Macro groupping.
This commit is contained in:
parent
7b4a57c224
commit
88a74ca4e5
|
@ -13,6 +13,7 @@ This project adheres to [Semantic Versioning](http://semver.org/).
|
|||
- `.set_col` -> `.set_column`
|
||||
- `::canonical_basis_with_dim` -> `::canonical_basis_with_dimension`
|
||||
- `::from_elem` -> `::from_element`
|
||||
- `DiagMut` -> `DiagonalMut`
|
||||
* Added:
|
||||
- Added `.exp()` and `.pow()` for quaternions.
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[package]
|
||||
name = "nalgebra"
|
||||
version = "0.8.2"
|
||||
version = "0.9.0"
|
||||
authors = [ "Sébastien Crozet <developer@crozet.re>" ] # FIXME: add the contributors.
|
||||
|
||||
description = "Linear algebra library for computer physics, computer graphics and general low-dimensional linear algebra for Rust."
|
||||
|
|
|
@ -63,6 +63,13 @@ bench_unop!(_bench_vec4_normalize, Vector4<f32>, normalize);
|
|||
|
||||
#[cfg(feature = "generic_sizes")]
|
||||
mod bench_vecn {
|
||||
extern crate test;
|
||||
extern crate rand;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
use rand::{IsaacRng, Rng};
|
||||
use test::Bencher;
|
||||
use std::ops::{Add, Sub, Mul, Div};
|
||||
use typenum::{U2, U3, U4};
|
||||
use na::VectorN;
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use traits::operations::{Transpose, ApproxEq};
|
||||
use traits::structure::{ColumnSlice, Eye, Indexable, Diagonal, SquareMatrix, BaseFloat, Cast};
|
||||
use traits::structure::{ColumnSlice, Eye, Indexable, SquareMatrix, BaseFloat, Cast};
|
||||
use traits::geometry::Norm;
|
||||
use std::cmp;
|
||||
use std::ops::{Mul, Add, Sub};
|
||||
|
|
|
@ -0,0 +1,351 @@
|
|||
#![macro_use]
|
||||
|
||||
macro_rules! pointwise_mul(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Mul<N, Output = N>> Mul<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $t<N>) -> $t<N> {
|
||||
$t::new($(self.$compN * right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: MulAssign<N>> MulAssign<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: $t<N>) {
|
||||
$( self.$compN *= right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! pointwise_div(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Div<N, Output = N>> Div<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn div(self, right: $t<N>) -> $t<N> {
|
||||
$t::new($(self.$compN / right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: DivAssign<N>> DivAssign<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn div_assign(&mut self, right: $t<N>) {
|
||||
$( self.$compN /= right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! pointwise_add(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Add<N, Output = N>> Add<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, right: $t<N>) -> $t<N> {
|
||||
$t::new($(self.$compN + right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: AddAssign<N>> AddAssign<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, right: $t<N>) {
|
||||
$( self.$compN += right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! pointwise_sub(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Sub<N, Output = N>> Sub<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: $t<N>) -> $t<N> {
|
||||
$t::new($(self.$compN - right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<N: SubAssign<N>> SubAssign<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, right: $t<N>) {
|
||||
$( self.$compN -= right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! pointwise_scalar_mul(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy + Mul<N, Output = N>> Mul<N> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: N) -> $t<N> {
|
||||
$t::new($(self.$compN * right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + MulAssign<N>> MulAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: N) {
|
||||
$( self.$compN *= right; )+
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<$t<f32>> for f32 {
|
||||
type Output = $t<f32>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $t<f32>) -> $t<f32> {
|
||||
$t::new($(self * right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<$t<f64>> for f64 {
|
||||
type Output = $t<f64>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $t<f64>) -> $t<f64> {
|
||||
$t::new($(self * right.$compN),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! pointwise_scalar_div(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy + Div<N, Output = N>> Div<N> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn div(self, right: N) -> $t<N> {
|
||||
$t::new($(self.$compN / right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + DivAssign<N>> DivAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn div_assign(&mut self, right: N) {
|
||||
$( self.$compN /= right; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! pointwise_scalar_add(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy + Add<N, Output = N>> Add<N> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, right: N) -> $t<N> {
|
||||
$t::new($(self.$compN + right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + AddAssign<N>> AddAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, right: N) {
|
||||
$( self.$compN += right; )+
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<$t<f32>> for f32 {
|
||||
type Output = $t<f32>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, right: $t<f32>) -> $t<f32> {
|
||||
$t::new($(self + right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<$t<f64>> for f64 {
|
||||
type Output = $t<f64>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, right: $t<f64>) -> $t<f64> {
|
||||
$t::new($(self + right.$compN),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! pointwise_scalar_sub(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy + Sub<N, Output = N>> Sub<N> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: N) -> $t<N> {
|
||||
$t::new($(self.$compN - right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + SubAssign<N>> SubAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, right: N) {
|
||||
$( self.$compN -= right; )+
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<$t<f32>> for f32 {
|
||||
type Output = $t<f32>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: $t<f32>) -> $t<f32> {
|
||||
$t::new($(self - right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<$t<f64>> for f64 {
|
||||
type Output = $t<f64>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: $t<f64>) -> $t<f64> {
|
||||
$t::new($(self - right.$compN),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! componentwise_neg(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Neg<Output = N> + Copy> Neg for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> $t<N> {
|
||||
$t::new($(-self.$compN ),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! componentwise_repeat(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy> Repeat<N> for $t<N> {
|
||||
fn repeat(val: N) -> $t<N> {
|
||||
$t {
|
||||
$($compN: val ),+
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! componentwise_absolute(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Absolute<N>> Absolute<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn abs(m: &$t<N>) -> $t<N> {
|
||||
$t::new($(::abs(&m.$compN) ),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! componentwise_zero(
|
||||
($t: ident, $($compN: ident),+ ) => (
|
||||
impl<N: Zero> Zero for $t<N> {
|
||||
#[inline]
|
||||
fn zero() -> $t<N> {
|
||||
$t {
|
||||
$($compN: ::zero() ),+
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_zero(&self) -> bool {
|
||||
$(::is_zero(&self.$compN) )&&+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! componentwise_one(
|
||||
($t: ident, $($compN: ident),+ ) => (
|
||||
impl<N: BaseNum> One for $t<N> {
|
||||
#[inline]
|
||||
fn one() -> $t<N> {
|
||||
$t {
|
||||
$($compN: ::one() ),+
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
// Implements Arbitrary by setting each components to Arbitrary::arbitrary.
|
||||
macro_rules! componentwise_arbitrary(
|
||||
($t: ident, $($compN: ident),+ ) => (
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary> Arbitrary for $t<N> {
|
||||
#[inline]
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> $t<N> {
|
||||
$t { $($compN: Arbitrary::arbitrary(g),)* }
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
// Implements Rand by setting each components to Rand::rand.
|
||||
macro_rules! componentwise_rand(
|
||||
($t: ident, $($compN: ident),+ ) => (
|
||||
impl<N: Rand> Rand for $t<N> {
|
||||
#[inline]
|
||||
fn rand<R: Rng>(rng: &mut R) -> $t<N> {
|
||||
$t { $($compN: Rand::rand(rng), )* }
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! component_basis_element(
|
||||
($t: ident, $($compN: ident),+ ) => (
|
||||
/*
|
||||
*
|
||||
* Element of the canonical basis.
|
||||
*
|
||||
*/
|
||||
impl<N: Zero + One> $t<N> {
|
||||
$(
|
||||
/// Create the element of the canonical basis having this component set to one and
|
||||
/// all the others set to zero.
|
||||
#[inline]
|
||||
pub fn $compN() -> $t<N> {
|
||||
let mut res: $t<N> = ::zero();
|
||||
|
||||
res.$compN = ::one();
|
||||
|
||||
res
|
||||
}
|
||||
)+
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
// A function to create a new element from its component values.
|
||||
macro_rules! component_new(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N> $t<N> {
|
||||
/// Creation from component values.
|
||||
#[inline]
|
||||
pub fn new($($compN: N ),+) -> $t<N> {
|
||||
$t {
|
||||
$($compN: $compN ),+
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
);
|
|
@ -9,7 +9,8 @@ use rand::{self, Rand};
|
|||
use num::{Zero, One};
|
||||
use structs::dvector::{DVector, DVector1, DVector2, DVector3, DVector4, DVector5, DVector6};
|
||||
use traits::operations::{ApproxEq, Inverse, Transpose, Mean, Covariance};
|
||||
use traits::structure::{Cast, Column, ColumnSlice, Row, RowSlice, Diagonal, DiagMut, Eye, Indexable, Shape, BaseNum};
|
||||
use traits::structure::{Cast, Column, ColumnSlice, Row, RowSlice, Diagonal, DiagonalMut, Eye,
|
||||
Indexable, Shape, BaseNum};
|
||||
#[cfg(feature="arbitrary")]
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
|
|
|
@ -858,7 +858,7 @@ macro_rules! dmat_impl(
|
|||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + Clone + Zero> DiagMut<$dvector<N>> for $dmatrix<N> {
|
||||
impl<N: Copy + Clone + Zero> DiagonalMut<$dvector<N>> for $dmatrix<N> {
|
||||
#[inline]
|
||||
fn set_diagonal(&mut self, diagonal: &$dvector<N>) {
|
||||
let smallest_dim = cmp::min(self.nrows, self.ncols);
|
||||
|
|
|
@ -74,8 +74,8 @@ impl<N: BaseFloat> Isometry3<N> {
|
|||
/// requirement of this parameter is to not be collinear to `target - eye`.
|
||||
#[inline]
|
||||
pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Isometry3<N> {
|
||||
let rotation = Rotation3::look_at_rh(&(*target - *eye), up);
|
||||
let trans = rotation * (-*eye);
|
||||
let rotation = Rotation3::look_at_rh(&(*target - *eye), up);
|
||||
let trans = rotation * (-*eye);
|
||||
|
||||
Isometry3::new_with_rotation_matrix(trans.to_vector(), rotation)
|
||||
}
|
||||
|
@ -92,53 +92,15 @@ impl<N: BaseFloat> Isometry3<N> {
|
|||
/// requirement of this parameter is to not be collinear to `target - eye`.
|
||||
#[inline]
|
||||
pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Isometry3<N> {
|
||||
let rotation = Rotation3::look_at_lh(&(*target - *eye), up);
|
||||
let trans = rotation * (-*eye);
|
||||
let rotation = Rotation3::look_at_lh(&(*target - *eye), up);
|
||||
let trans = rotation * (-*eye);
|
||||
|
||||
Isometry3::new_with_rotation_matrix(trans.to_vector(), rotation)
|
||||
}
|
||||
}
|
||||
|
||||
isometry_impl!(Isometry2, Rotation2, Vector2, Vector1);
|
||||
rotation_matrix_impl!(Isometry2, Rotation2, Vector2, Vector1);
|
||||
rotation_impl!(Isometry2, Rotation2, Vector1);
|
||||
isometry_impl!(Isometry2, Rotation2, Vector2, Vector1, Point2, Matrix3);
|
||||
dim_impl!(Isometry2, 2);
|
||||
one_impl!(Isometry2);
|
||||
absolute_rotate_impl!(Isometry2, Vector2);
|
||||
rand_impl!(Isometry2);
|
||||
approx_eq_impl!(Isometry2);
|
||||
to_homogeneous_impl!(Isometry2, Matrix3);
|
||||
inverse_impl!(Isometry2);
|
||||
transform_impl!(Isometry2, Point2);
|
||||
transformation_impl!(Isometry2);
|
||||
rotate_impl!(Isometry2, Vector2);
|
||||
translation_impl!(Isometry2, Vector2);
|
||||
translate_impl!(Isometry2, Point2);
|
||||
isometry_mul_isometry_impl!(Isometry2);
|
||||
isometry_mul_rotation_impl!(Isometry2, Rotation2);
|
||||
isometry_mul_point_impl!(Isometry2, Point2);
|
||||
isometry_mul_vec_impl!(Isometry2, Vector2);
|
||||
arbitrary_isometry_impl!(Isometry2);
|
||||
isometry_display_impl!(Isometry2);
|
||||
|
||||
isometry_impl!(Isometry3, Rotation3, Vector3, Vector3);
|
||||
rotation_matrix_impl!(Isometry3, Rotation3, Vector3, Vector3);
|
||||
rotation_impl!(Isometry3, Rotation3, Vector3);
|
||||
isometry_impl!(Isometry3, Rotation3, Vector3, Vector3, Point3, Matrix4);
|
||||
dim_impl!(Isometry3, 3);
|
||||
one_impl!(Isometry3);
|
||||
absolute_rotate_impl!(Isometry3, Vector3);
|
||||
rand_impl!(Isometry3);
|
||||
approx_eq_impl!(Isometry3);
|
||||
to_homogeneous_impl!(Isometry3, Matrix4);
|
||||
inverse_impl!(Isometry3);
|
||||
transform_impl!(Isometry3, Point3);
|
||||
transformation_impl!(Isometry3);
|
||||
rotate_impl!(Isometry3, Vector3);
|
||||
translation_impl!(Isometry3, Vector3);
|
||||
translate_impl!(Isometry3, Point3);
|
||||
isometry_mul_isometry_impl!(Isometry3);
|
||||
isometry_mul_rotation_impl!(Isometry3, Rotation3);
|
||||
isometry_mul_point_impl!(Isometry3, Point3);
|
||||
isometry_mul_vec_impl!(Isometry3, Vector3);
|
||||
arbitrary_isometry_impl!(Isometry3);
|
||||
isometry_display_impl!(Isometry3);
|
||||
|
|
|
@ -1,68 +1,63 @@
|
|||
#![macro_use]
|
||||
|
||||
macro_rules! isometry_impl(
|
||||
($t: ident, $submatrix: ident, $subvector: ident, $subrotvector: ident) => (
|
||||
($t: ident, $rotmatrix: ident, $vector: ident, $rotvector: ident, $point: ident,
|
||||
$homogeneous: ident) => (
|
||||
impl<N: BaseFloat> $t<N> {
|
||||
/// Creates a new isometry from an axis-angle rotation, and a vector.
|
||||
#[inline]
|
||||
pub fn new(translation: $subvector<N>, rotation: $subrotvector<N>) -> $t<N> {
|
||||
pub fn new(translation: $vector<N>, rotation: $rotvector<N>) -> $t<N> {
|
||||
$t {
|
||||
rotation: $submatrix::new(rotation),
|
||||
rotation: $rotmatrix::new(rotation),
|
||||
translation: translation
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new isometry from a rotation matrix and a vector.
