, T> + Sub<T, T>> Cross<T> for NVec<D, T>
|
||||
// impl<T: Copy + Mul<T, T> + Sub<T, T>> Cross<T> for NVec<D, T>
|
||||
// {
|
||||
// fn cross(&self, other: &NVec<D, T>) -> T
|
||||
// { self.x * other.y - self.y * other.x }
|
||||
// }
|
||||
|
||||
impl<D: Dim, T:Copy + Zero> Zero for NVec<D, T>
|
||||
impl<D: Dim, T: Copy + Zero> Zero for NVec<D, T>
|
||||
{
|
||||
fn zero() -> NVec<D, T>
|
||||
{
|
||||
|
@ -85,7 +213,7 @@ impl<D: Dim, T:Copy + Zero> Zero for NVec<D, T>
|
|||
}
|
||||
}
|
||||
|
||||
impl<D, T:FuzzyEq<T>> FuzzyEq<T> for NVec<D, T>
|
||||
impl<D, T: FuzzyEq<T>> FuzzyEq<T> for NVec<D, T>
|
||||
{
|
||||
fn fuzzy_eq(&self, other: &NVec<D, T>) -> bool
|
||||
{ all2(self.at, other.at, |a, b| a.fuzzy_eq(b)) }
|
||||
|
@ -108,7 +236,7 @@ impl<D: Dim, T: Rand + Zero + Copy> Rand for NVec<D, T>
|
|||
}
|
||||
}
|
||||
|
||||
impl<D: Dim, T:ToStr> ToStr for NVec<D, T>
|
||||
impl<D: Dim, T: ToStr> ToStr for NVec<D, T>
|
||||
{
|
||||
fn to_str(&self) -> ~str
|
||||
{ ~"Vec" + Dim::dim::<D>().to_str() + self.at.to_str() }
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
#[test]
|
||||
use core::num::{One};
|
||||
#[test]
|
||||
use core::rand::{random};
|
||||
#[test]
|
||||
use std::cmp::FuzzyEq;
|
||||
// #[test]
|
||||
// use ndim::nmat::NMat;
|
||||
#[test]
|
||||
use dim1::mat1::Mat1;
|
||||
#[test]
|
||||
use dim2::mat2::Mat2;
|
||||
#[test]
|
||||
use dim3::mat3::Mat3;
|
||||
// #[test]
|
||||
// use traits::dim::d7;
|
||||
|
||||
// FIXME: this one fails with an ICE: node_id_to_type: no type for node [...]
|
||||
// #[test]
|
||||
// fn test_inv_nmat()
|
||||
// {
|
||||
// let randmat : NMat<d7, f64> = random();
|
||||
//
|
||||
// assert!((randmat.inverse() * randmat).fuzzy_eq(&One::one()));
|
||||
// }
|
||||
|
||||
#[test]
|
||||
fn test_inv_mat1()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let randmat : Mat1<f64> = random();
|
||||
|
||||
assert!((randmat.inverse() * randmat).fuzzy_eq(&One::one()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_inv_mat2()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let randmat : Mat2<f64> = random();
|
||||
|
||||
assert!((randmat.inverse() * randmat).fuzzy_eq(&One::one()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_inv_mat3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let randmat : Mat3<f64> = random();
|
||||
|
||||
assert!((randmat.inverse() * randmat).fuzzy_eq(&One::one()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_rot2()
|
||||
{
|
||||
}
|
|
@ -0,0 +1,212 @@
|
|||
#[test]
|
||||
use core::num::{Zero, One};
|
||||
#[test]
|
||||
use core::rand::{random};
|
||||
#[test]
|
||||
use core::vec::{all, all2};
|
||||
#[test]
|
||||
use std::cmp::FuzzyEq;
|
||||
#[test]
|
||||
use dim3::vec3::Vec3;
|
||||
#[test]
|
||||
use dim2::vec2::Vec2;
|
||||
#[test]
|
||||
use dim1::vec1::Vec1;
|
||||
#[test]
|
||||
use ndim::nvec::NVec;
|
||||
#[test]
|
||||
use traits::dim::d7;
|
||||
#[test]
|
||||
use traits::basis::Basis;
|
||||
|
||||
#[test]
|
||||
fn test_cross_vec3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : Vec3<f64> = random();
|
||||
let v2 : Vec3<f64> = random();
|
||||
let v3 : Vec3<f64> = v1.cross(&v2);
|
||||
|
||||
assert!(v3.dot(&v2).fuzzy_eq(&Zero::zero()));
|
||||
assert!(v3.dot(&v1).fuzzy_eq(&Zero::zero()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dot_nvec()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : NVec<d7, f64> = random();
|
||||
let v2 : NVec<d7, f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).fuzzy_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_commut_dot_vec3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : Vec3<f64> = random();
|
||||
let v2 : Vec3<f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).fuzzy_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_commut_dot_vec2()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : Vec2<f64> = random();
|
||||
let v2 : Vec2<f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).fuzzy_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_commut_dot_vec1()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : Vec1<f64> = random();
|
||||
let v2 : Vec1<f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).fuzzy_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_basis_vec1()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let basis = Basis::canonical_basis::<Vec1<f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_basis_vec2()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let basis = Basis::canonical_basis::<Vec2<f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_basis_vec3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let basis = Basis::canonical_basis::<Vec3<f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_basis_nvec()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let basis = Basis::canonical_basis::<NVec<d7, f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_subspace_basis_vec1()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v : Vec1<f64> = random();
|
||||
let v1 = v.normalized();
