Implement CSR/CSC * Dense std operations

This commit is contained in:
Andreas Longva 2021-01-06 13:07:55 +01:00
parent b7a7f967b8
commit 885480a634
2 changed files with 61 additions and 4 deletions

View File

@ -2,12 +2,14 @@ use crate::csr::CsrMatrix;
use crate::csc::CscMatrix; use crate::csc::CscMatrix;
use std::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Neg}; use std::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Neg};
use crate::ops::serial::{spadd_csr_prealloc, spadd_csc_prealloc, spadd_pattern, use crate::ops::serial::{spadd_csr_prealloc, spadd_csc_prealloc, spadd_pattern, spmm_pattern,
spmm_pattern, spmm_csr_prealloc, spmm_csc_prealloc}; spmm_csr_prealloc, spmm_csc_prealloc, spmm_csc_dense, spmm_csr_dense};
use nalgebra::{ClosedAdd, ClosedMul, ClosedSub, ClosedDiv, Scalar}; use nalgebra::{ClosedAdd, ClosedMul, ClosedSub, ClosedDiv, Scalar, Matrix, Dim,
DMatrixSlice, DMatrix, Dynamic};
use num_traits::{Zero, One}; use num_traits::{Zero, One};
use std::sync::Arc; use std::sync::Arc;
use crate::ops::{Op}; use crate::ops::{Op};
use nalgebra::base::storage::Storage;
/// Helper macro for implementing binary operators for different matrix types /// Helper macro for implementing binary operators for different matrix types
/// See below for usage. /// See below for usage.
@ -275,4 +277,31 @@ macro_rules! impl_div {
} }
impl_div!(CsrMatrix); impl_div!(CsrMatrix);
impl_div!(CscMatrix); impl_div!(CscMatrix);
macro_rules! impl_spmm_cs_dense {
($matrix_type:ident, $spmm_fn:ident) => {
impl<'a, T, R, C, S> Mul<&'a Matrix<T, R, C, S>> for &'a $matrix_type<T>
where
&'a Matrix<T, R, C, S>: Into<DMatrixSlice<'a, T>>,
T: Scalar + ClosedMul + ClosedAdd + ClosedSub + ClosedDiv + Neg + Zero + One,
R: Dim,
C: Dim,
S: Storage<T, R, C>,
{
type Output = DMatrix<T>;
fn mul(self, rhs: &'a Matrix<T, R, C, S>) -> Self::Output {
let rhs = rhs.into();
let (_, ncols) = rhs.data.shape();
let nrows = Dynamic::new(self.nrows());
let mut result = Matrix::zeros_generic(nrows, ncols);
$spmm_fn(T::zero(), &mut result, T::one(), Op::NoOp(self), Op::NoOp(rhs));
result
}
}
}
}
impl_spmm_cs_dense!(CsrMatrix, spmm_csr_dense);
impl_spmm_cs_dense!(CscMatrix, spmm_csc_dense);

View File

@ -1087,4 +1087,32 @@ proptest! {
prop_assert_eq!(&result_ref, &expected_result); prop_assert_eq!(&result_ref, &expected_result);
} }
#[test]
fn csr_mul_dense(
// a and b have dimensions compatible for multiplication
(a, b)
in csr_strategy()
.prop_flat_map(|a| {
let cols = PROPTEST_MATRIX_DIM;
let b = matrix(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols);
(Just(a), b)
}))
{
prop_assert_eq!(&a * &b, &DMatrix::from(&a) * &b);
}
#[test]
fn csc_mul_dense(
// a and b have dimensions compatible for multiplication
(a, b)
in csc_strategy()
.prop_flat_map(|a| {
let cols = PROPTEST_MATRIX_DIM;
let b = matrix(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols);
(Just(a), b)
}))
{
prop_assert_eq!(&a * &b, &DMatrix::from(&a) * &b);
}
} }