|
||||
#[inline]
|
||||
pub fn new_with_rotation_matrix(translation: $subvector<N>, rotation: $submatrix<N>) -> $t<N> {
|
||||
pub fn new_with_rotation_matrix(translation: $vector<N>, rotation: $rotmatrix<N>) -> $t<N> {
|
||||
$t {
|
||||
rotation: rotation,
|
||||
translation: translation
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotation_matrix_impl(
|
||||
($t: ident, $trotation: ident, $tlv: ident, $tav: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* RotationMatrix
|
||||
*
|
||||
*/
|
||||
impl<N: Cast<f64> + BaseFloat>
|
||||
RotationMatrix<N, $tlv<N>, $tav<N>> for $t<N> {
|
||||
type Output = $trotation<N>;
|
||||
RotationMatrix<N, $vector<N>, $rotvector<N>> for $t<N> {
|
||||
type Output = $rotmatrix<N>;
|
||||
|
||||
#[inline]
|
||||
fn to_rotation_matrix(&self) -> $trotation<N> {
|
||||
fn to_rotation_matrix(&self) -> $rotmatrix<N> {
|
||||
self.rotation
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! dim_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Dimension for $t<N> {
|
||||
#[inline]
|
||||
fn dimension(_: Option<$t<N>>) -> usize {
|
||||
$dimension
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! one_impl(
|
||||
($t: ident) => (
|
||||
/*
|
||||
*
|
||||
* One
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> One for $t<N> {
|
||||
#[inline]
|
||||
fn one() -> $t<N> {
|
||||
$t::new_with_rotation_matrix(::zero(), ::one())
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! isometry_mul_isometry_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Isometry × Isometry
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
|
@ -81,21 +76,23 @@ macro_rules! isometry_mul_isometry_impl(
|
|||
self.rotation *= right.rotation;
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! isometry_mul_rotation_impl(
|
||||
($t: ident, $rotation: ident) => (
|
||||
impl<N: BaseFloat> Mul<$rotation<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Isometry × Rotation
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Mul<$rotmatrix<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $rotation<N>) -> $t<N> {
|
||||
fn mul(self, right: $rotmatrix<N>) -> $t<N> {
|
||||
$t::new_with_rotation_matrix(self.translation, self.rotation * right)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $rotation<N> {
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $rotmatrix<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
|
@ -106,167 +103,181 @@ macro_rules! isometry_mul_rotation_impl(
|
|||
}
|
||||
}
|
||||
|
||||
impl<N: BaseFloat> MulAssign<$rotation<N>> for $t<N> {
|
||||
impl<N: BaseFloat> MulAssign<$rotmatrix<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: $rotation<N>) {
|
||||
fn mul_assign(&mut self, right: $rotmatrix<N>) {
|
||||
self.rotation *= right
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! isometry_mul_point_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseNum> Mul<$tv<N>> for $t<N> {
|
||||
type Output = $tv<N>;
|
||||
|
||||
/*
|
||||
*
|
||||
* Isometry × Point
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Mul<$point<N>> for $t<N> {
|
||||
type Output = $point<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $tv<N>) -> $tv<N> {
|
||||
fn mul(self, right: $point<N>) -> $point<N> {
|
||||
self.rotation * right + self.translation
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! isometry_mul_vec_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseNum> Mul<$tv<N>> for $t<N> {
|
||||
type Output = $tv<N>;
|
||||
|
||||
/*
|
||||
*
|
||||
* Isometry × Vector
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Mul<$vector<N>> for $t<N> {
|
||||
type Output = $vector<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $tv<N>) -> $tv<N> {
|
||||
fn mul(self, right: $vector<N>) -> $vector<N> {
|
||||
self.rotation * right
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! translation_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseFloat> Translation<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Translation
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Translation<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn translation(&self) -> $tv<N> {
|
||||
fn translation(&self) -> $vector<N> {
|
||||
self.translation
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_translation(&self) -> $tv<N> {
|
||||
fn inverse_translation(&self) -> $vector<N> {
|
||||
-self.translation
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_translation_mut(&mut self, t: &$tv<N>) {
|
||||
fn append_translation_mut(&mut self, t: &$vector<N>) {
|
||||
self.translation = *t + self.translation
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_translation(&self, t: &$tv<N>) -> $t<N> {
|
||||
fn append_translation(&self, t: &$vector<N>) -> $t<N> {
|
||||
$t::new_with_rotation_matrix(*t + self.translation, self.rotation)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_translation_mut(&mut self, t: &$tv<N>) {
|
||||
fn prepend_translation_mut(&mut self, t: &$vector<N>) {
|
||||
self.translation = self.translation + self.rotation * *t
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_translation(&self, t: &$tv<N>) -> $t<N> {
|
||||
fn prepend_translation(&self, t: &$vector<N>) -> $t<N> {
|
||||
$t::new_with_rotation_matrix(self.translation + self.rotation * *t, self.rotation)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_translation(&mut self, t: $tv<N>) {
|
||||
fn set_translation(&mut self, t: $vector<N>) {
|
||||
self.translation = t
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! translate_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: Copy + Add<N, Output = N> + Sub<N, Output = N>> Translate<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Translate
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Add<N, Output = N> + Sub<N, Output = N>> Translate<$point<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn translate(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn translate(&self, v: &$point<N>) -> $point<N> {
|
||||
*v + self.translation
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_translate(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn inverse_translate(&self, v: &$point<N>) -> $point<N> {
|
||||
*v - self.translation
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotation_impl(
|
||||
($t: ident, $trotation: ident, $tav: ident) => (
|
||||
impl<N: Cast<f64> + BaseFloat> Rotation<$tav<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation
|
||||
*
|
||||
*/
|
||||
impl<N: Cast<f64> + BaseFloat> Rotation<$rotvector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn rotation(&self) -> $tav<N> {
|
||||
fn rotation(&self) -> $rotvector<N> {
|
||||
self.rotation.rotation()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_rotation(&self) -> $tav<N> {
|
||||
fn inverse_rotation(&self) -> $rotvector<N> {
|
||||
self.rotation.inverse_rotation()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation_mut(&mut self, rotation: &$tav<N>) {
|
||||
let delta = $trotation::new(*rotation);
|
||||
fn append_rotation_mut(&mut self, rotation: &$rotvector<N>) {
|
||||
let delta = $rotmatrix::new(*rotation);
|
||||
|
||||
self.rotation = delta * self.rotation;
|
||||
self.translation = delta * self.translation;
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn append_rotation(&self, rotation: &$tav<N>) -> $t<N> {
|
||||
let delta = $trotation::new(*rotation);
|
||||
fn append_rotation(&self, rotation: &$rotvector<N>) -> $t<N> {
|
||||
let delta = $rotmatrix::new(*rotation);
|
||||
|
||||
$t::new_with_rotation_matrix(delta * self.translation, delta * self.rotation)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation_mut(&mut self, rotation: &$tav<N>) {
|
||||
let delta = $trotation::new(*rotation);
|
||||
fn prepend_rotation_mut(&mut self, rotation: &$rotvector<N>) {
|
||||
let delta = $rotmatrix::new(*rotation);
|
||||
|
||||
self.rotation = self.rotation * delta;
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn prepend_rotation(&self, rotation: &$tav<N>) -> $t<N> {
|
||||
let delta = $trotation::new(*rotation);
|
||||
fn prepend_rotation(&self, rotation: &$rotvector<N>) -> $t<N> {
|
||||
let delta = $rotmatrix::new(*rotation);
|
||||
|
||||
$t::new_with_rotation_matrix(self.translation, self.rotation * delta)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_rotation(&mut self, rotation: $tav<N>) {
|
||||
fn set_rotation(&mut self, rotation: $rotvector<N>) {
|
||||
// FIXME: should the translation be changed too?
|
||||
self.rotation.set_rotation(rotation)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotate_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseNum> Rotate<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotate
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Rotate<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn rotate(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn rotate(&self, v: &$vector<N>) -> $vector<N> {
|
||||
self.rotation.rotate(v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_rotate(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn inverse_rotate(&self, v: &$vector<N>) -> $vector<N> {
|
||||
self.rotation.inverse_rotate(v)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! transformation_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Transformation
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Transformation<$t<N>> for $t<N> {
|
||||
fn transformation(&self) -> $t<N> {
|
||||
*self
|
||||
|
@ -297,27 +308,31 @@ macro_rules! transformation_impl(
|
|||
*self = t
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! transform_impl(
|
||||
($t: ident, $tp: ident) => (
|
||||
impl<N: BaseNum> Transform<$tp<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Transform
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Transform<$point<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn transform(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn transform(&self, p: &$point<N>) -> $point<N> {
|
||||
self.rotation.transform(p) + self.translation
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn inverse_transform(&self, p: &$point<N>) -> $point<N> {
|
||||
self.rotation.inverse_transform(&(*p - self.translation))
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! inverse_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Inverse
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum + Neg<Output = N>> Inverse for $t<N> {
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) -> bool {
|
||||
|
@ -335,28 +350,32 @@ macro_rules! inverse_impl(
|
|||
Some(res)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! to_homogeneous_impl(
|
||||
($t: ident, $th: ident) => (
|
||||
impl<N: BaseNum> ToHomogeneous<$th<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $th<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* ToHomogeneous
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> ToHomogeneous<$homogeneous<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $homogeneous<N> {
|
||||
let mut res = self.rotation.to_homogeneous();
|
||||
|
||||
// copy the translation
|
||||
let dimension = Dimension::dimension(None::<$th<N>>);
|
||||
let dimension = Dimension::dimension(None::<$homogeneous<N>>);
|
||||
|
||||
res.set_column(dimension - 1, self.translation.as_point().to_homogeneous().to_vector());
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! approx_eq_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* ApproxEq
|
||||
*
|
||||
*/
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
|
||||
#[inline]
|
||||
fn approx_epsilon(_: Option<$t<N>>) -> N {
|
||||
|
@ -380,33 +399,39 @@ macro_rules! approx_eq_impl(
|
|||
ApproxEq::approx_eq_ulps(&self.translation, &other.translation, ulps)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rand_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Rand
|
||||
*
|
||||
*/
|
||||
impl<N: Rand + BaseFloat> Rand for $t<N> {
|
||||
#[inline]
|
||||
fn rand<R: Rng>(rng: &mut R) -> $t<N> {
|
||||
$t::new(rng.gen(), rng.gen())
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! absolute_rotate_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseFloat> AbsoluteRotate<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* AbsoluteRotate
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> AbsoluteRotate<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn absolute_rotate(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn absolute_rotate(&self, v: &$vector<N>) -> $vector<N> {
|
||||
self.rotation.absolute_rotate(v)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! arbitrary_isometry_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Arbitrary
|
||||
*
|
||||
*/
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary + BaseFloat> Arbitrary for $t<N> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> $t<N> {
|
||||
|
@ -416,11 +441,13 @@ macro_rules! arbitrary_isometry_impl(
|
|||
)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! isometry_display_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Display
|
||||
*
|
||||
*/
|
||||
impl<N: fmt::Display + BaseFloat> fmt::Display for $t<N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
try!(writeln!(f, "Isometry {{"));
|
||||
|
@ -441,3 +468,14 @@ macro_rules! isometry_display_impl(
|
|||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! dim_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Dimension for $t<N> {
|
||||
#[inline]
|
||||
fn dimension(_: Option<$t<N>>) -> usize {
|
||||
$dimension
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
|
|
@ -14,7 +14,7 @@ use structs::point::{Point1, Point4, Point5, Point6};
|
|||
use structs::dvector::{DVector1, DVector2, DVector3, DVector4, DVector5, DVector6};
|
||||
|
||||
use traits::structure::{Cast, Row, Column, Iterable, IterableMut, Dimension, Indexable, Eye, ColumnSlice,
|
||||
RowSlice, Diagonal, DiagMut, Shape, BaseFloat, BaseNum, Repeat};
|
||||
RowSlice, Diagonal, DiagonalMut, Shape, BaseFloat, BaseNum, Repeat};
|
||||
use traits::operations::{Absolute, Transpose, Inverse, Outer, EigenQR, Mean};
|
||||
use traits::geometry::{ToHomogeneous, FromHomogeneous, Origin};
|
||||
use linalg;
|
||||
|
@ -50,45 +50,20 @@ pub struct Matrix1<N> {
|
|||
|
||||
eye_impl!(Matrix1, 1, m11);
|
||||
|
||||
mat_impl!(Matrix1, m11);
|
||||
repeat_impl!(Matrix1, m11);
|
||||
conversion_impl!(Matrix1, 1);
|
||||
mat_cast_impl!(Matrix1, m11);
|
||||
add_impl!(Matrix1, m11);
|
||||
sub_impl!(Matrix1, m11);
|
||||
scalar_add_impl!(Matrix1, m11);
|
||||
scalar_sub_impl!(Matrix1, m11);
|
||||
scalar_mul_impl!(Matrix1, m11);
|
||||
scalar_div_impl!(Matrix1, m11);
|
||||
absolute_impl!(Matrix1, m11);
|
||||
zero_impl!(Matrix1, m11);
|
||||
matrix_impl!(Matrix1, 1, Vector1, DVector1, m11);
|
||||
one_impl!(Matrix1, ::one);
|
||||
iterable_impl!(Matrix1, 1);
|
||||
iterable_mut_impl!(Matrix1, 1);
|
||||
at_fast_impl!(Matrix1, 1);
|
||||
dim_impl!(Matrix1, 1);
|
||||
indexable_impl!(Matrix1, 1);
|
||||
index_impl!(Matrix1, 1);
|
||||
mat_mul_mat_impl!(Matrix1, 1);
|
||||
mat_mul_vec_impl!(Matrix1, Vector1, 1, ::zero);
|
||||
vec_mul_mat_impl!(Matrix1, Vector1, 1, ::zero);
|
||||
mat_mul_point_impl!(Matrix1, Point1, 1, Origin::origin);
|
||||
point_mul_mat_impl!(Matrix1, Point1, 1, Origin::origin);
|
||||
// (specialized); inverse_impl!(Matrix1, 1);
|
||||
transpose_impl!(Matrix1, 1);
|
||||
approx_eq_impl!(Matrix1);
|
||||
row_impl!(Matrix1, Vector1, 1);
|
||||
column_impl!(Matrix1, Vector1, 1);
|
||||
column_slice_impl!(Matrix1, Vector1, DVector1, 1);
|
||||
row_slice_impl!(Matrix1, Vector1, DVector1, 1);
|
||||
diag_impl!(Matrix1, Vector1, 1);
|
||||
to_homogeneous_impl!(Matrix1, Matrix2, 1, 2);
|
||||
from_homogeneous_impl!(Matrix1, Matrix2, 1, 2);
|
||||
outer_impl!(Vector1, Matrix1);
|
||||
eigen_qr_impl!(Matrix1, Vector1);
|
||||
arbitrary_impl!(Matrix1, m11);
|
||||
rand_impl!(Matrix1, m11);
|
||||
mean_impl!(Matrix1, Vector1, 1);
|
||||
componentwise_arbitrary!(Matrix1, m11);
|
||||
componentwise_rand!(Matrix1, m11);
|
||||
mat_display_impl!(Matrix1, 1);
|
||||
|
||||
/// Square matrix of dimension 2.
|
||||
|
@ -101,49 +76,20 @@ pub struct Matrix2<N> {
|
|||
|
||||
eye_impl!(Matrix2, 2, m11, m22);
|
||||
|
||||
mat_impl!(Matrix2, m11, m12,
|
||||
m21, m22);
|
||||
repeat_impl!(Matrix2, m11, m12,
|
||||
m21, m22);
|
||||
conversion_impl!(Matrix2, 2);
|
||||
mat_cast_impl!(Matrix2, m11, m12,
|
||||
m21, m22);
|
||||
add_impl!(Matrix2, m11, m12, m21, m22);
|
||||
sub_impl!(Matrix2, m11, m12, m21, m22);
|
||||
scalar_add_impl!(Matrix2, m11, m12, m21, m22);
|
||||
scalar_sub_impl!(Matrix2, m11, m12, m21, m22);
|
||||
scalar_mul_impl!(Matrix2, m11, m12, m21, m22);
|
||||
scalar_div_impl!(Matrix2, m11, m12, m21, m22);
|
||||
absolute_impl!(Matrix2, m11, m12,
|
||||
m21, m22);
|
||||
zero_impl!(Matrix2, m11, m12,
|
||||
m21, m22);
|
||||
matrix_impl!(Matrix2, 2, Vector2, DVector2, m11, m12,
|
||||
m21, m22);
|
||||
one_impl!(Matrix2, ::one, ::zero,
|
||||
::zero, ::one);
|
||||
iterable_impl!(Matrix2, 2);
|
||||
iterable_mut_impl!(Matrix2, 2);
|
||||
dim_impl!(Matrix2, 2);
|
||||
indexable_impl!(Matrix2, 2);
|
||||
index_impl!(Matrix2, 2);
|
||||
at_fast_impl!(Matrix2, 2);
|
||||
// (specialized); mul_impl!(Matrix2, 2);
|
||||
// (specialized); rmul_impl!(Matrix2, Vector2, 2);
|
||||
// (specialized); lmul_impl!(Matrix2, Vector2, 2);
|
||||
// (specialized); inverse_impl!(Matrix2, 2);
|
||||
transpose_impl!(Matrix2, 2);
|
||||
approx_eq_impl!(Matrix2);
|
||||
row_impl!(Matrix2, Vector2, 2);
|
||||
column_impl!(Matrix2, Vector2, 2);
|
||||
column_slice_impl!(Matrix2, Vector2, DVector2, 2);
|
||||
row_slice_impl!(Matrix2, Vector2, DVector2, 2);
|
||||
diag_impl!(Matrix2, Vector2, 2);
|
||||
to_homogeneous_impl!(Matrix2, Matrix3, 2, 3);
|
||||
from_homogeneous_impl!(Matrix2, Matrix3, 2, 3);
|
||||
outer_impl!(Vector2, Matrix2);
|
||||
eigen_qr_impl!(Matrix2, Vector2);
|
||||
arbitrary_impl!(Matrix2, m11, m12, m21, m22);
|
||||
rand_impl!(Matrix2, m11, m12, m21, m22);
|
||||
mean_impl!(Matrix2, Vector2, 2);
|
||||
componentwise_arbitrary!(Matrix2, m11, m12, m21, m22);
|
||||
componentwise_rand!(Matrix2, m11, m12, m21, m22);
|
||||
mat_display_impl!(Matrix2, 2);
|
||||
|
||||
/// Square matrix of dimension 3.
|
||||
|
@ -157,91 +103,30 @@ pub struct Matrix3<N> {
|
|||
|
||||
eye_impl!(Matrix3, 3, m11, m22, m33);
|
||||
|
||||
mat_impl!(Matrix3, m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33);
|
||||
repeat_impl!(Matrix3, m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33);
|
||||
conversion_impl!(Matrix3, 3);
|
||||
mat_cast_impl!(Matrix3, m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33);
|
||||
add_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
sub_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
scalar_add_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
scalar_sub_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
scalar_mul_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
scalar_div_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
absolute_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
zero_impl!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
matrix_impl!(Matrix3, 3, Vector3, DVector3, m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33);
|
||||
one_impl!(Matrix3, ::one , ::zero, ::zero,
|
||||
::zero, ::one , ::zero,
|
||||
::zero, ::zero, ::one);
|
||||
iterable_impl!(Matrix3, 3);
|
||||
iterable_mut_impl!(Matrix3, 3);
|
||||
dim_impl!(Matrix3, 3);
|
||||
indexable_impl!(Matrix3, 3);
|
||||
index_impl!(Matrix3, 3);
|
||||
at_fast_impl!(Matrix3, 3);
|
||||
// (specialized); mul_impl!(Matrix3, 3);
|
||||
// (specialized); rmul_impl!(Matrix3, Vector3, 3);
|
||||
// (specialized); lmul_impl!(Matrix3, Vector3, 3);
|
||||
// (specialized); inverse_impl!(Matrix3, 3);
|
||||
transpose_impl!(Matrix3, 3);
|
||||
approx_eq_impl!(Matrix3);
|
||||
// (specialized); row_impl!(Matrix3, Vector3, 3);
|
||||
// (specialized); column_impl!(Matrix3, Vector3, 3);
|
||||
column_slice_impl!(Matrix3, Vector3, DVector3, 3);
|
||||
row_slice_impl!(Matrix3, Vector3, DVector3, 3);
|
||||
diag_impl!(Matrix3, Vector3, 3);
|
||||
to_homogeneous_impl!(Matrix3, Matrix4, 3, 4);
|
||||
from_homogeneous_impl!(Matrix3, Matrix4, 3, 4);
|
||||
outer_impl!(Vector3, Matrix3);
|
||||
eigen_qr_impl!(Matrix3, Vector3);
|
||||
arbitrary_impl!(Matrix3,
|
||||
componentwise_arbitrary!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
rand_impl!(Matrix3,
|
||||
componentwise_rand!(Matrix3,
|
||||
m11, m12, m13,
|
||||
m21, m22, m23,
|
||||
m31, m32, m33
|
||||
);
|
||||
mean_impl!(Matrix3, Vector3, 3);
|
||||
mat_display_impl!(Matrix3, 3);
|
||||
|
||||
/// Square matrix of dimension 4.