|
||||
let subbasis = v1.orthogonal_subspace_basis();
|
||||
|
||||
// check vectors are orthogonal to v1
|
||||
assert!(all(subbasis, |e| v1.dot(e).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(subbasis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_subspace_basis_vec2()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v : Vec2<f64> = random();
|
||||
let v1 = v.normalized();
|
||||
let subbasis = v1.orthogonal_subspace_basis();
|
||||
|
||||
// check vectors are orthogonal to v1
|
||||
assert!(all(subbasis, |e| v1.dot(e).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(subbasis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_subspace_basis_vec3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v : Vec3<f64> = random();
|
||||
let v1 = v.normalized();
|
||||
let subbasis = v1.orthogonal_subspace_basis();
|
||||
|
||||
// check vectors are orthogonal to v1
|
||||
assert!(all(subbasis, |e| v1.dot(e).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(subbasis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
// ICE
|
||||
//
|
||||
// #[test]
|
||||
// fn test_subspace_basis_vecn()
|
||||
// {
|
||||
// for uint::range(0u, 10000u) |_|
|
||||
// {
|
||||
// let v : NVec<d7, f64> = random();
|
||||
// let v1 = v.normalized();
|
||||
// let subbasis = v1.orthogonal_subspace_basis();
|
||||
//
|
||||
// // check vectors are orthogonal to v1
|
||||
// assert!(all(subbasis, |e| v1.dot(e).fuzzy_eq(&Zero::zero())));
|
||||
// // check vectors form an ortogonal basis
|
||||
// assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).fuzzy_eq(&Zero::zero())));
|
||||
// // check vectors form an orthonormal basis
|
||||
// assert!(all(subbasis, |e| e.norm().fuzzy_eq(&One::one())));
|
||||
// }
|
||||
// }
|
|
@ -0,0 +1,5 @@
|
|||
pub trait Basis
|
||||
{
|
||||
fn canonical_basis() -> ~[Self]; // FIXME: is it the right pointer?
|
||||
fn orthogonal_subspace_basis(&self) -> ~[Self];
|
||||
}
|
|
@ -1,5 +1,4 @@
|
|||
pub trait Dim
|
||||
{
|
||||
pub trait Dim {
|
||||
/// The dimension of the object.
|
||||
fn dim() -> uint;
|
||||
}
|
||||
|
@ -8,20 +7,44 @@ pub trait Dim
|
|||
// object at the type-level.
|
||||
/// Dimensional token for 0-dimensions. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d0;
|
||||
|
||||
/// Dimensional token for 1-dimension. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d1;
|
||||
|
||||
/// Dimensional token for 2-dimensions. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d2;
|
||||
|
||||
/// Dimensional token for 3-dimensions. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d3;
|
||||
|
||||
/// Dimensional token for 4-dimensions. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d4;
|
||||
|
||||
/// Dimensional token for 5-dimensions. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d5;
|
||||
|
||||
/// Dimensional token for 6-dimensions. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d6;
|
||||
|
||||
/// Dimensional token for 7-dimensions. Dimensional tokens are the preferred
|
||||
/// way to specify at the type level the dimension of n-dimensional objects.
|
||||
#[deriving(Eq)]
|
||||
pub struct d7;
|
||||
|
||||
impl Dim for d0
|
||||
{ fn dim() -> uint { 0 } }
|
||||
|
||||
|
@ -36,3 +59,12 @@ impl Dim for d3
|
|||
|
||||
impl Dim for d4
|
||||
{ fn dim() -> uint { 4 } }
|
||||
|
||||
impl Dim for d5
|
||||
{ fn dim() -> uint { 5 } }
|
||||
|
||||
impl Dim for d6
|
||||
{ fn dim() -> uint { 6 } }
|
||||
|
||||
impl Dim for d7
|
||||
{ fn dim() -> uint { 7 } }
|
||||
|
|
|
@ -2,13 +2,4 @@ pub trait Dot<T>
|
|||
{
|
||||
/// Computes the dot (inner) product of two objects.
|
||||
fn dot(&self, &Self) -> T;
|
||||
/// Computes the norm a an object.
|
||||
fn norm(&self) -> T;
|
||||
/**
|
||||
* Computes the squared norm of an object.
|
||||
*
|
||||
* Computes the squared norm of an object. Computation of the squared norm
|
||||
* is usually faster than the norm itself.
|
||||
*/
|
||||
fn sqnorm(&self) -> T; // { self.dot(self); }
|
||||
}
|
||||
|
|
|
@ -0,0 +1,19 @@
|
|||
pub trait Norm<T>
|
||||
{
|
||||
/// Computes the norm a an object.
|
||||
fn norm(&self) -> T;
|
||||
|
||||
/**
|
||||
* Computes the squared norm of an object.
|
||||
*
|
||||
* Computes the squared norm of an object. Computation of the squared norm
|
||||
* is usually faster than the norm itself.
|
||||
*/
|
||||
fn sqnorm(&self) -> T;
|
||||
|
||||
/// Returns the normalized version of the argument.
|
||||
fn normalized(&self) -> Self;
|
||||
|
||||
/// Inplace version of `normalized`.
|
||||
fn normalize(&mut self) -> T;
|
||||
}
|
|
@ -0,0 +1,12 @@
|
|||
pub trait ScalarOp<T>
|
||||
{
|
||||
fn scalar_mul(&self, &T) -> Self;
|
||||
fn scalar_div(&self, &T) -> Self;
|
||||
fn scalar_add(&self, &T) -> Self;
|
||||
fn scalar_sub(&self, &T) -> Self;
|
||||
|
||||
fn scalar_mul_inplace(&mut self, &T);
|
||||
fn scalar_div_inplace(&mut self, &T);
|
||||
fn scalar_add_inplace(&mut self, &T);
|
||||
fn scalar_sub_inplace(&mut self, &T);
|
||||
}
|
Loading…
Reference in New Issue