|
||||
|
@ -256,68 +141,7 @@ pub struct Matrix4<N> {
|
|||
|
||||
eye_impl!(Matrix4, 4, m11, m22, m33, m44);
|
||||
|
||||
mat_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
repeat_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
conversion_impl!(Matrix4, 4);
|
||||
mat_cast_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
add_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
sub_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
scalar_add_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
scalar_sub_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
scalar_mul_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
scalar_div_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
absolute_impl!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
zero_impl!(Matrix4,
|
||||
matrix_impl!(Matrix4, 4, Vector4, DVector4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
|
@ -327,42 +151,28 @@ one_impl!(Matrix4, ::one , ::zero, ::zero, ::zero,
|
|||
::zero, ::one , ::zero, ::zero,
|
||||
::zero, ::zero, ::one , ::zero,
|
||||
::zero, ::zero, ::zero, ::one);
|
||||
iterable_impl!(Matrix4, 4);
|
||||
iterable_mut_impl!(Matrix4, 4);
|
||||
dim_impl!(Matrix4, 4);
|
||||
indexable_impl!(Matrix4, 4);
|
||||
index_impl!(Matrix4, 4);
|
||||
at_fast_impl!(Matrix4, 4);
|
||||
mat_mul_mat_impl!(Matrix4, 4);
|
||||
mat_mul_vec_impl!(Matrix4, Vector4, 4, ::zero);
|
||||
vec_mul_mat_impl!(Matrix4, Vector4, 4, ::zero);
|
||||
mat_mul_point_impl!(Matrix4, Point4, 4, Origin::origin);
|
||||
point_mul_mat_impl!(Matrix4, Point4, 4, Origin::origin);
|
||||
inverse_impl!(Matrix4, 4);
|
||||
transpose_impl!(Matrix4, 4);
|
||||
approx_eq_impl!(Matrix4);
|
||||
row_impl!(Matrix4, Vector4, 4);
|
||||
column_impl!(Matrix4, Vector4, 4);
|
||||
column_slice_impl!(Matrix4, Vector4, DVector4, 4);
|
||||
row_slice_impl!(Matrix4, Vector4, DVector4, 4);
|
||||
diag_impl!(Matrix4, Vector4, 4);
|
||||
to_homogeneous_impl!(Matrix4, Matrix5, 4, 5);
|
||||
from_homogeneous_impl!(Matrix4, Matrix5, 4, 5);
|
||||
outer_impl!(Vector4, Matrix4);
|
||||
eigen_qr_impl!(Matrix4, Vector4);
|
||||
arbitrary_impl!(Matrix4,
|
||||
componentwise_arbitrary!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
rand_impl!(Matrix4,
|
||||
componentwise_rand!(Matrix4,
|
||||
m11, m12, m13, m14,
|
||||
m21, m22, m23, m24,
|
||||
m31, m32, m33, m34,
|
||||
m41, m42, m43, m44
|
||||
);
|
||||
mean_impl!(Matrix4, Vector4, 4);
|
||||
mat_display_impl!(Matrix4, 4);
|
||||
|
||||
/// Square matrix of dimension 5.
|
||||
|
@ -378,36 +188,7 @@ pub struct Matrix5<N> {
|
|||
|
||||
eye_impl!(Matrix5, 5, m11, m22, m33, m44, m55);
|
||||
|
||||
mat_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
repeat_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
conversion_impl!(Matrix5, 5);
|
||||
mat_cast_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
absolute_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
zero_impl!(Matrix5,
|
||||
matrix_impl!(Matrix5, 5, Vector5, DVector5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
|
@ -421,86 +202,30 @@ one_impl!(Matrix5,
|
|||
::zero, ::zero, ::zero, ::one , ::zero,
|
||||
::zero, ::zero, ::zero, ::zero, ::one
|
||||
);
|
||||
add_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
sub_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
scalar_add_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
scalar_sub_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
scalar_mul_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
scalar_div_impl!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
iterable_impl!(Matrix5, 5);
|
||||
iterable_mut_impl!(Matrix5, 5);
|
||||
dim_impl!(Matrix5, 5);
|
||||
indexable_impl!(Matrix5, 5);
|
||||
index_impl!(Matrix5, 5);
|
||||
at_fast_impl!(Matrix5, 5);
|
||||
mat_mul_mat_impl!(Matrix5, 5);
|
||||
mat_mul_vec_impl!(Matrix5, Vector5, 5, ::zero);
|
||||
vec_mul_mat_impl!(Matrix5, Vector5, 5, ::zero);
|
||||
mat_mul_point_impl!(Matrix5, Point5, 5, Origin::origin);
|
||||
point_mul_mat_impl!(Matrix5, Point5, 5, Origin::origin);
|
||||
inverse_impl!(Matrix5, 5);
|
||||
transpose_impl!(Matrix5, 5);
|
||||
approx_eq_impl!(Matrix5);
|
||||
row_impl!(Matrix5, Vector5, 5);
|
||||
column_impl!(Matrix5, Vector5, 5);
|
||||
column_slice_impl!(Matrix5, Vector5, DVector5, 5);
|
||||
row_slice_impl!(Matrix5, Vector5, DVector5, 5);
|
||||
diag_impl!(Matrix5, Vector5, 5);
|
||||
to_homogeneous_impl!(Matrix5, Matrix6, 5, 6);
|
||||
from_homogeneous_impl!(Matrix5, Matrix6, 5, 6);
|
||||
outer_impl!(Vector5, Matrix5);
|
||||
eigen_qr_impl!(Matrix5, Vector5);
|
||||
arbitrary_impl!(Matrix5,
|
||||
componentwise_arbitrary!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
rand_impl!(Matrix5,
|
||||
componentwise_rand!(Matrix5,
|
||||
m11, m12, m13, m14, m15,
|
||||
m21, m22, m23, m24, m25,
|
||||
m31, m32, m33, m34, m35,
|
||||
m41, m42, m43, m44, m45,
|
||||
m51, m52, m53, m54, m55
|
||||
);
|
||||
mean_impl!(Matrix5, Vector5, 5);
|
||||
mat_display_impl!(Matrix5, 5);
|
||||
|
||||
/// Square matrix of dimension 6.
|
||||
|
@ -517,7 +242,7 @@ pub struct Matrix6<N> {
|
|||
|
||||
eye_impl!(Matrix6, 6, m11, m22, m33, m44, m55, m66);
|
||||
|
||||
mat_impl!(Matrix6,
|
||||
matrix_impl!(Matrix6, 6, Vector6, DVector6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
|
@ -525,78 +250,6 @@ mat_impl!(Matrix6,
|
|||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
repeat_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
conversion_impl!(Matrix6, 6);
|
||||
mat_cast_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
add_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
sub_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
scalar_add_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
scalar_sub_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
scalar_mul_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
scalar_div_impl!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
m41, m42, m43, m44, m45, m46,
|
||||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
absolute_impl!(Matrix6, m11, m12, m13, m14, m15, m16, m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36, m41, m42, m43, m44, m45, m46, m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66);
|
||||
|
||||
zero_impl!(Matrix6, m11, m12, m13, m14, m15, m16, m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36, m41, m42, m43, m44, m45, m46, m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66);
|
||||
|
||||
one_impl!(Matrix6,
|
||||
::one , ::zero, ::zero, ::zero, ::zero, ::zero,
|
||||
|
@ -606,28 +259,15 @@ one_impl!(Matrix6,
|
|||
::zero, ::zero, ::zero, ::zero, ::one , ::zero,
|
||||
::zero, ::zero, ::zero, ::zero, ::zero, ::one
|
||||
);
|
||||
iterable_impl!(Matrix6, 6);
|
||||
iterable_mut_impl!(Matrix6, 6);
|
||||
dim_impl!(Matrix6, 6);
|
||||
indexable_impl!(Matrix6, 6);
|
||||
index_impl!(Matrix6, 6);
|
||||
at_fast_impl!(Matrix6, 6);
|
||||
mat_mul_mat_impl!(Matrix6, 6);
|
||||
mat_mul_vec_impl!(Matrix6, Vector6, 6, ::zero);
|
||||
vec_mul_mat_impl!(Matrix6, Vector6, 6, ::zero);
|
||||
mat_mul_point_impl!(Matrix6, Point6, 6, Origin::origin);
|
||||
point_mul_mat_impl!(Matrix6, Point6, 6, Origin::origin);
|
||||
inverse_impl!(Matrix6, 6);
|
||||
transpose_impl!(Matrix6, 6);
|
||||
approx_eq_impl!(Matrix6);
|
||||
row_impl!(Matrix6, Vector6, 6);
|
||||
column_impl!(Matrix6, Vector6, 6);
|
||||
column_slice_impl!(Matrix6, Vector6, DVector6, 6);
|
||||
row_slice_impl!(Matrix6, Vector6, DVector6, 6);
|
||||
diag_impl!(Matrix6, Vector6, 6);
|
||||
outer_impl!(Vector6, Matrix6);
|
||||
eigen_qr_impl!(Matrix6, Vector6);
|
||||
arbitrary_impl!(Matrix6,
|
||||
componentwise_arbitrary!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
|
@ -635,7 +275,7 @@ arbitrary_impl!(Matrix6,
|
|||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
rand_impl!(Matrix6,
|
||||
componentwise_rand!(Matrix6,
|
||||
m11, m12, m13, m14, m15, m16,
|
||||
m21, m22, m23, m24, m25, m26,
|
||||
m31, m32, m33, m34, m35, m36,
|
||||
|
@ -643,5 +283,4 @@ rand_impl!(Matrix6,
|
|||
m51, m52, m53, m54, m55, m56,
|
||||
m61, m62, m63, m64, m65, m66
|
||||
);
|
||||
mean_impl!(Matrix6, Vector6, 6);
|
||||
mat_display_impl!(Matrix6, 6);
|
||||
|
|
|
@ -1,20 +1,22 @@
|
|||
#![macro_use]
|
||||
|
||||
macro_rules! mat_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N> $t<N> {
|
||||
#[inline]
|
||||
pub fn new($($compN: N ),+) -> $t<N> {
|
||||
$t {
|
||||
$($compN: $compN ),+
|
||||
macro_rules! matrix_impl(
|
||||
($t: ident, $dimension: expr, $vector: ident, $dvector: ident, $($compN: ident),+) => (
|
||||
impl<N> $t<N> {
|
||||
#[inline]
|
||||
pub fn new($($compN: N ),+) -> $t<N> {
|
||||
$t {
|
||||
$($compN: $compN ),+
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! conversion_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Conversions (AsRef, AsMut, From)
|
||||
*
|
||||
*/
|
||||
impl<N> AsRef<[[N; $dimension]; $dimension]> for $t<N> {
|
||||
#[inline]
|
||||
fn as_ref(&self) -> &[[N; $dimension]; $dimension] {
|
||||
|
@ -58,11 +60,13 @@ macro_rules! conversion_impl(
|
|||
tref.clone()
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! at_fast_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Unsafe indexing.
|
||||
*
|
||||
*/
|
||||
impl<N: Copy> $t<N> {
|
||||
#[inline]
|
||||
pub unsafe fn at_fast(&self, (i, j): (usize, usize)) -> N {
|
||||
|
@ -76,331 +80,77 @@ macro_rules! at_fast_impl(
|
|||
.get_unchecked_mut(i + j * $dimension)) = val
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! mat_cast_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Cast
|
||||
*
|
||||
*/
|
||||
impl<Nin: Copy, Nout: Copy + Cast<Nin>> Cast<$t<Nin>> for $t<Nout> {
|
||||
#[inline]
|
||||
fn from(v: $t<Nin>) -> $t<Nout> {
|
||||
$t::new($(Cast::from(v.$compN)),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! add_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Add<N, Output = N>> Add<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
/*
|
||||
*
|
||||
* Iterable
|
||||
*
|
||||
*/
|
||||
impl<N> Iterable<N> for $t<N> {
|
||||
#[inline]
|
||||
fn add(self, right: $t<N>) -> $t<N> {
|
||||
$t::new($(self.$compN + right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: AddAssign<N>> AddAssign<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, right: $t<N>) {
|
||||
$( self.$compN += right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sub_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Sub<N, Output = N>> Sub<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: $t<N>) -> $t<N> {
|
||||
$t::new($(self.$compN - right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<N: SubAssign<N>> SubAssign<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, right: $t<N>) {
|
||||
$( self.$compN -= right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! mat_mul_scalar_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Mul<N, Output = N>> Mul<N> for N {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: N) -> $t<N> {
|
||||
$t::new($(self.$compN * *right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: MulAssign<N>> MulAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: N) {
|
||||
$( self.$compN *= *right; )+
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<$t<f32>> for f32 {
|
||||
type Output = $t<f32>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $t<f32>) -> $t<f32> {
|
||||
$t::new($(self * right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<$t<f64>> for f64 {
|
||||
type Output = $t<f64>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $t<f64>) -> $t<f64> {
|
||||
$t::new($(self * right.$compN),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! mat_div_scalar_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Div<N, Output = N>> Div<N> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn div(self, right: N) -> $t<N> {
|
||||
$t::new($(self.$compN / *right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: DivAssign<N>> DivAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn div_assign(&mut self, right: N) {
|
||||
$( self.$compN /= *right; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! mat_add_scalar_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Add<N, Output = N>> Add<N> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, right: N) -> $t<N> {
|
||||
$t::new($(self.$compN + *right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: AddAssign<N>> AddAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, right: N) {
|
||||
$( self.$compN += *right; )+
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<$t<f32>> for f32 {
|
||||
type Output = $t<f32>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, right: $t<f32>) -> $t<f32> {
|
||||
$t::new($(self + right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<$t<f64>> for f64 {
|
||||
type Output = $t<f64>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, right: $t<f64>) -> $t<f64> {
|
||||
$t::new($(self + right.$compN),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! mat_sub_scalar_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Sub<N, Output = N>> Sub<N> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: &N) -> $t<N> {
|
||||
$t::new($(self.$compN - *right),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: SubAssign<N>> SubAssign<N> for $t<N> {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, right: N) {
|
||||
$( self.$compN -= *right; )+
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<f32> for $t<f32> {
|
||||
type Output = $t<f32>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: $t<f32>) -> $t<f32> {
|
||||
$t::new($(self - right.$compN),+)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<f64> for $t<f64> {
|
||||
type Output = $t<f64>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, right: $t<f64>) -> $t<f64> {
|
||||
$t::new($(self - right.$compN),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! eye_impl(
|
||||
($t: ident, $dimension: expr, $($comp_diagN: ident),+) => (
|
||||
impl<N: Zero + One> Eye for $t<N> {
|
||||
fn new_identity(dimension: usize) -> $t<N> {
|
||||
assert!(dimension == $dimension);
|
||||
let mut eye: $t<N> = ::zero();
|
||||
$(eye.$comp_diagN = ::one();)+
|
||||
eye
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! repeat_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy> Repeat<N> for $t<N> {
|
||||
fn repeat(val: N) -> $t<N> {
|
||||
$t {
|
||||
$($compN: val ),+
|
||||
fn iter(&self) -> Iter<N> {
|
||||
unsafe {
|
||||
mem::transmute::<&$t<N>, &[N; $dimension * $dimension]>(self).iter()
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! absolute_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
impl<N: Absolute<N>> Absolute<$t<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn abs(m: &$t<N>) -> $t<N> {
|
||||
$t::new($(::abs(&m.$compN) ),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! iterable_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Iterable<N> for $t<N> {
|
||||
#[inline]
|
||||
fn iter(&self) -> Iter<N> {
|
||||
unsafe {
|
||||
mem::transmute::<&$t<N>, &[N; $dimension * $dimension]>(self).iter()
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! iterable_mut_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> IterableMut<N> for $t<N> {
|
||||
#[inline]
|
||||
fn iter_mut(& mut self) -> IterMut<N> {
|
||||
unsafe {
|
||||
mem::transmute::<&mut $t<N>, &mut [N; $dimension * $dimension]>(self).iter_mut()
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! one_impl(
|
||||
($t: ident, $($valueN: expr),+ ) => (
|
||||
impl<N: Copy + BaseNum> One for $t<N> {
|
||||
#[inline]
|
||||
fn one() -> $t<N> {
|
||||
$t::new($($valueN() ),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! zero_impl(
|
||||
($t: ident, $($compN: ident),+ ) => (
|
||||
impl<N: Zero> Zero for $t<N> {
|
||||
#[inline]
|
||||
fn zero() -> $t<N> {
|
||||
$t {
|
||||
$($compN: ::zero() ),+
|
||||
impl<N> IterableMut<N> for $t<N> {
|
||||
#[inline]
|
||||
fn iter_mut(& mut self) -> IterMut<N> {
|
||||
unsafe {
|
||||
mem::transmute::<&mut $t<N>, &mut [N; $dimension * $dimension]>(self).iter_mut()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_zero(&self) -> bool {
|
||||
$(::is_zero(&self.$compN) )&&+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! dim_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Dimension for $t<N> {
|
||||
#[inline]
|
||||
fn dimension(_: Option<$t<N>>) -> usize {
|
||||
$dimension
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! indexable_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Shape<(usize, usize)> for $t<N> {
|
||||
#[inline]
|
||||
fn shape(&self) -> (usize, usize) {
|
||||
($dimension, $dimension)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy> Indexable<(usize, usize), N> for $t<N> {
|
||||
#[inline]
|
||||
fn swap(&mut self, (i1, j1): (usize, usize), (i2, j2): (usize, usize)) {
|
||||
unsafe {
|
||||
mem::transmute::<&mut $t<N>, &mut [N; $dimension * $dimension]>(self)
|
||||
.swap(i1 + j1 * $dimension, i2 + j2 * $dimension)
|
||||
/*
|
||||
*
|
||||
* Shape/Indexable/Index
|
||||
*
|
||||
*/
|
||||
impl<N> Shape<(usize, usize)> for $t<N> {
|
||||
#[inline]
|
||||
fn shape(&self) -> (usize, usize) {
|
||||
($dimension, $dimension)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn unsafe_at(&self, (i, j): (usize, usize)) -> N {
|
||||
(*mem::transmute::<&$t<N>, &[N; $dimension * $dimension]>(self).get_unchecked(i + j * $dimension))
|
||||
impl<N: Copy> Indexable<(usize, usize), N> for $t<N> {
|
||||
#[inline]
|
||||
fn swap(&mut self, (i1, j1): (usize, usize), (i2, j2): (usize, usize)) {
|
||||
unsafe {
|
||||
mem::transmute::<&mut $t<N>, &mut [N; $dimension * $dimension]>(self)
|
||||
.swap(i1 + j1 * $dimension, i2 + j2 * $dimension)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn unsafe_at(&self, (i, j): (usize, usize)) -> N {
|
||||
(*mem::transmute::<&$t<N>, &[N; $dimension * $dimension]>(self).get_unchecked(i + j * $dimension))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn unsafe_set(&mut self, (i, j): (usize, usize), val: N) {
|
||||
(*mem::transmute::<&mut $t<N>, &mut [N; $dimension * $dimension]>(self).get_unchecked_mut(i + j * $dimension)) = val
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn unsafe_set(&mut self, (i, j): (usize, usize), val: N) {
|
||||
(*mem::transmute::<&mut $t<N>, &mut [N; $dimension * $dimension]>(self).get_unchecked_mut(i + j * $dimension)) = val
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! index_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Index<(usize, usize)> for $t<N> {
|
||||
type Output = N;
|
||||
|
||||
|
@ -418,96 +168,167 @@ macro_rules! index_impl(
|
|||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! column_slice_impl(
|
||||
($t: ident, $tv: ident, $slice: ident, $dimension: expr) => (
|
||||
impl<N: Clone + Copy + Zero> ColumnSlice<$slice<N>> for $t<N> {
|
||||
fn column_slice(&self, cid: usize, rstart: usize, rend: usize) -> $slice<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Row/Column
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Zero> Column<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn ncols(&self) -> usize {
|
||||
Dimension::dimension(None::<$t<N>>)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_column(&mut self, column: usize, v: $vector<N>) {
|
||||
for (i, e) in v.iter().enumerate() {
|
||||
self[(i, column)] = *e;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn column(&self, column: usize) -> $vector<N> {
|
||||
let mut res: $vector<N> = ::zero();
|
||||
|
||||
for (i, e) in res.iter_mut().enumerate() {
|
||||
*e = self[(i, column)];
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Clone + Copy + Zero> ColumnSlice<$dvector<N>> for $t<N> {
|
||||
fn column_slice(&self, cid: usize, rstart: usize, rend: usize) -> $dvector<N> {
|
||||
let column = self.column(cid);
|
||||
|
||||
$slice::from_slice(rend - rstart, &column.as_ref()[rstart .. rend])
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! row_impl(
|
||||
($t: ident, $tv: ident, $dimension: expr) => (
|
||||
impl<N: Copy + Zero> Row<$tv<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn nrows(&self) -> usize {
|
||||
Dimension::dimension(None::<$t<N>>)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_row(&mut self, row: usize, v: $tv<N>) {
|
||||
for (i, e) in v.iter().enumerate() {
|
||||
self[(row, i)] = *e;
|
||||
$dvector::from_slice(rend - rstart, &column.as_ref()[rstart .. rend])
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn row(&self, row: usize) -> $tv<N> {
|
||||
let mut res: $tv<N> = ::zero();
|
||||
|
||||
for (i, e) in res.iter_mut().enumerate() {
|
||||
*e = self[(row, i)];
|
||||
impl<N: Copy + Zero> Row<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn nrows(&self) -> usize {
|
||||
Dimension::dimension(None::<$t<N>>)
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
#[inline]
|
||||
fn set_row(&mut self, row: usize, v: $vector<N>) {
|
||||
for (i, e) in v.iter().enumerate() {
|
||||
self[(row, i)] = *e;
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! row_slice_impl(
|
||||
($t: ident, $tv: ident, $slice: ident, $dimension: expr) => (
|
||||
impl<N: Clone + Copy + Zero> RowSlice<$slice<N>> for $t<N> {
|
||||
fn row_slice(&self, rid: usize, cstart: usize, cend: usize) -> $slice<N> {
|
||||
#[inline]
|
||||
fn row(&self, row: usize) -> $vector<N> {
|
||||
let mut res: $vector<N> = ::zero();
|
||||
|
||||
for (i, e) in res.iter_mut().enumerate() {
|
||||
*e = self[(row, i)];
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Clone + Copy + Zero> RowSlice<$dvector<N>> for $t<N> {
|
||||
fn row_slice(&self, rid: usize, cstart: usize, cend: usize) -> $dvector<N> {
|
||||
let row = self.row(rid);
|
||||
|
||||
$slice::from_slice(cend - cstart, &row.as_ref()[cstart .. cend])
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! column_impl(
|
||||
($t: ident, $tv: ident, $dimension: expr) => (
|
||||
impl<N: Copy + Zero> Column<$tv<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn ncols(&self) -> usize {
|
||||
Dimension::dimension(None::<$t<N>>)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_column(&mut self, column: usize, v: $tv<N>) {
|
||||
for (i, e) in v.iter().enumerate() {
|
||||
self[(i, column)] = *e;
|
||||
$dvector::from_slice(cend - cstart, &row.as_ref()[cstart .. cend])
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn column(&self, column: usize) -> $tv<N> {
|
||||
let mut res: $tv<N> = ::zero();
|
||||
|
||||
for (i, e) in res.iter_mut().enumerate() {
|
||||
*e = self[(i, column)];
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! diag_impl(
|
||||
($t: ident, $tv: ident, $dimension: expr) => (
|
||||
impl<N: Copy + Zero> Diagonal<$tv<N>> for $t<N> {
|
||||
/*
|
||||
*
|
||||
* Transpose
|
||||
*
|
||||
*/
|
||||
impl<N: Copy> Transpose for $t<N> {
|
||||
#[inline]
|
||||
fn from_diagonal(diagonal: &$tv<N>) -> $t<N> {
|
||||
fn transpose(&self) -> $t<N> {
|
||||
let mut res = *self;
|
||||
|
||||
res.transpose_mut();
|
||||
res
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transpose_mut(&mut self) {
|
||||
for i in 1 .. $dimension {
|
||||
for j in 0 .. i {
|
||||
self.swap((i, j), (j, i))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* ApproxEq
|
||||
*
|
||||
*/
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
|
||||
#[inline]
|
||||
fn approx_epsilon(_: Option<$t<N>>) -> N {
|
||||
ApproxEq::approx_epsilon(None::<N>)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_ulps(_: Option<$t<N>>) -> u32 {
|
||||
ApproxEq::approx_ulps(None::<N>)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool {
|
||||
let mut zip = self.iter().zip(other.iter());
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_ulps(&self, other: &$t<N>, ulps: u32) -> bool {
|
||||
let mut zip = self.iter().zip(other.iter());
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq_ulps(a, b, ulps))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Mean
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum + Cast<f64> + Clone> Mean<$vector<N>> for $t<N> {
|
||||
fn mean(&self) -> $vector<N> {
|
||||
let mut res: $vector<N> = ::zero();
|
||||
let normalizer: N = Cast::from(1.0f64 / $dimension as f64);
|
||||
|
||||
for i in 0 .. $dimension {
|
||||
for j in 0 .. $dimension {
|
||||
unsafe {
|
||||
let acc = res.unsafe_at(j) + self.unsafe_at((i, j)) * normalizer;
|
||||
res.unsafe_set(j, acc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Diagonal
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Zero> Diagonal<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn from_diagonal(diagonal: &$vector<N>) -> $t<N> {
|
||||
let mut res: $t<N> = ::zero();
|
||||
|
||||
res.set_diagonal(diagonal);
|
||||
|
@ -516,8 +337,8 @@ macro_rules! diag_impl(
|
|||
}
|
||||
|
||||
#[inline]
|
||||
fn diagonal(&self) -> $tv<N> {
|
||||
let mut diagonal: $tv<N> = ::zero();
|
||||
fn diagonal(&self) -> $vector<N> {
|
||||
let mut diagonal: $vector<N> = ::zero();
|
||||
|
||||
for i in 0 .. $dimension {
|
||||
unsafe { diagonal.unsafe_set(i, self.unsafe_at((i, i))) }
|
||||
|
@ -527,17 +348,61 @@ macro_rules! diag_impl(
|
|||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + Zero> DiagMut<$tv<N>> for $t<N> {
|
||||
impl<N: Copy + Zero> DiagonalMut<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn set_diagonal(&mut self, diagonal: &$tv<N>) {
|
||||
fn set_diagonal(&mut self, diagonal: &$vector<N>) {
|
||||
for i in 0 .. $dimension {
|
||||
unsafe { self.unsafe_set((i, i), diagonal.unsafe_at(i)) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Outer
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Mul<N, Output = N> + Zero> Outer for $vector<N> {
|
||||
type OuterProductType = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn outer(&self, other: &$vector<N>) -> $t<N> {
|
||||
let mut res: $t<N> = ::zero();
|
||||
|
||||
for i in 0 .. ::dimension::<$vector<N>>() {
|
||||
for j in 0 .. ::dimension::<$vector<N>>() {
|
||||
res[(i, j)] = self[i] * other[j]
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Componentwise unary operations.
|
||||
*
|
||||
*/
|
||||
componentwise_repeat!($t, $($compN),+);
|
||||
componentwise_absolute!($t, $($compN),+);
|
||||
componentwise_zero!($t, $($compN),+);
|
||||
|
||||
/*
|
||||
*
|
||||
* Pointwise binary operations.
|
||||
*
|
||||
*/
|
||||
pointwise_add!($t, $($compN),+);
|
||||
pointwise_sub!($t, $($compN),+);
|
||||
pointwise_scalar_add!($t, $($compN),+);
|
||||
pointwise_scalar_sub!($t, $($compN),+);
|
||||
pointwise_scalar_div!($t, $($compN),+);
|
||||
pointwise_scalar_mul!($t, $($compN),+);
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! mat_mul_mat_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N: Copy + BaseNum> Mul<$t<N>> for $t<N> {
|
||||
|
@ -727,56 +592,6 @@ macro_rules! inverse_impl(
|
|||
)
|
||||
);
|
||||
|
||||
macro_rules! transpose_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N: Copy> Transpose for $t<N> {
|
||||
#[inline]
|
||||
fn transpose(&self) -> $t<N> {
|
||||
let mut res = *self;
|
||||
|
||||
res.transpose_mut();
|
||||
res
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn transpose_mut(&mut self) {
|
||||
for i in 1 .. $dimension {
|
||||
for j in 0 .. i {
|
||||
self.swap((i, j), (j, i))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! approx_eq_impl(
|
||||
($t: ident) => (
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
|
||||
#[inline]
|
||||
fn approx_epsilon(_: Option<$t<N>>) -> N {
|
||||
ApproxEq::approx_epsilon(None::<N>)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_ulps(_: Option<$t<N>>) -> u32 {
|
||||
ApproxEq::approx_ulps(None::<N>)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool {
|
||||
let mut zip = self.iter().zip(other.iter());
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq_eps(a, b, epsilon))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn approx_eq_ulps(&self, other: &$t<N>, ulps: u32) -> bool {
|
||||
let mut zip = self.iter().zip(other.iter());
|
||||
zip.all(|(a, b)| ApproxEq::approx_eq_ulps(a, b, ulps))
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! to_homogeneous_impl(
|
||||
($t: ident, $t2: ident, $dimension: expr, $dim2: expr) => (
|
||||
|
@ -785,8 +600,8 @@ macro_rules! to_homogeneous_impl(
|
|||
fn to_homogeneous(&self) -> $t2<N> {
|
||||
let mut res: $t2<N> = ::one();
|
||||
|
||||
for i in 0..$dimension {
|
||||
for j in 0..$dimension {
|
||||
for i in 0 .. $dimension {
|
||||
for j in 0 .. $dimension {
|
||||
res[(i, j)] = self[(i, j)]
|
||||
}
|
||||
}
|
||||
|
@ -804,8 +619,8 @@ macro_rules! from_homogeneous_impl(
|
|||
fn from(m: &$t2<N>) -> $t<N> {
|
||||
let mut res: $t<N> = ::one();
|
||||
|
||||
for i in 0..$dimension {
|
||||
for j in 0..$dimension {
|
||||
for i in 0 .. $dimension {
|
||||
for j in 0 .. $dimension {
|
||||
res[(i, j)] = m[(i, j)]
|
||||
}
|
||||
}
|
||||
|
@ -819,25 +634,6 @@ macro_rules! from_homogeneous_impl(
|
|||
)
|
||||
);
|
||||
|
||||
macro_rules! outer_impl(
|
||||
($t: ident, $m: ident) => (
|
||||
impl<N: Copy + Mul<N, Output = N> + Zero> Outer for $t<N> {
|
||||
type OuterProductType = $m<N>;
|
||||
|
||||
#[inline]
|
||||
fn outer(&self, other: &$t<N>) -> $m<N> {
|
||||
let mut res: $m<N> = ::zero();
|
||||
|
||||
for i in 0 .. ::dimension::<$t<N>>() {
|
||||
for j in 0 .. ::dimension::<$t<N>>() {
|
||||
res[(i, j)] = self[i] * other[j]
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! eigen_qr_impl(
|
||||
($t: ident, $v: ident) => (
|
||||
|
@ -851,27 +647,6 @@ macro_rules! eigen_qr_impl(
|
|||
);
|
||||
|
||||
|
||||
macro_rules! mean_impl(
|
||||
($t: ident, $v: ident, $dimension: expr) => (
|
||||
impl<N: BaseNum + Cast<f64> + Clone> Mean<$v<N>> for $t<N> {
|
||||
fn mean(&self) -> $v<N> {
|
||||
let mut res: $v<N> = ::zero();
|
||||
let normalizer: N = Cast::from(1.0f64 / $dimension as f64);
|
||||
|
||||
for i in 0 .. $dimension {
|
||||
for j in 0 .. $dimension {
|
||||
unsafe {
|
||||
let acc = res.unsafe_at(j) + self.unsafe_at((i, j)) * normalizer;
|
||||
res.unsafe_set(j, acc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! mat_display_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
|
@ -925,3 +700,39 @@ macro_rules! mat_display_impl(
|
|||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! one_impl(
|
||||
($t: ident, $($valueN: expr),+ ) => (
|
||||
impl<N: Copy + BaseNum> One for $t<N> {
|
||||
#[inline]
|
||||
fn one() -> $t<N> {
|
||||
$t::new($($valueN() ),+)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! eye_impl(
|
||||
($t: ident, $dimension: expr, $($comp_diagN: ident),+) => (
|
||||
impl<N: Zero + One> Eye for $t<N> {
|
||||
fn new_identity(dimension: usize) -> $t<N> {
|
||||
assert!(dimension == $dimension);
|
||||
let mut eye: $t<N> = ::zero();
|
||||
$(eye.$comp_diagN = ::one();)+
|
||||
eye
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
macro_rules! dim_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Dimension for $t<N> {
|
||||
#[inline]
|
||||
fn dimension(_: Option<$t<N>>) -> usize {
|
||||
$dimension
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
|
|
@ -15,6 +15,7 @@ pub use self::quaternion::{Quaternion, UnitQuaternion};
|
|||
#[cfg(feature="generic_sizes")]
|
||||
pub use self::vectorn::VectorN;
|
||||
|
||||
mod common_macros;
|
||||
mod dmatrix_macros;
|
||||
mod dmatrix;
|
||||
mod vectorn_macros;
|
||||
|
|
|
@ -27,38 +27,9 @@ pub struct Point1<N> {
|
|||
pub x: N
|
||||
}
|
||||
|
||||
new_impl!(Point1, x);
|
||||
origin_impl!(Point1, x);
|
||||
pord_impl!(Point1, x,);
|
||||
scalar_mul_impl!(Point1, x);
|
||||
scalar_div_impl!(Point1, x);
|
||||
scalar_add_impl!(Point1, x);
|
||||
scalar_sub_impl!(Point1, x);
|
||||
vec_cast_impl!(Point1, x);
|
||||
conversion_impl!(Point1, 1);
|
||||
index_impl!(Point1);
|
||||
indexable_impl!(Point1, 1);
|
||||
at_fast_impl!(Point1, 1);
|
||||
repeat_impl!(Point1, val, x);
|
||||
dim_impl!(Point1, 1);
|
||||
container_impl!(Point1);
|
||||
point_as_vec_impl!(Point1, Vector1, x);
|
||||
point_sub_impl!(Point1, Vector1);
|
||||
neg_impl!(Point1, x);
|
||||
point_add_vec_impl!(Point1, Vector1, x);
|
||||
point_sub_vec_impl!(Point1, Vector1, x);
|
||||
approx_eq_impl!(Point1, x);
|
||||
point_impl!(Point1, Vector1, Point2, y | x);
|
||||
vectorlike_impl!(Point1, 1, x);
|
||||
from_iterator_impl!(Point1, iterator);
|
||||
bounded_impl!(Point1, x);
|
||||
axpy_impl!(Point1, x);
|
||||
iterable_impl!(Point1, 1);
|
||||
iterable_mut_impl!(Point1, 1);
|
||||
point_to_homogeneous_impl!(Point1, Point2, y, x);
|
||||
point_from_homogeneous_impl!(Point1, Point2, y, x);
|
||||
num_float_point_impl!(Point1, Vector1);
|
||||
arbitrary_point_impl!(Point1, x);
|
||||
rand_impl!(Point1, x);
|
||||
point_display_impl!(Point1);
|
||||
|
||||
/// Point of dimension 2.
|
||||
///
|
||||
|
@ -73,38 +44,9 @@ pub struct Point2<N> {
|
|||
pub y: N
|
||||
}
|
||||
|
||||
new_impl!(Point2, x, y);
|
||||
origin_impl!(Point2, x, y);
|
||||
pord_impl!(Point2, x, y);
|
||||
scalar_mul_impl!(Point2, x, y);
|
||||
scalar_div_impl!(Point2, x, y);
|
||||
scalar_add_impl!(Point2, x, y);
|
||||
scalar_sub_impl!(Point2, x, y);
|
||||
vec_cast_impl!(Point2, x, y);
|
||||
conversion_impl!(Point2, 2);
|
||||
index_impl!(Point2);
|
||||
indexable_impl!(Point2, 2);
|
||||
at_fast_impl!(Point2, 2);
|
||||
repeat_impl!(Point2, val, x, y);
|
||||
dim_impl!(Point2, 2);
|
||||
container_impl!(Point2);
|
||||
point_as_vec_impl!(Point2, Vector2, x, y);
|
||||
point_sub_impl!(Point2, Vector2);
|
||||
neg_impl!(Point2, x, y);
|
||||
point_add_vec_impl!(Point2, Vector2, x, y);
|
||||
point_sub_vec_impl!(Point2, Vector2, x, y);
|
||||
approx_eq_impl!(Point2, x, y);
|
||||
point_impl!(Point2, Vector2, Point3, z | x, y);
|
||||
vectorlike_impl!(Point2, 2, x, y);
|
||||
from_iterator_impl!(Point2, iterator, iterator);
|
||||
bounded_impl!(Point2, x, y);
|
||||
axpy_impl!(Point2, x, y);
|
||||
iterable_impl!(Point2, 2);
|
||||
iterable_mut_impl!(Point2, 2);
|
||||
point_to_homogeneous_impl!(Point2, Point3, z, x, y);
|
||||
point_from_homogeneous_impl!(Point2, Point3, z, x, y);
|
||||
num_float_point_impl!(Point2, Vector2);
|
||||
arbitrary_point_impl!(Point2, x, y);
|
||||
rand_impl!(Point2, x, y);
|
||||
point_display_impl!(Point2);
|
||||
|
||||
/// Point of dimension 3.
|
||||
///
|
||||
|
@ -121,38 +63,9 @@ pub struct Point3<N> {
|
|||
pub z: N
|
||||
}
|
||||
|
||||
new_impl!(Point3, x, y, z);
|
||||
origin_impl!(Point3, x, y, z);
|
||||
pord_impl!(Point3, x, y, z);
|
||||
scalar_mul_impl!(Point3, x, y, z);
|
||||
scalar_div_impl!(Point3, x, y, z);
|
||||
scalar_add_impl!(Point3, x, y, z);
|
||||
scalar_sub_impl!(Point3, x, y, z);
|
||||
vec_cast_impl!(Point3, x, y, z);
|
||||
conversion_impl!(Point3, 3);
|
||||
index_impl!(Point3);
|
||||
indexable_impl!(Point3, 3);
|
||||
at_fast_impl!(Point3, 3);
|
||||
repeat_impl!(Point3, val, x, y, z);
|
||||
dim_impl!(Point3, 3);
|
||||
container_impl!(Point3);
|
||||
point_as_vec_impl!(Point3, Vector3, x, y, z);
|
||||
point_sub_impl!(Point3, Vector3);
|
||||
neg_impl!(Point3, x, y, z);
|
||||
point_add_vec_impl!(Point3, Vector3, x, y, z);
|
||||
point_sub_vec_impl!(Point3, Vector3, x, y, z);
|
||||
approx_eq_impl!(Point3, x, y, z);
|
||||
point_impl!(Point3, Vector3, Point4, w | x, y, z);
|
||||
vectorlike_impl!(Point3, 3, x, y, z);
|
||||
from_iterator_impl!(Point3, iterator, iterator, iterator);
|
||||
bounded_impl!(Point3, x, y, z);
|
||||
axpy_impl!(Point3, x, y, z);
|
||||
iterable_impl!(Point3, 3);
|
||||
iterable_mut_impl!(Point3, 3);
|
||||
point_to_homogeneous_impl!(Point3, Point4, w, x, y, z);
|
||||
point_from_homogeneous_impl!(Point3, Point4, w, x, y, z);
|
||||
num_float_point_impl!(Point3, Vector3);
|
||||
arbitrary_point_impl!(Point3, x, y, z);
|
||||
rand_impl!(Point3, x, y, z);
|
||||
point_display_impl!(Point3);
|
||||
|
||||
/// Point of dimension 4.
|
||||
///
|
||||
|
@ -171,38 +84,9 @@ pub struct Point4<N> {
|
|||
pub w: N
|
||||
}
|
||||
|
||||
new_impl!(Point4, x, y, z, w);
|
||||
origin_impl!(Point4, x, y, z, w);
|
||||
pord_impl!(Point4, x, y, z, w);
|
||||
scalar_mul_impl!(Point4, x, y, z, w);
|
||||
scalar_div_impl!(Point4, x, y, z, w);
|
||||
scalar_add_impl!(Point4, x, y, z, w);
|
||||
scalar_sub_impl!(Point4, x, y, z, w);
|
||||
vec_cast_impl!(Point4, x, y, z, w);
|
||||
conversion_impl!(Point4, 4);
|
||||
index_impl!(Point4);
|
||||
indexable_impl!(Point4, 4);
|
||||
at_fast_impl!(Point4, 4);
|
||||
repeat_impl!(Point4, val, x, y, z, w);
|
||||
dim_impl!(Point4, 4);
|
||||
container_impl!(Point4);
|
||||
point_as_vec_impl!(Point4, Vector4, x, y, z, w);
|
||||
point_sub_impl!(Point4, Vector4);
|
||||
neg_impl!(Point4, x, y, z, w);
|
||||
point_add_vec_impl!(Point4, Vector4, x, y, z, w);
|
||||
point_sub_vec_impl!(Point4, Vector4, x, y, z, w);
|
||||
approx_eq_impl!(Point4, x, y, z, w);
|
||||
point_impl!(Point4, Vector4, Point5, a | x, y, z, w);
|
||||
vectorlike_impl!(Point4, 4, x, y, z, w);
|
||||
from_iterator_impl!(Point4, iterator, iterator, iterator, iterator);
|
||||
bounded_impl!(Point4, x, y, z, w);
|
||||
axpy_impl!(Point4, x, y, z, w);
|
||||
iterable_impl!(Point4, 4);
|
||||
iterable_mut_impl!(Point4, 4);
|
||||
point_to_homogeneous_impl!(Point4, Point5, a, x, y, z, w);
|
||||
point_from_homogeneous_impl!(Point4, Point5, a, x, y, z, w);
|
||||
num_float_point_impl!(Point4, Vector4);
|
||||
arbitrary_point_impl!(Point4, x, y, z, w);
|
||||
rand_impl!(Point4, x, y, z, w);
|
||||
point_display_impl!(Point4);
|
||||
|
||||
/// Point of dimension 5.
|
||||
///
|
||||
|
@ -223,38 +107,9 @@ pub struct Point5<N> {
|
|||
pub a: N
|
||||
}
|
||||
|
||||
new_impl!(Point5, x, y, z, w, a);
|
||||
origin_impl!(Point5, x, y, z, w, a);
|
||||
pord_impl!(Point5, x, y, z, w, a);
|
||||
scalar_mul_impl!(Point5, x, y, z, w, a);
|
||||
scalar_div_impl!(Point5, x, y, z, w, a);
|
||||
scalar_add_impl!(Point5, x, y, z, w, a);
|
||||
scalar_sub_impl!(Point5, x, y, z, w, a);
|
||||
vec_cast_impl!(Point5, x, y, z, w, a);
|
||||
conversion_impl!(Point5, 5);
|
||||
index_impl!(Point5);
|
||||
indexable_impl!(Point5, 5);
|
||||
at_fast_impl!(Point5, 5);
|
||||
repeat_impl!(Point5, val, x, y, z, w, a);
|
||||
dim_impl!(Point5, 5);
|
||||
container_impl!(Point5);
|
||||
point_as_vec_impl!(Point5, Vector5, x, y, z, w, a);
|
||||
point_sub_impl!(Point5, Vector5);
|
||||
neg_impl!(Point5, x, y, z, w, a);
|
||||
point_add_vec_impl!(Point5, Vector5, x, y, z, w, a);
|
||||
point_sub_vec_impl!(Point5, Vector5, x, y, z, w, a);
|
||||
approx_eq_impl!(Point5, x, y, z, w, a);
|
||||
point_impl!(Point5, Vector5, Point6, b | x, y, z, w, a);
|
||||
vectorlike_impl!(Point5, 5, x, y, z, w, a);
|
||||
from_iterator_impl!(Point5, iterator, iterator, iterator, iterator, iterator);
|
||||
bounded_impl!(Point5, x, y, z, w, a);
|
||||
axpy_impl!(Point5, x, y, z, w, a);
|
||||
iterable_impl!(Point5, 5);
|
||||
iterable_mut_impl!(Point5, 5);
|
||||
point_to_homogeneous_impl!(Point5, Point6, b, x, y, z, w, a);
|
||||
point_from_homogeneous_impl!(Point5, Point6, b, x, y, z, w, a);
|
||||
num_float_point_impl!(Point5, Vector5);
|
||||
arbitrary_point_impl!(Point5, x, y, z, w, a);
|
||||
rand_impl!(Point5, x, y, z, w, a);
|
||||
point_display_impl!(Point5);
|
||||
|
||||
/// Point of dimension 6.
|
||||
///
|
||||
|
@ -277,33 +132,6 @@ pub struct Point6<N> {
|
|||
pub b: N
|
||||
}
|
||||
|
||||
new_impl!(Point6, x, y, z, w, a, b);
|
||||
origin_impl!(Point6, x, y, z, w, a, b);
|
||||
pord_impl!(Point6, x, y, z, w, a, b);
|
||||
scalar_mul_impl!(Point6, x, y, z, w, a, b);
|
||||
scalar_div_impl!(Point6, x, y, z, w, a, b);
|
||||
scalar_add_impl!(Point6, x, y, z, w, a, b);
|
||||
scalar_sub_impl!(Point6, x, y, z, w, a, b);
|
||||
vec_cast_impl!(Point6, x, y, z, w, a, b);
|
||||
conversion_impl!(Point6, 6);
|
||||
index_impl!(Point6);
|
||||
indexable_impl!(Point6, 6);
|
||||
at_fast_impl!(Point6, 6);
|
||||
repeat_impl!(Point6, val, x, y, z, w, a, b);
|
||||
dim_impl!(Point6, 6);
|
||||
container_impl!(Point6);
|
||||
point_as_vec_impl!(Point6, Vector6, x, y, z, w, a, b);
|
||||
point_sub_impl!(Point6, Vector6);
|
||||
neg_impl!(Point6, x, y, z, w, a, b);
|
||||
point_add_vec_impl!(Point6, Vector6, x, y, z, w, a, b);
|
||||
point_sub_vec_impl!(Point6, Vector6, x, y, z, w, a, b);
|
||||
approx_eq_impl!(Point6, x, y, z, w, a, b);
|
||||
point_impl!(Point6, Vector6 | x, y, z, w, a, b);
|
||||
vectorlike_impl!(Point6, 6, x, y, z, w, a, b);
|
||||
from_iterator_impl!(Point6, iterator, iterator, iterator, iterator, iterator, iterator);
|
||||
bounded_impl!(Point6, x, y, z, w, a, b);
|
||||
axpy_impl!(Point6, x, y, z, w, a, b);
|
||||
iterable_impl!(Point6, 6);
|
||||
iterable_mut_impl!(Point6, 6);
|
||||
num_float_point_impl!(Point6, Vector6);
|
||||
arbitrary_point_impl!(Point6, x, y, z, w, a, b);
|
||||
rand_impl!(Point6, x, y, z, w, a, b);
|
||||
point_display_impl!(Point6);
|
||||
|
|
|
@ -1,7 +1,13 @@
|
|||
#![macro_use]
|
||||
|
||||
macro_rules! origin_impl(
|
||||
($t: ident, $($compN: ident),+) => (
|
||||
macro_rules! point_impl(
|
||||
($t: ident, $tv: ident | $($compN: ident),+) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Origin.
|
||||
*
|
||||
*/
|
||||
impl<N: Zero> Origin for $t<N> {
|
||||
#[inline]
|
||||
fn origin() -> $t<N> {
|
||||
|
@ -15,11 +21,13 @@ macro_rules! origin_impl(
|
|||
$(self.$compN.is_zero() )&&+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_sub_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Point - Point
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Sub<N, Output = N>> Sub<$t<N>> for $t<N> {
|
||||
type Output = $tv<N>;
|
||||
|
||||
|
@ -28,11 +36,13 @@ macro_rules! point_sub_impl(
|
|||
*self.as_vector() - *right.as_vector()
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_add_vec_impl(
|
||||
($t: ident, $tv: ident, $($compN: ident),+) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Point + Vector
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Add<N, Output = N>> Add<$tv<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
|
@ -48,11 +58,13 @@ macro_rules! point_add_vec_impl(
|
|||
$( self.$compN += right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_sub_vec_impl(
|
||||
($t: ident, $tv: ident, $($compN: ident),+) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Point - Vector
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Sub<N, Output = N>> Sub<$tv<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
|
@ -68,11 +80,14 @@ macro_rules! point_sub_vec_impl(
|
|||
$( self.$compN -= right.$compN; )+
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_as_vec_impl(
|
||||
($t: ident, $tv: ident, $($compN: ident),+) => (
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Point as vector.
|
||||
*
|
||||
*/
|
||||
impl<N> $t<N> {
|
||||
/// Converts this point to its associated vector.
|
||||
#[inline]
|
||||
|
@ -114,40 +129,14 @@ macro_rules! point_as_vec_impl(
|
|||
self.set_coords(v)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_to_homogeneous_impl(
|
||||
($t: ident, $t2: ident, $extra: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy + One + Zero> ToHomogeneous<$t2<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $t2<N> {
|
||||
let mut res: $t2<N> = Origin::origin();
|
||||
|
||||
$( res.$compN = self.$compN; )+
|
||||
res.$extra = ::one();
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_from_homogeneous_impl(
|
||||
($t: ident, $t2: ident, $extra: ident, $($compN: ident),+) => (
|
||||
impl<N: Copy + Div<N, Output = N> + One + Zero> FromHomogeneous<$t2<N>> for $t<N> {
|
||||
fn from(v: &$t2<N>) -> $t<N> {
|
||||
let mut res: $t<N> = Origin::origin();
|
||||
|
||||
$( res.$compN = v.$compN / v.$extra; )+
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! num_float_point_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
/*
|
||||
*
|
||||
* NumPoint / FloatPoint
|
||||
*
|
||||
*/
|
||||
impl<N> NumPoint<N> for $t<N>
|
||||
where N: BaseNum {
|
||||
}
|
||||
|
@ -155,25 +144,13 @@ macro_rules! num_float_point_impl(
|
|||
impl<N> FloatPoint<N> for $t<N>
|
||||
where N: BaseFloat + ApproxEq<N> {
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! arbitrary_point_impl(
|
||||
($t: ident, $($compN: ident),*) => (
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary> Arbitrary for $t<N> {
|
||||
#[inline]
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> $t<N> {
|
||||
$t {
|
||||
$($compN: Arbitrary::arbitrary(g),)*
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_display_impl(
|
||||
($t: ident) => (
|
||||
/*
|
||||
*
|
||||
* Display
|
||||
*
|
||||
*/
|
||||
impl<N: fmt::Display> fmt::Display for $t<N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
// FIXME: differenciate them from vectors ?
|
||||
|
@ -190,5 +167,34 @@ macro_rules! point_display_impl(
|
|||
write!(f, ")")
|
||||
}
|
||||
}
|
||||
);
|
||||
($t: ident, $tv: ident, $th: ident, $comp_extra: ident | $($compN: ident),+) => (
|
||||
point_impl!($t, $tv | $($compN),+);
|
||||
|
||||
/*
|
||||
*
|
||||
* ToHomogeneous / FromHomogeneous
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + One + Zero> ToHomogeneous<$th<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $th<N> {
|
||||
let mut res: $th<N> = Origin::origin();
|
||||
|
||||
$( res.$compN = self.$compN; )+
|
||||
res.$comp_extra = ::one();
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + Div<N, Output = N> + One + Zero> FromHomogeneous<$th<N>> for $t<N> {
|
||||
fn from(v: &$th<N>) -> $t<N> {
|
||||
let mut res: $t<N> = Origin::origin();
|
||||
|
||||
$( res.$compN = v.$compN / v.$comp_extra; )+
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
|
|
@ -32,17 +32,6 @@ pub struct Quaternion<N> {
|
|||
}
|
||||
|
||||
impl<N> Quaternion<N> {
|
||||
/// Creates a new quaternion from its components.
|
||||
#[inline]
|
||||
pub fn new(w: N, i: N, j: N, k: N) -> Quaternion<N> {
|
||||
Quaternion {
|
||||
w: w,
|
||||
i: i,
|
||||
j: j,
|
||||
k: k
|
||||
}
|
||||
}
|
||||
|
||||
/// The vector part `(i, j, k)` of this quaternion.
|
||||
#[inline]
|
||||
pub fn vector(&self) -> &Vector3<N> {
|
||||
|
@ -176,9 +165,6 @@ impl<N: fmt::Display> fmt::Display for Quaternion<N> {
|
|||
}
|
||||
}
|
||||
|
||||
rand_impl!(Quaternion, w, i, j, k);
|
||||
|
||||
|
||||
/// A unit quaternion that can represent a 3D rotation.
|
||||
#[repr(C)]
|
||||
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Hash, Debug, Copy)]
|
||||
|
@ -557,6 +543,18 @@ impl<N: fmt::Display> fmt::Display for UnitQuaternion<N> {
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Dimension
|
||||
*
|
||||
*/
|
||||
impl<N> Dimension for UnitQuaternion<N> {
|
||||
#[inline]
|
||||
fn dimension(_: Option<UnitQuaternion<N>>) -> usize {
|
||||
3
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary + BaseFloat> Arbitrary for UnitQuaternion<N> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> UnitQuaternion<N> {
|
||||
|
@ -592,45 +590,15 @@ impl Quaternion<f32> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<T> Zero for Quaternion<T> where T: Zero {
|
||||
fn zero() -> Self {
|
||||
Quaternion::new(::zero(), ::zero(), ::zero(), ::zero())
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.w.is_zero() && self.i.is_zero() && self.j.is_zero() && self.k.is_zero()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> One for Quaternion<T> where T: Copy + One + Zero + Sub<T, Output = T> + Add<T, Output = T> {
|
||||
fn one() -> Self {
|
||||
Quaternion::new(T::one(), T::zero(), T::zero(), T::zero())
|
||||
}
|
||||
}
|
||||
|
||||
pord_impl!(Quaternion, w, i, j, k);
|
||||
vec_axis_impl!(Quaternion, w, i, j, k);
|
||||
vec_cast_impl!(Quaternion, w, i, j, k);
|
||||
conversion_impl!(Quaternion, 4);
|
||||
index_impl!(Quaternion);
|
||||
indexable_impl!(Quaternion, 4);
|
||||
at_fast_impl!(Quaternion, 4);
|
||||
repeat_impl!(Quaternion, val, w, i, j, k);
|
||||
dim_impl!(Quaternion, 3);
|
||||
container_impl!(Quaternion);
|
||||
add_impl!(Quaternion, w, i, j, k);
|
||||
sub_impl!(Quaternion, w, i, j, k);
|
||||
scalar_add_impl!(Quaternion, w, i, j, k);
|
||||
scalar_sub_impl!(Quaternion, w, i, j, k);
|
||||
scalar_mul_impl!(Quaternion, w, i, j, k);
|
||||
scalar_div_impl!(Quaternion, w, i, j, k);
|
||||
neg_impl!(Quaternion, w, i, j, k);
|
||||
approx_eq_impl!(Quaternion, w, i, j, k);
|
||||
componentwise_zero!(Quaternion, w, i, j, k);
|
||||
component_basis_element!(Quaternion, w, i, j, k);
|
||||
pointwise_add!(Quaternion, w, i, j, k);
|
||||
pointwise_sub!(Quaternion, w, i, j, k);
|
||||
from_iterator_impl!(Quaternion, iterator, iterator, iterator, iterator);
|
||||
bounded_impl!(Quaternion, w, i, j, k);
|
||||
axpy_impl!(Quaternion, w, i, j, k);
|
||||
iterable_impl!(Quaternion, 4);
|
||||
iterable_mut_impl!(Quaternion, 4);
|
||||
arbitrary_impl!(Quaternion, w, i, j, k);
|
||||
|
||||
dim_impl!(UnitQuaternion, 3);
|
||||
vectorlike_impl!(Quaternion, 4, w, i, j, k);
|
||||
|
|
|
@ -105,13 +105,6 @@ impl<N: BaseFloat> AbsoluteRotate<Vector2<N>> for Rotation2<N> {
|
|||
}
|
||||
}
|
||||
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary + BaseFloat> Arbitrary for Rotation2<N> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> Rotation2<N> {
|
||||
Rotation2::new(Arbitrary::arbitrary(g))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* 3d rotation
|
||||
|
@ -343,60 +336,13 @@ impl<N: BaseFloat> AbsoluteRotate<Vector3<N>> for Rotation3<N> {
|
|||
}
|
||||
}
|
||||
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary + BaseFloat> Arbitrary for Rotation3<N> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> Rotation3<N> {
|
||||
Rotation3::new(Arbitrary::arbitrary(g))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Common implementations.
|
||||
*/
|
||||
|
||||
submat_impl!(Rotation2, Matrix2);
|
||||
rotate_impl!(Rotation2, Vector2, Point2);
|
||||
transform_impl!(Rotation2, Vector2, Point2);
|
||||
rotation_impl!(Rotation2, Matrix2, Vector2, Vector1, Point2, Matrix3);
|
||||
dim_impl!(Rotation2, 2);
|
||||
rotation_mul_rotation_impl!(Rotation2);
|
||||
rotation_mul_vec_impl!(Rotation2, Vector2);
|
||||
vec_mul_rotation_impl!(Rotation2, Vector2);
|
||||
rotation_mul_point_impl!(Rotation2, Point2);
|
||||
point_mul_rotation_impl!(Rotation2, Point2);
|
||||
one_impl!(Rotation2);
|
||||
eye_impl!(Rotation2);
|
||||
rotation_matrix_impl!(Rotation2, Vector2, Vector1);
|
||||
column_impl!(Rotation2, Vector2);
|
||||
row_impl!(Rotation2, Vector2);
|
||||
index_impl!(Rotation2);
|
||||
absolute_impl!(Rotation2, Matrix2);
|
||||
to_homogeneous_impl!(Rotation2, Matrix3);
|
||||
inverse_impl!(Rotation2);
|
||||
transpose_impl!(Rotation2);
|
||||
approx_eq_impl!(Rotation2);
|
||||
diag_impl!(Rotation2, Vector2);
|
||||
rotation_display_impl!(Rotation2);
|
||||
|
||||
submat_impl!(Rotation3, Matrix3);
|
||||
rotate_impl!(Rotation3, Vector3, Point3);
|
||||
transform_impl!(Rotation3, Vector3, Point3);
|
||||
rotation_impl!(Rotation3, Matrix3, Vector3, Vector3, Point3, Matrix4);
|
||||
dim_impl!(Rotation3, 3);
|
||||
rotation_mul_rotation_impl!(Rotation3);
|
||||
rotation_mul_vec_impl!(Rotation3, Vector3);
|
||||
vec_mul_rotation_impl!(Rotation3, Vector3);
|
||||
rotation_mul_point_impl!(Rotation3, Point3);
|
||||
point_mul_rotation_impl!(Rotation3, Point3);
|
||||
one_impl!(Rotation3);
|
||||
eye_impl!(Rotation3);
|
||||
rotation_matrix_impl!(Rotation3, Vector3, Vector3);
|
||||
column_impl!(Rotation3, Vector3);
|
||||
row_impl!(Rotation3, Vector3);
|
||||
index_impl!(Rotation3);
|
||||
absolute_impl!(Rotation3, Matrix3);
|
||||
to_homogeneous_impl!(Rotation3, Matrix4);
|
||||
inverse_impl!(Rotation3);
|
||||
transpose_impl!(Rotation3);
|
||||
approx_eq_impl!(Rotation3);
|
||||
diag_impl!(Rotation3, Vector3);
|
||||
rotation_display_impl!(Rotation3);
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#![macro_use]
|
||||
|
||||
macro_rules! submat_impl(
|
||||
($t: ident, $submatrix: ident) => (
|
||||
macro_rules! rotation_impl(
|
||||
($t: ident, $submatrix: ident, $vector: ident, $rotvector: ident, $point: ident, $homogeneous: ident) => (
|
||||
impl<N> $t<N> {
|
||||
/// This rotation's underlying matrix.
|
||||
#[inline]
|
||||
|
@ -9,79 +9,75 @@ macro_rules! submat_impl(
|
|||
&self.submatrix
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotate_impl(
|
||||
($t: ident, $tv: ident, $tp: ident) => (
|
||||
impl<N: BaseNum> Rotate<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotate Vector and Point
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Rotate<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn rotate(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn rotate(&self, v: &$vector<N>) -> $vector<N> {
|
||||
*self * *v
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_rotate(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn inverse_rotate(&self, v: &$vector<N>) -> $vector<N> {
|
||||
*v * *self
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseNum> Rotate<$tp<N>> for $t<N> {
|
||||
impl<N: BaseNum> Rotate<$point<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn rotate(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn rotate(&self, p: &$point<N>) -> $point<N> {
|
||||
*self * *p
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_rotate(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn inverse_rotate(&self, p: &$point<N>) -> $point<N> {
|
||||
*p * *self
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! transform_impl(
|
||||
($t: ident, $tv: ident, $tp: ident) => (
|
||||
impl<N: BaseNum> Transform<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Transform Vector and Point
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Transform<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn transform(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn transform(&self, v: &$vector<N>) -> $vector<N> {
|
||||
self.rotate(v)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform(&self, v: &$tv<N>) -> $tv<N> {
|
||||
fn inverse_transform(&self, v: &$vector<N>) -> $vector<N> {
|
||||
self.inverse_rotate(v)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseNum> Transform<$tp<N>> for $t<N> {
|
||||
impl<N: BaseNum> Transform<$point<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn transform(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn transform(&self, p: &$point<N>) -> $point<N> {
|
||||
self.rotate(p)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn inverse_transform(&self, p: &$point<N>) -> $point<N> {
|
||||
self.inverse_rotate(p)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! dim_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Dimension for $t<N> {
|
||||
#[inline]
|
||||
fn dimension(_: Option<$t<N>>) -> usize {
|
||||
$dimension
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotation_matrix_impl(
|
||||
($t: ident, $tlv: ident, $tav: ident) => (
|
||||
impl<N: Zero + BaseNum + Cast<f64> + BaseFloat> RotationMatrix<N, $tlv<N>, $tav<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation Matrix
|
||||
*
|
||||
*/
|
||||
impl<N: Zero + BaseNum + Cast<f64> + BaseFloat> RotationMatrix<N, $vector<N>, $rotvector<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
|
@ -89,22 +85,26 @@ macro_rules! rotation_matrix_impl(
|
|||
self.clone()
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! one_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* One
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> One for $t<N> {
|
||||
#[inline]
|
||||
fn one() -> $t<N> {
|
||||
$t { submatrix: ::one() }
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! eye_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Eye
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Eye for $t<N> {
|
||||
#[inline]
|
||||
fn new_identity(dimension: usize) -> $t<N> {
|
||||
|
@ -116,27 +116,31 @@ macro_rules! eye_impl(
|
|||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! diag_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: Copy + Zero> Diagonal<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Diagonal
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Zero> Diagonal<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn from_diagonal(diagonal: &$tv<N>) -> $t<N> {
|
||||
fn from_diagonal(diagonal: &$vector<N>) -> $t<N> {
|
||||
$t { submatrix: Diagonal::from_diagonal(diagonal) }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn diagonal(&self) -> $tv<N> {
|
||||
fn diagonal(&self) -> $vector<N> {
|
||||
self.submatrix.diagonal()
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotation_mul_rotation_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation * Rotation
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Mul<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
|
@ -152,56 +156,75 @@ macro_rules! rotation_mul_rotation_impl(
|
|||
self.submatrix *= right.submatrix
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotation_mul_vec_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseNum> Mul<$tv<N>> for $t<N> {
|
||||
type Output = $tv<N>;
|
||||
|
||||
/*
|
||||
*
|
||||
* Rotation * Vector
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Mul<$vector<N>> for $t<N> {
|
||||
type Output = $vector<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $tv<N>) -> $tv<N> {
|
||||
fn mul(self, right: $vector<N>) -> $vector<N> {
|
||||
self.submatrix * right
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotation_mul_point_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
rotation_mul_vec_impl!($t, $tv);
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! vec_mul_rotation_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseNum> Mul<$t<N>> for $tv<N> {
|
||||
type Output = $tv<N>;
|
||||
impl<N: BaseNum> Mul<$t<N>> for $vector<N> {
|
||||
type Output = $vector<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $t<N>) -> $tv<N> {
|
||||
fn mul(self, right: $t<N>) -> $vector<N> {
|
||||
self * right.submatrix
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + BaseNum> MulAssign<$t<N>> for $tv<N> {
|
||||
impl<N: Copy + BaseNum> MulAssign<$t<N>> for $vector<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: $t<N>) {
|
||||
*self *= right.submatrix
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! point_mul_rotation_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
vec_mul_rotation_impl!($t, $tv);
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! inverse_impl(
|
||||
($t: ident) => (
|
||||
/*
|
||||
*
|
||||
* Rotation * Point
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Mul<$point<N>> for $t<N> {
|
||||
type Output = $point<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $point<N>) -> $point<N> {
|
||||
self.submatrix * right
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseNum> Mul<$t<N>> for $point<N> {
|
||||
type Output = $point<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $t<N>) -> $point<N> {
|
||||
self * right.submatrix
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + BaseNum> MulAssign<$t<N>> for $point<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: $t<N>) {
|
||||
*self *= right.submatrix
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Inverse
|
||||
*
|
||||
*/
|
||||
impl<N: Copy> Inverse for $t<N> {
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) -> bool {
|
||||
|
@ -217,11 +240,13 @@ macro_rules! inverse_impl(
|
|||
Some(self.transpose())
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! transpose_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Transpose
|
||||
*
|
||||
*/
|
||||
impl<N: Copy> Transpose for $t<N> {
|
||||
#[inline]
|
||||
fn transpose(&self) -> $t<N> {
|
||||
|
@ -233,51 +258,57 @@ macro_rules! transpose_impl(
|
|||
self.submatrix.transpose_mut()
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! row_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: Copy + Zero> Row<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Row
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Zero> Row<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn nrows(&self) -> usize {
|
||||
self.submatrix.nrows()
|
||||
}
|
||||
#[inline]
|
||||
fn row(&self, i: usize) -> $tv<N> {
|
||||
fn row(&self, i: usize) -> $vector<N> {
|
||||
self.submatrix.row(i)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_row(&mut self, i: usize, row: $tv<N>) {
|
||||
fn set_row(&mut self, i: usize, row: $vector<N>) {
|
||||
self.submatrix.set_row(i, row);
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! column_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: Copy + Zero> Column<$tv<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Column
|
||||
*
|
||||
*/
|
||||
impl<N: Copy + Zero> Column<$vector<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn ncols(&self) -> usize {
|
||||
self.submatrix.ncols()
|
||||
}
|
||||
#[inline]
|
||||
fn column(&self, i: usize) -> $tv<N> {
|
||||
fn column(&self, i: usize) -> $vector<N> {
|
||||
self.submatrix.column(i)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_column(&mut self, i: usize, column: $tv<N>) {
|
||||
fn set_column(&mut self, i: usize, column: $vector<N>) {
|
||||
self.submatrix.set_column(i, column);
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! index_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Index
|
||||
*
|
||||
*/
|
||||
impl<N> Index<(usize, usize)> for $t<N> {
|
||||
type Output = N;
|
||||
|
||||
|
@ -285,22 +316,26 @@ macro_rules! index_impl(
|
|||
&self.submatrix[i]
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! to_homogeneous_impl(
|
||||
($t: ident, $tm: ident) => (
|
||||
impl<N: BaseNum> ToHomogeneous<$tm<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* ToHomogeneous
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> ToHomogeneous<$homogeneous<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn to_homogeneous(&self) -> $tm<N> {
|
||||
fn to_homogeneous(&self) -> $homogeneous<N> {
|
||||
self.submatrix.to_homogeneous()
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! approx_eq_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* ApproxEq
|
||||
*
|
||||
*/
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
|
||||
#[inline]
|
||||
fn approx_epsilon(_: Option<$t<N>>) -> N {
|
||||
|
@ -327,22 +362,27 @@ macro_rules! approx_eq_impl(
|
|||
ApproxEq::approx_eq_ulps(&self.submatrix, &other.submatrix, ulps)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! absolute_impl(
|
||||
($t: ident, $tm: ident) => (
|
||||
impl<N: Absolute<N>> Absolute<$tm<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Absolute
|
||||
*
|
||||
*/
|
||||
impl<N: Absolute<N>> Absolute<$submatrix<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn abs(m: &$t<N>) -> $tm<N> {
|
||||
fn abs(m: &$t<N>) -> $submatrix<N> {
|
||||
Absolute::abs(&m.submatrix)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! rotation_display_impl(
|
||||
($t: ident) => (
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Display
|
||||
*
|
||||
*/
|
||||
impl<N: fmt::Display + BaseFloat> fmt::Display for $t<N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let precision = f.precision().unwrap_or(3);
|
||||
|
@ -352,5 +392,29 @@ macro_rules! rotation_display_impl(
|
|||
writeln!(f, "}}")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Arbitrary
|
||||
*
|
||||
*/
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary + BaseFloat> Arbitrary for $t<N> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> $t<N> {
|
||||
$t::new(Arbitrary::arbitrary(g))
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! dim_impl(
|
||||
($t: ident, $dimension: expr) => (
|
||||
impl<N> Dimension for $t<N> {
|
||||
#[inline]
|
||||
fn dimension(_: Option<$t<N>>) -> usize {
|
||||
$dimension
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
|
|
@ -6,7 +6,7 @@ use num::One;
|
|||
use structs::matrix::{Matrix3, Matrix4};
|
||||
use traits::structure::{Dimension, Column, BaseFloat, BaseNum};
|
||||
use traits::operations::{Inverse, ApproxEq};
|
||||
use traits::geometry::{Rotation, Transform, Transformation, Translation, ToHomogeneous};
|
||||
use traits::geometry::{Transform, Transformation, ToHomogeneous};
|
||||
|
||||
use structs::vector::{Vector1, Vector2, Vector3};
|
||||
use structs::point::{Point2, Point3};
|
||||
|
@ -49,38 +49,9 @@ pub struct Similarity3<N> {
|
|||
pub isometry: Isometry3<N>
|
||||
}
|
||||
|
||||
sim_impl!(Similarity2, Isometry2, Rotation2, Vector2, Vector1);
|
||||
dim_impl!(Similarity2, 2);
|
||||
sim_scale_impl!(Similarity2);
|
||||
sim_one_impl!(Similarity2);
|
||||
sim_mul_sim_impl!(Similarity2);
|
||||
sim_mul_isometry_impl!(Similarity2, Isometry2);
|
||||
sim_mul_rotation_impl!(Similarity2, Rotation2);
|
||||
sim_mul_point_vec_impl!(Similarity2, Point2);
|
||||
sim_mul_point_vec_impl!(Similarity2, Vector2);
|
||||
transformation_impl!(Similarity2);
|
||||
sim_transform_impl!(Similarity2, Point2);
|
||||
sim_inverse_impl!(Similarity2);
|
||||
sim_to_homogeneous_impl!(Similarity2, Matrix3);
|
||||
sim_approx_eq_impl!(Similarity2);
|
||||
sim_rand_impl!(Similarity2);
|
||||
sim_arbitrary_impl!(Similarity2);
|
||||
sim_display_impl!(Similarity2);
|
||||
|
||||
sim_impl!(Similarity3, Isometry3, Rotation3, Vector3, Vector3);
|
||||
similarity_impl!(Similarity2, Isometry2, Rotation2, Vector2, Vector1, Point2, Matrix3);
|
||||
dim_impl!(Similarity2, 2);
|
||||
|
||||
similarity_impl!(Similarity3, Isometry3, Rotation3, Vector3, Vector3, Point3, Matrix4);
|
||||
dim_impl!(Similarity3, 3);
|
||||
sim_scale_impl!(Similarity3);
|
||||
sim_one_impl!(Similarity3);
|
||||
sim_mul_sim_impl!(Similarity3);
|
||||
sim_mul_isometry_impl!(Similarity3, Isometry3);
|
||||
sim_mul_rotation_impl!(Similarity3, Rotation3);
|
||||
sim_mul_point_vec_impl!(Similarity3, Point3);
|
||||
sim_mul_point_vec_impl!(Similarity3, Vector3);
|
||||
transformation_impl!(Similarity3);
|
||||
sim_transform_impl!(Similarity3, Point3);
|
||||
sim_inverse_impl!(Similarity3);
|
||||
sim_to_homogeneous_impl!(Similarity3, Matrix4);
|
||||
sim_approx_eq_impl!(Similarity3);
|
||||
sim_rand_impl!(Similarity3);
|
||||
sim_arbitrary_impl!(Similarity3);
|
||||
sim_display_impl!(Similarity3);
|
||||
|
|
|
@ -1,13 +1,22 @@
|
|||
#![macro_use]
|
||||
|
||||
macro_rules! sim_impl(
|
||||
($t: ident, $isometry: ident, $rotation_matrix: ident, $subvector: ident, $subrotvector: ident) => (
|
||||
macro_rules! similarity_impl(
|
||||
($t: ident,
|
||||
$isometry: ident, $rotation_matrix: ident,
|
||||
$vector: ident, $rotvector: ident,
|
||||
$point: ident,
|
||||
$homogeneous_matrix: ident) => (
|
||||
impl<N: BaseFloat> $t<N> {
|
||||
/*
|
||||
*
|
||||
* Constructors.
|
||||
*
|
||||
*/
|
||||
/// Creates a new similarity transformation from a vector, an axis-angle rotation, and a scale factor.
|
||||
///
|
||||
/// The scale factor may be negative but not zero.
|
||||
#[inline]
|
||||
pub fn new(translation: $subvector<N>, rotation: $subrotvector<N>, scale: N) -> $t<N> {
|
||||
pub fn new(translation: $vector<N>, rotation: $rotvector<N>, scale: N) -> $t<N> {
|
||||
assert!(!scale.is_zero(), "A similarity transformation scale factor cannot be zero.");
|
||||
|
||||
$t {
|
||||
|
@ -20,7 +29,7 @@ macro_rules! sim_impl(
|
|||
///
|
||||
/// The scale factor may be negative but not zero.
|
||||
#[inline]
|
||||
pub fn new_with_rotation_matrix(translation: $subvector<N>, rotation: $rotation_matrix<N>, scale: N) -> $t<N> {
|
||||
pub fn new_with_rotation_matrix(translation: $vector<N>, rotation: $rotation_matrix<N>, scale: N) -> $t<N> {
|
||||
assert!(!scale.is_zero(), "A similarity transformation scale factor cannot be zero.");
|
||||
|
||||
$t {
|
||||
|
@ -41,13 +50,12 @@ macro_rules! sim_impl(
|
|||
isometry: isometry
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_scale_impl(
|
||||
($t: ident) => (
|
||||
impl<N: BaseFloat> $t<N> {
|
||||
/*
|
||||
*
|
||||
* Methods related to scaling.
|
||||
*
|
||||
*/
|
||||
/// The scale factor of this similarity transformation.
|
||||
#[inline]
|
||||
pub fn scale(&self) -> N {
|
||||
|
@ -96,22 +104,61 @@ macro_rules! sim_scale_impl(
|
|||
self.scale = s
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_one_impl(
|
||||
($t: ident) => (
|
||||
/*
|
||||
*
|
||||
* One Impl.
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> One for $t<N> {
|
||||
#[inline]
|
||||
fn one() -> $t<N> {
|
||||
$t::new_with_isometry(::one(), ::one())
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_mul_sim_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Transformation
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Transformation<$t<N>> for $t<N> {
|
||||
fn transformation(&self) -> $t<N> {
|
||||
*self
|
||||
}
|
||||
|
||||
fn inverse_transformation(&self) -> $t<N> {
|
||||
// inversion will never fails
|
||||
Inverse::inverse(self).unwrap()
|
||||
}
|
||||
|
||||
fn append_transformation_mut(&mut self, t: &$t<N>) {
|
||||
*self = *t * *self
|
||||
}
|
||||
|
||||
fn append_transformation(&self, t: &$t<N>) -> $t<N> {
|
||||
*t * *self
|
||||
}
|
||||
|
||||
fn prepend_transformation_mut(&mut self, t: &$t<N>) {
|
||||
*self = *self * *t
|
||||
}
|
||||
|
||||
fn prepend_transformation(&self, t: &$t<N>) -> $t<N> {
|
||||
*self * *t
|
||||
}
|
||||
|
||||
fn set_transformation(&mut self, t: $t<N>) {
|
||||
*self = t
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Similarity × Similarity
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
|
@ -132,16 +179,18 @@ macro_rules! sim_mul_sim_impl(
|
|||
self.scale *= right.scale;
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_mul_isometry_impl(
|
||||
($t: ident, $ti: ident) => (
|
||||
impl<N: BaseFloat> Mul<$ti<N>> for $t<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* Similarity × Isometry
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Mul<$isometry<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $ti<N>) -> $t<N> {
|
||||
fn mul(self, right: $isometry<N>) -> $t<N> {
|
||||
$t::new_with_rotation_matrix(
|
||||
self.isometry.translation + self.isometry.rotation * (right.translation * self.scale),
|
||||
self.isometry.rotation * right.rotation,
|
||||
|
@ -149,15 +198,15 @@ macro_rules! sim_mul_isometry_impl(
|
|||
}
|
||||
}
|
||||
|
||||
impl<N: BaseFloat> MulAssign<$ti<N>> for $t<N> {
|
||||
impl<N: BaseFloat> MulAssign<$isometry<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: $ti<N>) {
|
||||
fn mul_assign(&mut self, right: $isometry<N>) {
|
||||
self.isometry.translation += self.isometry.rotation * (right.translation * self.scale);
|
||||
self.isometry.rotation *= right.rotation;
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $ti<N> {
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $isometry<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
|
@ -168,16 +217,17 @@ macro_rules! sim_mul_isometry_impl(
|
|||
right.scale)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_mul_rotation_impl(
|
||||
($t: ident, $tr: ident) => (
|
||||
impl<N: BaseFloat> Mul<$tr<N>> for $t<N> {
|
||||
/*
|
||||
*
|
||||
* Similarity × Rotation
|
||||
*
|
||||
*/
|
||||
impl<N: BaseFloat> Mul<$rotation_matrix<N>> for $t<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $tr<N>) -> $t<N> {
|
||||
fn mul(self, right: $rotation_matrix<N>) -> $t<N> {
|
||||
$t::new_with_rotation_matrix(
|
||||
self.isometry.translation,
|
||||
self.isometry.rotation * right,
|
||||
|
@ -185,14 +235,14 @@ macro_rules! sim_mul_rotation_impl(
|
|||
}
|
||||
}
|
||||
|
||||
impl<N: BaseFloat> MulAssign<$tr<N>> for $t<N> {
|
||||
impl<N: BaseFloat> MulAssign<$rotation_matrix<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, right: $tr<N>) {
|
||||
fn mul_assign(&mut self, right: $rotation_matrix<N>) {
|
||||
self.isometry.rotation *= right;
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $tr<N> {
|
||||
impl<N: BaseFloat> Mul<$t<N>> for $rotation_matrix<N> {
|
||||
type Output = $t<N>;
|
||||
|
||||
#[inline]
|
||||
|
@ -203,44 +253,56 @@ macro_rules! sim_mul_rotation_impl(
|
|||
right.scale)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_mul_point_vec_impl(
|
||||
($t: ident, $tv: ident) => (
|
||||
impl<N: BaseNum> Mul<$tv<N>> for $t<N> {
|
||||
type Output = $tv<N>;
|
||||
/*
|
||||
*
|
||||
* Similarity × { Point, Vector }
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Mul<$vector<N>> for $t<N> {
|
||||
type Output = $vector<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $tv<N>) -> $tv<N> {
|
||||
fn mul(self, right: $vector<N>) -> $vector<N> {
|
||||
self.isometry * (right * self.scale)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: BaseNum> Mul<$point<N>> for $t<N> {
|
||||
type Output = $point<N>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, right: $point<N>) -> $point<N> {
|
||||
self.isometry * (right * self.scale)
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: there is no viable pre-multiplication definition because of the translation
|
||||
// component.
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_transform_impl(
|
||||
($t: ident, $tp: ident) => (
|
||||
impl<N: BaseNum> Transform<$tp<N>> for $t<N> {
|
||||
/*
|
||||
*
|
||||
* Similarity × Point
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> Transform<$point<N>> for $t<N> {
|
||||
#[inline]
|
||||
fn transform(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn transform(&self, p: &$point<N>) -> $point<N> {
|
||||
self.isometry.transform(&(*p * self.scale))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn inverse_transform(&self, p: &$tp<N>) -> $tp<N> {
|
||||
fn inverse_transform(&self, p: &$point<N>) -> $point<N> {
|
||||
self.isometry.inverse_transform(p) / self.scale
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_inverse_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Inverse
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum + Neg<Output = N>> Inverse for $t<N> {
|
||||
#[inline]
|
||||
fn inverse_mut(&mut self) -> bool {
|
||||
|
@ -263,28 +325,32 @@ macro_rules! sim_inverse_impl(
|
|||
Some(res)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_to_homogeneous_impl(
|
||||
($t: ident, $th: ident) => (
|
||||
impl<N: BaseNum> ToHomogeneous<$th<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $th<N> {
|
||||
|
||||
/*
|
||||
*
|
||||
* ToHomogeneous
|
||||
*
|
||||
*/
|
||||
impl<N: BaseNum> ToHomogeneous<$homogeneous_matrix<N>> for $t<N> {
|
||||
fn to_homogeneous(&self) -> $homogeneous_matrix<N> {
|
||||
let mut res = (*self.isometry.rotation.submatrix() * self.scale).to_homogeneous();
|
||||
|
||||
// copy the translation
|
||||
let dimension = Dimension::dimension(None::<$th<N>>);
|
||||
let dimension = Dimension::dimension(None::<$homogeneous_matrix<N>>);
|
||||
|
||||
res.set_column(dimension - 1, self.isometry.translation.as_point().to_homogeneous().to_vector());
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_approx_eq_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* ApproxEq
|
||||
*
|
||||
*/
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
|
||||
#[inline]
|
||||
fn approx_epsilon(_: Option<$t<N>>) -> N {
|
||||
|
@ -308,11 +374,13 @@ macro_rules! sim_approx_eq_impl(
|
|||
ApproxEq::approx_eq_ulps(&self.isometry, &other.isometry, ulps)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_rand_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Rand
|
||||
*
|
||||
*/
|
||||
impl<N: Rand + BaseFloat> Rand for $t<N> {
|
||||
#[inline]
|
||||
fn rand<R: Rng>(rng: &mut R) -> $t<N> {
|
||||
|
@ -324,11 +392,13 @@ macro_rules! sim_rand_impl(
|
|||
$t::new_with_isometry(rng.gen(), scale)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_arbitrary_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Arbitrary
|
||||
*
|
||||
*/
|
||||
#[cfg(feature="arbitrary")]
|
||||
impl<N: Arbitrary + BaseFloat> Arbitrary for $t<N> {
|
||||
fn arbitrary<G: Gen>(g: &mut G) -> $t<N> {
|
||||
|
@ -338,11 +408,13 @@ macro_rules! sim_arbitrary_impl(
|
|||
)
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
macro_rules! sim_display_impl(
|
||||
($t: ident) => (
|
||||
|
||||
/*
|
||||
*
|
||||
* Display
|
||||
*
|
||||
*/
|
||||
impl<N: fmt::Display + BaseFloat> fmt::Display for $t<N> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
try!(writeln!(f, "Similarity transformation {{"));
|
||||
|
|
|
@ -3,7 +3,7 @@ use structs::vector::{Vector2, Vector3};
|
|||
use structs::point::{Point2, Point3};
|
||||
use structs::matrix::{Matrix1, Matrix2, Matrix3};
|
||||
use traits::operations::{Inverse, Determinant, ApproxEq};
|
||||
use traits::structure::{Row, Column, BaseNum};
|
||||
use traits::structure::BaseNum;
|
||||
|
||||
// some specializations:
|
||||
impl<N: BaseNum + ApproxEq<N>> Inverse for Matrix1<N> {
|
||||
|
@ -129,85 +129,6 @@ impl<N: BaseNum> Determinant<N> for Matrix3<N> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<N: Copy> Row<Vector3<N>> for Matrix3<N> {
|
||||
#[inline]
|
||||
fn nrows(&self) -> usize {
|
||||
3
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn row(&self, i: usize) -> Vector3<N> {
|
||||
match i {
|
||||
0 => Vector3::new(self.m11, self.m12, self.m13),
|
||||
1 => Vector3::new(self.m21, self.m22, self.m23),
|
||||
2 => Vector3::new(self.m31, self.m32, self.m33),
|
||||
_ => panic!(format!("Index out of range: 3d matrices do not have {} rows.", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_row(&mut self, i: usize, r: Vector3<N>) {
|
||||
match i {
|
||||
0 => {
|
||||
self.m11 = r.x;
|
||||
self.m12 = r.y;
|
||||
self.m13 = r.z;
|
||||
},
|
||||
1 => {
|
||||
self.m21 = r.x;
|
||||
self.m22 = r.y;
|
||||
self.m23 = r.z;
|
||||
},
|
||||
2 => {
|
||||
self.m31 = r.x;
|
||||
self.m32 = r.y;
|
||||
self.m33 = r.z;
|
||||
},
|
||||
_ => panic!(format!("Index out of range: 3d matrices do not have {} rows.", i))
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy> Column<Vector3<N>> for Matrix3<N> {
|
||||
#[inline]
|
||||
fn ncols(&self) -> usize {
|
||||
3
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn column(&self, i: usize) -> Vector3<N> {
|
||||
match i {
|
||||
0 => Vector3::new(self.m11, self.m21, self.m31),
|
||||
1 => Vector3::new(self.m12, self.m22, self.m32),
|
||||
2 => Vector3::new(self.m13, self.m23, self.m33),
|
||||
_ => panic!(format!("Index out of range: 3d matrices do not have {} cols.", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_column(&mut self, i: usize, r: Vector3<N>) {
|
||||
match i {
|
||||
0 => {
|
||||
self.m11 = r.x;
|
||||
self.m21 = r.y;
|
||||
self.m31 = r.z;
|
||||
},
|
||||
1 => {
|
||||
self.m12 = r.x;
|
||||
self.m22 = r.y;
|
||||
self.m32 = r.z;
|
||||
},
|
||||
2 => {
|
||||
self.m13 = r.x;
|
||||
self.m23 = r.y;
|
||||
self.m33 = r.z;
|
||||
},
|
||||
_ => panic!(format!("Index out of range: 3d matrices do not have {} cols.", i))
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Copy + Mul<N, Output = N> + Add<N, Output = N>> Mul<Matrix3<N>> for Matrix3<N> {
|
||||
type Output = Matrix3<N>;
|
||||
|
|
|
@ -29,50 +29,14 @@ pub struct Vector1<N> {
|
|||
pub x: N
|
||||
}
|
||||
|
||||
new_impl!(Vector1, x);
|
||||
pord_impl!(Vector1, x,);
|
||||
vec_axis_impl!(Vector1, x);
|
||||
vec_cast_impl!(Vector1, x);
|
||||
conversion_impl!(Vector1, 1);
|
||||
index_impl!(Vector1);
|
||||
indexable_impl!(Vector1, 1);
|
||||
at_fast_impl!(Vector1, 1);
|
||||
repeat_impl!(Vector1, val, x);
|
||||
dim_impl!(Vector1, 1);
|
||||
container_impl!(Vector1);
|
||||
// (specialized); basis_impl!(Vector1, 1);
|
||||
add_impl!(Vector1, x);
|
||||
sub_impl!(Vector1, x);
|
||||
mul_impl!(Vector1, x);
|
||||
div_impl!(Vector1, x);
|
||||
scalar_add_impl!(Vector1, x);
|
||||
scalar_sub_impl!(Vector1, x);
|
||||
scalar_mul_impl!(Vector1, x);
|
||||
scalar_div_impl!(Vector1, x);
|
||||
neg_impl!(Vector1, x);
|
||||
dot_impl!(Vector1, x);
|
||||
translation_impl!(Vector1);
|
||||
norm_impl!(Vector1, x);
|
||||
approx_eq_impl!(Vector1, x);
|
||||
zero_one_impl!(Vector1, x);
|
||||
vector_impl!(Vector1, Point1, x);
|
||||
vectorlike_impl!(Vector1, 1, x);
|
||||
from_iterator_impl!(Vector1, iterator);
|
||||
bounded_impl!(Vector1, x);
|
||||
axpy_impl!(Vector1, x);
|
||||
iterable_impl!(Vector1, 1);
|
||||
iterable_mut_impl!(Vector1, 1);
|
||||
// (specialized); basis_impl!(Vector1, 1);
|
||||
vec_to_homogeneous_impl!(Vector1, Vector2, y, x);
|
||||
vec_from_homogeneous_impl!(Vector1, Vector2, y, x);
|
||||
translate_impl!(Vector1, Point1);
|
||||
rotate_impl!(Vector1);
|
||||
rotate_impl!(Point1);
|
||||
transform_impl!(Vector1, Point1);
|
||||
vec_as_point_impl!(Vector1, Point1, x);
|
||||
num_float_vec_impl!(Vector1);
|
||||
absolute_vec_impl!(Vector1, x);
|
||||
arbitrary_impl!(Vector1, x);
|
||||
rand_impl!(Vector1, x);
|
||||
mean_impl!(Vector1);
|
||||
vec_display_impl!(Vector1);
|
||||
|
||||
|
||||
|
||||
/// Vector of dimension 2.
|
||||
///
|
||||
|
@ -87,50 +51,14 @@ pub struct Vector2<N> {
|
|||
pub y: N
|
||||
}
|
||||
|
||||
new_impl!(Vector2, x, y);
|
||||
pord_impl!(Vector2, x, y);
|
||||
vec_axis_impl!(Vector2, x, y);
|
||||
vec_cast_impl!(Vector2, x, y);
|
||||
conversion_impl!(Vector2, 2);
|
||||
index_impl!(Vector2);
|
||||
indexable_impl!(Vector2, 2);
|
||||
at_fast_impl!(Vector2, 2);
|
||||
repeat_impl!(Vector2, val, x, y);
|
||||
dim_impl!(Vector2, 2);
|
||||
container_impl!(Vector2);
|
||||
// (specialized); basis_impl!(Vector2, 1);
|
||||
add_impl!(Vector2, x, y);
|
||||
sub_impl!(Vector2, x, y);
|
||||
mul_impl!(Vector2, x, y);
|
||||
div_impl!(Vector2, x, y);
|
||||
scalar_add_impl!(Vector2, x, y);
|
||||
scalar_sub_impl!(Vector2, x, y);
|
||||
scalar_mul_impl!(Vector2, x, y);
|
||||
scalar_div_impl!(Vector2, x, y);
|
||||
neg_impl!(Vector2, x, y);
|
||||
dot_impl!(Vector2, x, y);
|
||||
translation_impl!(Vector2);
|
||||
norm_impl!(Vector2, x, y);
|
||||
approx_eq_impl!(Vector2, x, y);
|
||||
zero_one_impl!(Vector2, x, y);
|
||||
vector_impl!(Vector2, Point2, x, y);
|
||||
vectorlike_impl!(Vector2, 2, x, y);
|
||||
from_iterator_impl!(Vector2, iterator, iterator);
|
||||
bounded_impl!(Vector2, x, y);
|
||||
axpy_impl!(Vector2, x, y);
|
||||
iterable_impl!(Vector2, 2);
|
||||
iterable_mut_impl!(Vector2, 2);
|
||||
// (specialized); basis_impl!(Vector2, 1);
|
||||
vec_to_homogeneous_impl!(Vector2, Vector3, z, x, y);
|
||||
vec_from_homogeneous_impl!(Vector2, Vector3, z, x, y);
|
||||
translate_impl!(Vector2, Point2);
|
||||
rotate_impl!(Vector2);
|
||||
rotate_impl!(Point2);
|
||||
transform_impl!(Vector2, Point2);
|
||||
vec_as_point_impl!(Vector2, Point2, x, y);
|
||||
num_float_vec_impl!(Vector2);
|
||||
absolute_vec_impl!(Vector2, x, y);
|
||||
arbitrary_impl!(Vector2, x, y);
|
||||
rand_impl!(Vector2, x, y);
|
||||
mean_impl!(Vector2);
|
||||
vec_display_impl!(Vector2);
|
||||
|
||||
|
||||
|
||||
/// Vector of dimension 3.
|
||||
///
|
||||
|
@ -147,50 +75,12 @@ pub struct Vector3<N> {
|
|||
pub z: N
|
||||
}
|
||||
|
||||
new_impl!(Vector3, x, y, z);
|
||||
pord_impl!(Vector3, x, y, z);
|
||||
vec_axis_impl!(Vector3, x, y, z);
|
||||
vec_cast_impl!(Vector3, x, y, z);
|
||||
conversion_impl!(Vector3, 3);
|
||||
index_impl!(Vector3);
|
||||
indexable_impl!(Vector3, 3);
|
||||
at_fast_impl!(Vector3, 3);
|
||||
repeat_impl!(Vector3, val, x, y, z);
|
||||
dim_impl!(Vector3, 3);
|
||||
container_impl!(Vector3);
|
||||
// (specialized); basis_impl!(Vector3, 1);
|
||||
add_impl!(Vector3, x, y, z);
|
||||
sub_impl!(Vector3, x, y, z);
|
||||
mul_impl!(Vector3, x, y, z);
|
||||
div_impl!(Vector3, x, y, z);
|
||||
scalar_add_impl!(Vector3, x, y, z);
|
||||
scalar_sub_impl!(Vector3, x, y, z);
|
||||
scalar_mul_impl!(Vector3, x, y, z);
|
||||
scalar_div_impl!(Vector3, x, y, z);
|
||||
neg_impl!(Vector3, x, y, z);
|
||||
dot_impl!(Vector3, x, y, z);
|
||||
translation_impl!(Vector3);
|
||||
norm_impl!(Vector3, x, y ,z);
|
||||
approx_eq_impl!(Vector3, x, y, z);
|
||||
zero_one_impl!(Vector3, x, y, z);
|
||||
vector_impl!(Vector3, Point3, x, y, z);
|
||||
vectorlike_impl!(Vector3, 3, x, y, z);
|
||||
from_iterator_impl!(Vector3, iterator, iterator, iterator);
|
||||
bounded_impl!(Vector3, x, y, z);
|
||||
axpy_impl!(Vector3, x, y, z);
|
||||
iterable_impl!(Vector3, 3);
|
||||
iterable_mut_impl!(Vector3, 3);
|
||||
// (specialized); basis_impl!(Vector3, 1);
|
||||
vec_to_homogeneous_impl!(Vector3, Vector4, w, x, y, z);
|
||||
vec_from_homogeneous_impl!(Vector3, Vector4, w, x, y, z);
|
||||
translate_impl!(Vector3, Point3);
|
||||
rotate_impl!(Vector3);
|
||||
rotate_impl!(Point3);
|
||||
transform_impl!(Vector3, Point3);
|
||||
vec_as_point_impl!(Vector3, Point3, x, y, z);
|
||||
num_float_vec_impl!(Vector3);
|
||||
absolute_vec_impl!(Vector3, x, y, z);
|
||||
arbitrary_impl!(Vector3, x, y, z);
|
||||
rand_impl!(Vector3, x, y, z);
|
||||
mean_impl!(Vector3);
|
||||
vec_display_impl!(Vector3);
|
||||
|
||||
|
||||
/// Vector of dimension 4.
|
||||
|
@ -210,50 +100,14 @@ pub struct Vector4<N> {
|
|||
pub w: N
|
||||
}
|
||||
|
||||
new_impl!(Vector4, x, y, z, w);
|
||||
pord_impl!(Vector4, x, y, z, w);
|
||||
vec_axis_impl!(Vector4, x, y, z, w);
|
||||
vec_cast_impl!(Vector4, x, y, z, w);
|
||||
conversion_impl!(Vector4, 4);
|
||||
index_impl!(Vector4);
|
||||
indexable_impl!(Vector4, 4);
|
||||
at_fast_impl!(Vector4, 4);
|
||||
repeat_impl!(Vector4, val, x, y, z, w);
|
||||
dim_impl!(Vector4, 4);
|
||||
container_impl!(Vector4);
|
||||
basis_impl!(Vector4, 4);
|
||||
add_impl!(Vector4, x, y, z, w);
|
||||
sub_impl!(Vector4, x, y, z, w);
|
||||
mul_impl!(Vector4, x, y, z, w);
|
||||
div_impl!(Vector4, x, y, z, w);
|
||||
scalar_add_impl!(Vector4, x, y, z, w);
|
||||
scalar_sub_impl!(Vector4, x, y, z, w);
|
||||
scalar_mul_impl!(Vector4, x, y, z, w);
|
||||
scalar_div_impl!(Vector4, x, y, z, w);
|
||||
neg_impl!(Vector4, x, y, z, w);
|
||||
dot_impl!(Vector4, x, y, z, w);
|
||||
translation_impl!(Vector4);
|
||||
norm_impl!(Vector4, x, y, z, w);
|
||||
approx_eq_impl!(Vector4, x, y, z, w);
|
||||
zero_one_impl!(Vector4, x, y, z, w);
|
||||
vector_impl!(Vector4, Point4, x, y, z, w);
|
||||
vectorlike_impl!(Vector4, 4, x, y, z, w);
|
||||
from_iterator_impl!(Vector4, iterator, iterator, iterator, iterator);
|
||||
bounded_impl!(Vector4, x, y, z, w);
|
||||
axpy_impl!(Vector4, x, y, z, w);
|
||||
iterable_impl!(Vector4, 4);
|
||||
iterable_mut_impl!(Vector4, 4);
|
||||
basis_impl!(Vector4, 4);
|
||||
vec_to_homogeneous_impl!(Vector4, Vector5, a, x, y, z, w);
|
||||
vec_from_homogeneous_impl!(Vector4, Vector5, a, x, y, z, w);
|
||||
translate_impl!(Vector4, Point4);
|
||||
rotate_impl!(Vector4);
|
||||
rotate_impl!(Point4);
|
||||
transform_impl!(Vector4, Point4);
|
||||
vec_as_point_impl!(Vector4, Point4, x, y, z, w);
|
||||
num_float_vec_impl!(Vector4);
|
||||
absolute_vec_impl!(Vector4, x, y, z, w);
|
||||
arbitrary_impl!(Vector4, x, y, z, w);
|
||||
rand_impl!(Vector4, x, y, z, w);
|
||||
mean_impl!(Vector4);
|
||||
vec_display_impl!(Vector4);
|
||||
|
||||
|
||||
|
||||
/// Vector of dimension 5.
|
||||
///
|
||||
|
@ -274,50 +128,13 @@ pub struct Vector5<N> {
|
|||
pub a: N
|
||||
}
|
||||
|
||||
new_impl!(Vector5, x, y, z, w, a);
|
||||
pord_impl!(Vector5, x, y, z, w, a);
|
||||
vec_axis_impl!(Vector5, x, y, z, w, a);
|
||||
vec_cast_impl!(Vector5, x, y, z, w, a);
|
||||
conversion_impl!(Vector5, 5);
|
||||
index_impl!(Vector5);
|
||||
indexable_impl!(Vector5, 5);
|
||||
at_fast_impl!(Vector5, 5);
|
||||
repeat_impl!(Vector5, val, x, y, z, w, a);
|
||||
dim_impl!(Vector5, 5);
|
||||
container_impl!(Vector5);
|
||||
basis_impl!(Vector5, 5);
|
||||
add_impl!(Vector5, x, y, z, w, a);
|
||||
sub_impl!(Vector5, x, y, z, w, a);
|
||||
mul_impl!(Vector5, x, y, z, w, a);
|
||||
div_impl!(Vector5, x, y, z, w, a);
|
||||
scalar_add_impl!(Vector5, x, y, z, w, a);
|
||||
scalar_sub_impl!(Vector5, x, y, z, w, a);
|
||||
scalar_mul_impl!(Vector5, x, y, z, w, a);
|
||||
scalar_div_impl!(Vector5, x, y, z, w, a);
|
||||
neg_impl!(Vector5, x, y, z, w, a);
|
||||
dot_impl!(Vector5, x, y, z, w, a);
|
||||
translation_impl!(Vector5);
|
||||
norm_impl!(Vector5, x, y, z, w, a);
|
||||
approx_eq_impl!(Vector5, x, y, z, w, a);
|
||||
zero_one_impl!(Vector5, x, y, z, w, a);
|
||||
vector_impl!(Vector5, Point5, x, y, z, w, a);
|
||||
vectorlike_impl!(Vector5, 5, x, y, z, w, a);
|
||||
from_iterator_impl!(Vector5, iterator, iterator, iterator, iterator, iterator);
|
||||
bounded_impl!(Vector5, x, y, z, w, a);
|
||||
axpy_impl!(Vector5, x, y, z, w, a);
|
||||
iterable_impl!(Vector5, 5);
|
||||
iterable_mut_impl!(Vector5, 5);
|
||||
basis_impl!(Vector5, 5);
|
||||
vec_to_homogeneous_impl!(Vector5, Vector6, b, x, y, z, w, a);
|
||||
vec_from_homogeneous_impl!(Vector5, Vector6, b, x, y, z, w, a);
|
||||
translate_impl!(Vector5, Point5);
|
||||
rotate_impl!(Vector5);
|
||||
rotate_impl!(Point5);
|
||||
transform_impl!(Vector5, Point5);
|
||||
vec_as_point_impl!(Vector5, Point5, x, y, z, w, a);
|
||||
num_float_vec_impl!(Vector5);
|
||||
absolute_vec_impl!(Vector5, x, y, z, w, a);
|
||||
arbitrary_impl!(Vector5, x, y, z, w, a);
|
||||
rand_impl!(Vector5, x, y, z, w, a);
|
||||
mean_impl!(Vector5);
|
||||
vec_display_impl!(Vector5);
|
||||
|
||||
|
||||
/// Vector of dimension 6.
|
||||
///
|
||||
|
@ -340,45 +157,8 @@ pub struct Vector6<N> {
|
|||
pub b: N
|
||||
}
|
||||
|
||||
new_impl!(Vector6, x, y, z, w, a, b);
|
||||
pord_impl!(Vector6, x, y, z, w, a, b);
|
||||
vec_axis_impl!(Vector6, x, y, z, w, a, b);
|
||||
vec_cast_impl!(Vector6, x, y, z, w, a, b);
|
||||
conversion_impl!(Vector6, 6);
|
||||
index_impl!(Vector6);
|
||||
indexable_impl!(Vector6, 6);
|
||||
at_fast_impl!(Vector6, 6);
|
||||
repeat_impl!(Vector6, val, x, y, z, w, a, b);
|
||||
dim_impl!(Vector6, 6);
|
||||
container_impl!(Vector6);
|
||||
basis_impl!(Vector6, 6);
|
||||
add_impl!(Vector6, x, y, z, w, a, b);
|
||||
sub_impl!(Vector6, x, y, z, w, a, b);
|
||||
mul_impl!(Vector6, x, y, z, w, a, b);
|
||||
div_impl!(Vector6, x, y, z, w, a, b);
|
||||
scalar_add_impl!(Vector6, x, y, z, w, a, b);
|
||||
scalar_sub_impl!(Vector6, x, y, z, w, a, b);
|
||||
scalar_mul_impl!(Vector6, x, y, z, w, a, b);
|
||||
scalar_div_impl!(Vector6, x, y, z, w, a, b);
|
||||
neg_impl!(Vector6, x, y, z, w, a, b);
|
||||
dot_impl!(Vector6, x, y, z, w, a, b);
|
||||
translation_impl!(Vector6);
|
||||
norm_impl!(Vector6, x, y, z, w, a, b);
|
||||
approx_eq_impl!(Vector6, x, y, z, w, a, b);
|
||||
zero_one_impl!(Vector6, x, y, z, w, a, b);
|
||||
vector_impl!(Vector6, Point6, x, y, z, w, a, b);
|
||||
vectorlike_impl!(Vector6, 6, x, y, z, w, a, b);
|
||||
from_iterator_impl!(Vector6, iterator, iterator, iterator, iterator, iterator, iterator);
|
||||
bounded_impl!(Vector6, x, y, z, w, a, b);
|
||||
axpy_impl!(Vector6, x, y, z, w, a, b);
|
||||
iterable_impl!(Vector6, 6);
|
||||
iterable_mut_impl!(Vector6, 6);
|
||||
translate_impl!(Vector6, Point6);
|
||||
rotate_impl!(Vector6);
|
||||
rotate_impl!(Point6);
|
||||
transform_impl!(Vector6, Point6);
|
||||
vec_as_point_impl!(Vector6, Point6, x, y, z, w, a, b);
|
||||
num_float_vec_impl!(Vector6);
|
||||
absolute_vec_impl!(Vector6, x, y, z, w, a, b);
|
||||
arbitrary_impl!(Vector6, x, y, z, w, a, b);
|
||||
rand_impl!(Vector6, x, y, z, w, a, b);
|
||||
mean_impl!(Vector6);
|
||||
vec_display_impl!(Vector6);
|
||||
|
||||
basis_impl!(Vector6, 6);
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -7,7 +7,7 @@ pub use traits::geometry::{AbsoluteRotate, Cross, CrossMatrix, Dot, FromHomogene
|
|||
|
||||
pub use traits::structure::{FloatVector, FloatPoint, Basis, Cast, Column, Dimension, Indexable, Iterable,
|
||||
IterableMut, Matrix, SquareMatrix, Row, NumVector, NumPoint, PointAsVector, ColumnSlice,
|
||||
RowSlice, Diagonal, DiagMut, Eye, Repeat, Shape, BaseFloat, BaseNum,
|
||||
RowSlice, Diagonal, DiagonalMut, Eye, Repeat, Shape, BaseFloat, BaseNum,
|
||||
Bounded};
|
||||
|
||||
pub use traits::operations::{Absolute, ApproxEq, Axpy, Covariance, Determinant, Inverse, Mean, Outer, PartialOrder, Transpose,
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
//! Low level operations on vectors and matrices.
|
||||
|
||||
use std::mem;
|
||||
use num::{Float, Signed};
|
||||
use num::Signed;
|
||||
use std::ops::Mul;
|
||||
use std::cmp::Ordering;
|
||||
use traits::structure::SquareMatrix;
|
||||
|
|
|
@ -176,7 +176,7 @@ pub trait Diagonal<V> {
|
|||
}
|
||||
|
||||
/// Trait to set the diagonal of square matrices.
|
||||
pub trait DiagMut<V>: Diagonal<V> {
|
||||
pub trait DiagonalMut<V>: Diagonal<V> {
|
||||
/// Sets the diagonal of this matrix.
|
||||
fn set_diagonal(&mut self, diagonal: &V);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue