Fix nalgebra-glm
This commit is contained in:
parent
31c64a0aaa
commit
85074398d0
@ -26,5 +26,5 @@ abomonation-serialize = [ "nalgebra/abomonation-serialize" ]
|
||||
[dependencies]
|
||||
num-traits = { version = "0.2", default-features = false }
|
||||
approx = { version = "0.5", default-features = false }
|
||||
simba = { version = "0.5", default-features = false }
|
||||
simba = { version = "0.6", default-features = false }
|
||||
nalgebra = { path = "..", version = "0.28", default-features = false }
|
||||
|
@ -1,9 +1,9 @@
|
||||
use core::mem;
|
||||
use na::{self, RealField};
|
||||
use num::FromPrimitive;
|
||||
use na;
|
||||
|
||||
use crate::aliases::{TMat, TVec};
|
||||
use crate::traits::Number;
|
||||
use crate::RealNumber;
|
||||
|
||||
/// For each matrix or vector component `x` if `x >= 0`; otherwise, it returns `-x`.
|
||||
///
|
||||
@ -42,7 +42,7 @@ pub fn abs<T: Number, const R: usize, const C: usize>(x: &TMat<T, R, C>) -> TMat
|
||||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn ceil<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn ceil<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|x| x.ceil())
|
||||
}
|
||||
|
||||
@ -214,7 +214,7 @@ pub fn float_bits_to_uint_vec<const D: usize>(v: &TVec<f32, D>) -> TVec<u32, D>
|
||||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn floor<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn floor<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|x| x.floor())
|
||||
}
|
||||
|
||||
@ -240,13 +240,13 @@ pub fn floor<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
/// * [`floor`](fn.floor.html)
|
||||
/// * [`round`](fn.round.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn fract<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn fract<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|x| x.fract())
|
||||
}
|
||||
|
||||
//// TODO: should be implemented for TVec/TMat?
|
||||
///// Returns the (significant, exponent) of this float number.
|
||||
//pub fn frexp<T: RealField>(x: T, exp: T) -> (T, T) {
|
||||
//pub fn frexp<T: RealNumber>(x: T, exp: T) -> (T, T) {
|
||||
// // TODO: is there a better approach?
|
||||
// let e = x.log2().ceil();
|
||||
// (x * (-e).exp2(), e)
|
||||
@ -297,7 +297,7 @@ pub fn int_bits_to_float_vec<const D: usize>(v: &TVec<i32, D>) -> TVec<f32, D> {
|
||||
//}
|
||||
|
||||
///// Returns the (significant, exponent) of this float number.
|
||||
//pub fn ldexp<T: RealField>(x: T, exp: T) -> T {
|
||||
//pub fn ldexp<T: RealNumber>(x: T, exp: T) -> T {
|
||||
// // TODO: is there a better approach?
|
||||
// x * (exp).exp2()
|
||||
//}
|
||||
@ -477,7 +477,7 @@ pub fn modf<T: Number>(x: T, i: T) -> T {
|
||||
/// * [`floor`](fn.floor.html)
|
||||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`trunc`](fn.trunc.html)
|
||||
pub fn round<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn round<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|x| x.round())
|
||||
}
|
||||
|
||||
@ -508,8 +508,8 @@ pub fn sign<T: Number, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
/// This is useful in cases where you would want a threshold function with a smooth transition.
|
||||
/// This is equivalent to: `let result = clamp((x - edge0) / (edge1 - edge0), 0, 1); return t * t * (3 - 2 * t);` Results are undefined if `edge0 >= edge1`.
|
||||
pub fn smoothstep<T: Number>(edge0: T, edge1: T, x: T) -> T {
|
||||
let _3: T = FromPrimitive::from_f64(3.0).unwrap();
|
||||
let _2: T = FromPrimitive::from_f64(2.0).unwrap();
|
||||
let _3 = T::from_subset(&3.0f64);
|
||||
let _2 = T::from_subset(&2.0f64);
|
||||
let t = na::clamp((x - edge0) / (edge1 - edge0), T::zero(), T::one());
|
||||
t * t * (_3 - t * _2)
|
||||
}
|
||||
@ -549,7 +549,7 @@ pub fn step_vec<T: Number, const D: usize>(edge: &TVec<T, D>, x: &TVec<T, D>) ->
|
||||
/// * [`floor`](fn.floor.html)
|
||||
/// * [`fract`](fn.fract.html)
|
||||
/// * [`round`](fn.round.html)
|
||||
pub fn trunc<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn trunc<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|x| x.trunc())
|
||||
}
|
||||
|
||||
|
@ -2,7 +2,8 @@ use crate::aliases::{
|
||||
Qua, TMat, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3, TVec1,
|
||||
TVec2, TVec3, TVec4,
|
||||
};
|
||||
use na::{RealField, Scalar};
|
||||
use crate::RealNumber;
|
||||
use na::Scalar;
|
||||
|
||||
/// Creates a new 1D vector.
|
||||
///
|
||||
@ -178,6 +179,6 @@ pub fn mat4<T: Scalar>(m11: T, m12: T, m13: T, m14: T,
|
||||
}
|
||||
|
||||
/// Creates a new quaternion.
|
||||
pub fn quat<T: RealField>(x: T, y: T, z: T, w: T) -> Qua<T> {
|
||||
pub fn quat<T: RealNumber>(x: T, y: T, z: T, w: T) -> Qua<T> {
|
||||
Qua::new(w, x, y, z)
|
||||
}
|
||||
|
@ -1,12 +1,12 @@
|
||||
use crate::aliases::TVec;
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Component-wise exponential.
|
||||
///
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`exp2`](fn.exp2.html)
|
||||
pub fn exp<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn exp<T: RealNumber, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
v.map(|x| x.exp())
|
||||
}
|
||||
|
||||
@ -15,7 +15,7 @@ pub fn exp<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`exp`](fn.exp.html)
|
||||
pub fn exp2<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn exp2<T: RealNumber, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
v.map(|x| x.exp2())
|
||||
}
|
||||
|
||||
@ -24,7 +24,7 @@ pub fn exp2<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`sqrt`](fn.sqrt.html)
|
||||
pub fn inversesqrt<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn inversesqrt<T: RealNumber, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
v.map(|x| T::one() / x.sqrt())
|
||||
}
|
||||
|
||||
@ -33,7 +33,7 @@ pub fn inversesqrt<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`log2`](fn.log2.html)
|
||||
pub fn log<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn log<T: RealNumber, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
v.map(|x| x.ln())
|
||||
}
|
||||
|
||||
@ -42,12 +42,12 @@ pub fn log<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`log`](fn.log.html)
|
||||
pub fn log2<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn log2<T: RealNumber, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
v.map(|x| x.log2())
|
||||
}
|
||||
|
||||
/// Component-wise power.
|
||||
pub fn pow<T: RealField, const D: usize>(base: &TVec<T, D>, exponent: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn pow<T: RealNumber, const D: usize>(base: &TVec<T, D>, exponent: &TVec<T, D>) -> TVec<T, D> {
|
||||
base.zip_map(exponent, |b, e| b.powf(e))
|
||||
}
|
||||
|
||||
@ -59,6 +59,6 @@ pub fn pow<T: RealField, const D: usize>(base: &TVec<T, D>, exponent: &TVec<T, D
|
||||
/// * [`exp2`](fn.exp2.html)
|
||||
/// * [`inversesqrt`](fn.inversesqrt.html)
|
||||
/// * [`pow`](fn.pow.html)
|
||||
pub fn sqrt<T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn sqrt<T: RealNumber, const D: usize>(v: &TVec<T, D>) -> TVec<T, D> {
|
||||
v.map(|x| x.sqrt())
|
||||
}
|
||||
|
@ -1,51 +1,51 @@
|
||||
use crate::aliases::TMat4;
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
//pub fn frustum<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
||||
//pub fn frustum_lh<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_lh<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn frustum_lr_no<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_lr_no<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn frustum_lh_zo<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_lh_zo<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn frustum_no<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_no<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn frustum_rh<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_rh<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn frustum_rh_no<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_rh_no<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn frustum_rh_zo<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_rh_zo<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn frustum_zo<T: RealField>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
//pub fn frustum_zo<T: RealNumber>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
||||
//pub fn infinite_perspective<T: RealField>(fovy: T, aspect: T, near: T) -> TMat4<T> {
|
||||
//pub fn infinite_perspective<T: RealNumber>(fovy: T, aspect: T, near: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn infinite_perspective_lh<T: RealField>(fovy: T, aspect: T, near: T) -> TMat4<T> {
|
||||
//pub fn infinite_perspective_lh<T: RealNumber>(fovy: T, aspect: T, near: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn infinite_ortho<T: RealField>(left: T, right: T, bottom: T, top: T) -> TMat4<T> {
|
||||
//pub fn infinite_ortho<T: RealNumber>(left: T, right: T, bottom: T, top: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
||||
@ -60,7 +60,7 @@ use na::RealField;
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> TMat4<T> {
|
||||
pub fn ortho<T: RealNumber>(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> TMat4<T> {
|
||||
ortho_rh_no(left, right, bottom, top, znear, zfar)
|
||||
}
|
||||
|
||||
@ -75,7 +75,14 @@ pub fn ortho<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zfar:
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_lh<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> TMat4<T> {
|
||||
pub fn ortho_lh<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
top: T,
|
||||
znear: T,
|
||||
zfar: T,
|
||||
) -> TMat4<T> {
|
||||
ortho_lh_no(left, right, bottom, top, znear, zfar)
|
||||
}
|
||||
|
||||
@ -90,7 +97,7 @@ pub fn ortho_lh<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zf
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_lh_no<T: RealField>(
|
||||
pub fn ortho_lh_no<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
@ -122,7 +129,7 @@ pub fn ortho_lh_no<T: RealField>(
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_lh_zo<T: RealField>(
|
||||
pub fn ortho_lh_zo<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
@ -155,7 +162,14 @@ pub fn ortho_lh_zo<T: RealField>(
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_no<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> TMat4<T> {
|
||||
pub fn ortho_no<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
top: T,
|
||||
znear: T,
|
||||
zfar: T,
|
||||
) -> TMat4<T> {
|
||||
ortho_rh_no(left, right, bottom, top, znear, zfar)
|
||||
}
|
||||
|
||||
@ -170,7 +184,14 @@ pub fn ortho_no<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zf
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_rh<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> TMat4<T> {
|
||||
pub fn ortho_rh<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
top: T,
|
||||
znear: T,
|
||||
zfar: T,
|
||||
) -> TMat4<T> {
|
||||
ortho_rh_no(left, right, bottom, top, znear, zfar)
|
||||
}
|
||||
|
||||
@ -185,7 +206,7 @@ pub fn ortho_rh<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zf
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_rh_no<T: RealField>(
|
||||
pub fn ortho_rh_no<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
@ -217,7 +238,7 @@ pub fn ortho_rh_no<T: RealField>(
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_rh_zo<T: RealField>(
|
||||
pub fn ortho_rh_zo<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
@ -250,7 +271,14 @@ pub fn ortho_rh_zo<T: RealField>(
|
||||
/// * `znear` - Distance from the viewer to the near clipping plane
|
||||
/// * `zfar` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn ortho_zo<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> TMat4<T> {
|
||||
pub fn ortho_zo<T: RealNumber>(
|
||||
left: T,
|
||||
right: T,
|
||||
bottom: T,
|
||||
top: T,
|
||||
znear: T,
|
||||
zfar: T,
|
||||
) -> TMat4<T> {
|
||||
ortho_rh_zo(left, right, bottom, top, znear, zfar)
|
||||
}
|
||||
|
||||
@ -264,7 +292,7 @@ pub fn ortho_zo<T: RealField>(left: T, right: T, bottom: T, top: T, znear: T, zf
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov<T: RealField>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_fov<T: RealNumber>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_fov_rh_no(fov, width, height, near, far)
|
||||
}
|
||||
|
||||
@ -278,7 +306,7 @@ pub fn perspective_fov<T: RealField>(fov: T, width: T, height: T, near: T, far:
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_lh<T: RealField>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_fov_lh<T: RealNumber>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_fov_lh_no(fov, width, height, near, far)
|
||||
}
|
||||
|
||||
@ -292,7 +320,7 @@ pub fn perspective_fov_lh<T: RealField>(fov: T, width: T, height: T, near: T, fa
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_lh_no<T: RealField>(
|
||||
pub fn perspective_fov_lh_no<T: RealNumber>(
|
||||
fov: T,
|
||||
width: T,
|
||||
height: T,
|
||||
@ -328,7 +356,7 @@ pub fn perspective_fov_lh_no<T: RealField>(
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_lh_zo<T: RealField>(
|
||||
pub fn perspective_fov_lh_zo<T: RealNumber>(
|
||||
fov: T,
|
||||
width: T,
|
||||
height: T,
|
||||
@ -364,7 +392,7 @@ pub fn perspective_fov_lh_zo<T: RealField>(
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_no<T: RealField>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_fov_no<T: RealNumber>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_fov_rh_no(fov, width, height, near, far)
|
||||
}
|
||||
|
||||
@ -378,7 +406,7 @@ pub fn perspective_fov_no<T: RealField>(fov: T, width: T, height: T, near: T, fa
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_rh<T: RealField>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_fov_rh<T: RealNumber>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_fov_rh_no(fov, width, height, near, far)
|
||||
}
|
||||
|
||||
@ -392,7 +420,7 @@ pub fn perspective_fov_rh<T: RealField>(fov: T, width: T, height: T, near: T, fa
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_rh_no<T: RealField>(
|
||||
pub fn perspective_fov_rh_no<T: RealNumber>(
|
||||
fov: T,
|
||||
width: T,
|
||||
height: T,
|
||||
@ -428,7 +456,7 @@ pub fn perspective_fov_rh_no<T: RealField>(
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_rh_zo<T: RealField>(
|
||||
pub fn perspective_fov_rh_zo<T: RealNumber>(
|
||||
fov: T,
|
||||
width: T,
|
||||
height: T,
|
||||
@ -464,7 +492,7 @@ pub fn perspective_fov_rh_zo<T: RealField>(
|
||||
/// * `near` - Distance from the viewer to the near clipping plane
|
||||
/// * `far` - Distance from the viewer to the far clipping plane
|
||||
///
|
||||
pub fn perspective_fov_zo<T: RealField>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_fov_zo<T: RealNumber>(fov: T, width: T, height: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_fov_rh_zo(fov, width, height, near, far)
|
||||
}
|
||||
|
||||
@ -479,7 +507,7 @@ pub fn perspective_fov_zo<T: RealField>(fov: T, width: T, height: T, near: T, fa
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
// TODO: Breaking change - revert back to proper glm conventions?
|
||||
//
|
||||
// Prior to changes to support configuring the behaviour of this function it was simply
|
||||
@ -508,7 +536,7 @@ pub fn perspective<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_lh<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_lh<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_lh_no(aspect, fovy, near, far)
|
||||
}
|
||||
|
||||
@ -523,7 +551,7 @@ pub fn perspective_lh<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_lh_no<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_lh_no<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
assert!(
|
||||
!relative_eq!(far - near, T::zero()),
|
||||
"The near-plane and far-plane must not be superimposed."
|
||||
@ -559,7 +587,7 @@ pub fn perspective_lh_no<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> T
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_lh_zo<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_lh_zo<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
assert!(
|
||||
!relative_eq!(far - near, T::zero()),
|
||||
"The near-plane and far-plane must not be superimposed."
|
||||
@ -595,7 +623,7 @@ pub fn perspective_lh_zo<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> T
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_no<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_no<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_rh_no(aspect, fovy, near, far)
|
||||
}
|
||||
|
||||
@ -610,7 +638,7 @@ pub fn perspective_no<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_rh<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_rh<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_rh_no(aspect, fovy, near, far)
|
||||
}
|
||||
|
||||
@ -625,7 +653,7 @@ pub fn perspective_rh<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_rh_no<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_rh_no<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
assert!(
|
||||
!relative_eq!(far - near, T::zero()),
|
||||
"The near-plane and far-plane must not be superimposed."
|
||||
@ -662,7 +690,7 @@ pub fn perspective_rh_no<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> T
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_rh_zo<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_rh_zo<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
assert!(
|
||||
!relative_eq!(far - near, T::zero()),
|
||||
"The near-plane and far-plane must not be superimposed."
|
||||
@ -699,7 +727,7 @@ pub fn perspective_rh_zo<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> T
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn perspective_zo<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn perspective_zo<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
perspective_rh_zo(aspect, fovy, near, far)
|
||||
}
|
||||
|
||||
@ -713,7 +741,7 @@ pub fn perspective_zo<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat
|
||||
///
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
pub fn infinite_perspective_rh_no<T: RealField>(aspect: T, fovy: T, near: T) -> TMat4<T> {
|
||||
pub fn infinite_perspective_rh_no<T: RealNumber>(aspect: T, fovy: T, near: T) -> TMat4<T> {
|
||||
let f = T::one() / (fovy * na::convert(0.5)).tan();
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
@ -738,7 +766,7 @@ pub fn infinite_perspective_rh_no<T: RealField>(aspect: T, fovy: T, near: T) ->
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
///
|
||||
// https://discourse.nphysics.org/t/reversed-z-and-infinite-zfar-in-projections/341/2
|
||||
pub fn infinite_perspective_rh_zo<T: RealField>(aspect: T, fovy: T, near: T) -> TMat4<T> {
|
||||
pub fn infinite_perspective_rh_zo<T: RealNumber>(aspect: T, fovy: T, near: T) -> TMat4<T> {
|
||||
let f = T::one() / (fovy * na::convert(0.5)).tan();
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
@ -763,7 +791,7 @@ pub fn infinite_perspective_rh_zo<T: RealField>(aspect: T, fovy: T, near: T) ->
|
||||
/// # Important note
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
// NOTE: The variants `_no` of reversed perspective are not useful.
|
||||
pub fn reversed_perspective_rh_zo<T: RealField>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
pub fn reversed_perspective_rh_zo<T: RealNumber>(aspect: T, fovy: T, near: T, far: T) -> TMat4<T> {
|
||||
let one = T::one();
|
||||
let two = crate::convert(2.0);
|
||||
let mut mat = TMat4::zeros();
|
||||
@ -791,7 +819,7 @@ pub fn reversed_perspective_rh_zo<T: RealField>(aspect: T, fovy: T, near: T, far
|
||||
/// The `aspect` and `fovy` argument are interchanged compared to the original GLM API.
|
||||
// Credit: https://discourse.nphysics.org/t/reversed-z-and-infinite-zfar-in-projections/341/2
|
||||
// NOTE: The variants `_no` of reversed perspective are not useful.
|
||||
pub fn reversed_infinite_perspective_rh_zo<T: RealField>(aspect: T, fovy: T, near: T) -> TMat4<T> {
|
||||
pub fn reversed_infinite_perspective_rh_zo<T: RealNumber>(aspect: T, fovy: T, near: T) -> TMat4<T> {
|
||||
let f = T::one() / (fovy * na::convert(0.5)).tan();
|
||||
let mut mat = TMat4::zeros();
|
||||
|
||||
@ -803,10 +831,10 @@ pub fn reversed_infinite_perspective_rh_zo<T: RealField>(aspect: T, fovy: T, nea
|
||||
mat
|
||||
}
|
||||
|
||||
//pub fn tweaked_infinite_perspective<T: RealField>(fovy: T, aspect: T, near: T) -> TMat4<T> {
|
||||
//pub fn tweaked_infinite_perspective<T: RealNumber>(fovy: T, aspect: T, near: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn tweaked_infinite_perspective_ep<T: RealField>(fovy: T, aspect: T, near: T, ep: T) -> TMat4<T> {
|
||||
//pub fn tweaked_infinite_perspective_ep<T: RealNumber>(fovy: T, aspect: T, near: T, ep: T) -> TMat4<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
@ -1,6 +1,7 @@
|
||||
use na::{self, RealField};
|
||||
use na;
|
||||
|
||||
use crate::aliases::{TMat4, TVec2, TVec3, TVec4};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Define a picking region.
|
||||
///
|
||||
@ -9,7 +10,7 @@ use crate::aliases::{TMat4, TVec2, TVec3, TVec4};
|
||||
/// * `center` - Specify the center of a picking region in window coordinates.
|
||||
/// * `delta` - Specify the width and height, respectively, of the picking region in window coordinates.
|
||||
/// * `viewport` - Rendering viewport.
|
||||
pub fn pick_matrix<T: RealField>(
|
||||
pub fn pick_matrix<T: RealNumber>(
|
||||
center: &TVec2<T>,
|
||||
delta: &TVec2<T>,
|
||||
viewport: &TVec4<T>,
|
||||
@ -45,7 +46,7 @@ pub fn pick_matrix<T: RealField>(
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn project<T: RealField>(
|
||||
pub fn project<T: RealNumber>(
|
||||
obj: &TVec3<T>,
|
||||
model: &TMat4<T>,
|
||||
proj: &TMat4<T>,
|
||||
@ -72,7 +73,7 @@ pub fn project<T: RealField>(
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn project_no<T: RealField>(
|
||||
pub fn project_no<T: RealNumber>(
|
||||
obj: &TVec3<T>,
|
||||
model: &TMat4<T>,
|
||||
proj: &TMat4<T>,
|
||||
@ -100,7 +101,7 @@ pub fn project_no<T: RealField>(
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn project_zo<T: RealField>(
|
||||
pub fn project_zo<T: RealNumber>(
|
||||
obj: &TVec3<T>,
|
||||
model: &TMat4<T>,
|
||||
proj: &TMat4<T>,
|
||||
@ -133,7 +134,7 @@ pub fn project_zo<T: RealField>(
|
||||
/// * [`project_zo`](fn.project_zo.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn unproject<T: RealField>(
|
||||
pub fn unproject<T: RealNumber>(
|
||||
win: &TVec3<T>,
|
||||
model: &TMat4<T>,
|
||||
proj: &TMat4<T>,
|
||||
@ -160,7 +161,7 @@ pub fn unproject<T: RealField>(
|
||||
/// * [`project_zo`](fn.project_zo.html)
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_zo`](fn.unproject_zo.html)
|
||||
pub fn unproject_no<T: RealField>(
|
||||
pub fn unproject_no<T: RealNumber>(
|
||||
win: &TVec3<T>,
|
||||
model: &TMat4<T>,
|
||||
proj: &TMat4<T>,
|
||||
@ -197,7 +198,7 @@ pub fn unproject_no<T: RealField>(
|
||||
/// * [`project_zo`](fn.project_zo.html)
|
||||
/// * [`unproject`](fn.unproject.html)
|
||||
/// * [`unproject_no`](fn.unproject_no.html)
|
||||
pub fn unproject_zo<T: RealField>(
|
||||
pub fn unproject_zo<T: RealNumber>(
|
||||
win: &TVec3<T>,
|
||||
model: &TMat4<T>,
|
||||
proj: &TMat4<T>,
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{Point3, RealField, Rotation3, Unit};
|
||||
use na::{Point3, Rotation3, Unit};
|
||||
|
||||
use crate::aliases::{TMat, TMat4, TVec, TVec3};
|
||||
use crate::traits::Number;
|
||||
use crate::traits::{Number, RealNumber};
|
||||
|
||||
/// The identity matrix.
|
||||
pub fn identity<T: Number, const D: usize>() -> TMat<T, D, D> {
|
||||
@ -20,7 +20,7 @@ pub fn identity<T: Number, const D: usize>() -> TMat<T, D, D> {
|
||||
///
|
||||
/// * [`look_at_lh`](fn.look_at_lh.html)
|
||||
/// * [`look_at_rh`](fn.look_at_rh.html)
|
||||
pub fn look_at<T: RealField>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn look_at<T: RealNumber>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
look_at_rh(eye, center, up)
|
||||
}
|
||||
|
||||
@ -36,7 +36,7 @@ pub fn look_at<T: RealField>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>) -
|
||||
///
|
||||
/// * [`look_at`](fn.look_at.html)
|
||||
/// * [`look_at_rh`](fn.look_at_rh.html)
|
||||
pub fn look_at_lh<T: RealField>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn look_at_lh<T: RealNumber>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
TMat::look_at_lh(&Point3::from(*eye), &Point3::from(*center), up)
|
||||
}
|
||||
|
||||
@ -52,7 +52,7 @@ pub fn look_at_lh<T: RealField>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>
|
||||
///
|
||||
/// * [`look_at`](fn.look_at.html)
|
||||
/// * [`look_at_lh`](fn.look_at_lh.html)
|
||||
pub fn look_at_rh<T: RealField>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn look_at_rh<T: RealNumber>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
TMat::look_at_rh(&Point3::from(*eye), &Point3::from(*center), up)
|
||||
}
|
||||
|
||||
@ -71,7 +71,7 @@ pub fn look_at_rh<T: RealField>(eye: &TVec3<T>, center: &TVec3<T>, up: &TVec3<T>
|
||||
/// * [`rotate_z`](fn.rotate_z.html)
|
||||
/// * [`scale`](fn.scale.html)
|
||||
/// * [`translate`](fn.translate.html)
|
||||
pub fn rotate<T: RealField>(m: &TMat4<T>, angle: T, axis: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn rotate<T: RealNumber>(m: &TMat4<T>, angle: T, axis: &TVec3<T>) -> TMat4<T> {
|
||||
m * Rotation3::from_axis_angle(&Unit::new_normalize(*axis), angle).to_homogeneous()
|
||||
}
|
||||
|
||||
@ -89,7 +89,7 @@ pub fn rotate<T: RealField>(m: &TMat4<T>, angle: T, axis: &TVec3<T>) -> TMat4<T>
|
||||
/// * [`rotate_z`](fn.rotate_z.html)
|
||||
/// * [`scale`](fn.scale.html)
|
||||
/// * [`translate`](fn.translate.html)
|
||||
pub fn rotate_x<T: RealField>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
pub fn rotate_x<T: RealNumber>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
rotate(m, angle, &TVec::x())
|
||||
}
|
||||
|
||||
@ -107,7 +107,7 @@ pub fn rotate_x<T: RealField>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
/// * [`rotate_z`](fn.rotate_z.html)
|
||||
/// * [`scale`](fn.scale.html)
|
||||
/// * [`translate`](fn.translate.html)
|
||||
pub fn rotate_y<T: RealField>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
pub fn rotate_y<T: RealNumber>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
rotate(m, angle, &TVec::y())
|
||||
}
|
||||
|
||||
@ -125,7 +125,7 @@ pub fn rotate_y<T: RealField>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
/// * [`rotate_y`](fn.rotate_y.html)
|
||||
/// * [`scale`](fn.scale.html)
|
||||
/// * [`translate`](fn.translate.html)
|
||||
pub fn rotate_z<T: RealField>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
pub fn rotate_z<T: RealNumber>(m: &TMat4<T>, angle: T) -> TMat4<T> {
|
||||
rotate(m, angle, &TVec::z())
|
||||
}
|
||||
|
||||
|
@ -1,36 +1,37 @@
|
||||
use na::{self, RealField, Unit};
|
||||
use na::{self, Unit};
|
||||
|
||||
use crate::aliases::Qua;
|
||||
use crate::RealNumber;
|
||||
|
||||
/// The conjugate of `q`.
|
||||
pub fn quat_conjugate<T: RealField>(q: &Qua<T>) -> Qua<T> {
|
||||
pub fn quat_conjugate<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
|
||||
q.conjugate()
|
||||
}
|
||||
|
||||
/// The inverse of `q`.
|
||||
pub fn quat_inverse<T: RealField>(q: &Qua<T>) -> Qua<T> {
|
||||
pub fn quat_inverse<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
|
||||
q.try_inverse().unwrap_or_else(na::zero)
|
||||
}
|
||||
|
||||
//pub fn quat_isinf<T: RealField>(x: &Qua<T>) -> TVec<bool, U4> {
|
||||
//pub fn quat_isinf<T: RealNumber>(x: &Qua<T>) -> TVec<bool, U4> {
|
||||
// x.coords.map(|e| e.is_inf())
|
||||
//}
|
||||
|
||||
//pub fn quat_isnan<T: RealField>(x: &Qua<T>) -> TVec<bool, U4> {
|
||||
//pub fn quat_isnan<T: RealNumber>(x: &Qua<T>) -> TVec<bool, U4> {
|
||||
// x.coords.map(|e| e.is_nan())
|
||||
//}
|
||||
|
||||
/// Interpolate linearly between `x` and `y`.
|
||||
pub fn quat_lerp<T: RealField>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
pub fn quat_lerp<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
x.lerp(y, a)
|
||||
}
|
||||
|
||||
//pub fn quat_mix<T: RealField>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
//pub fn quat_mix<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
// x * (T::one() - a) + y * a
|
||||
//}
|
||||
|
||||
/// Interpolate spherically between `x` and `y`.
|
||||
pub fn quat_slerp<T: RealField>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
pub fn quat_slerp<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
Unit::new_normalize(*x)
|
||||
.slerp(&Unit::new_normalize(*y), a)
|
||||
.into_inner()
|
||||
|
@ -1,28 +1,28 @@
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
use crate::aliases::Qua;
|
||||
|
||||
/// Multiplies two quaternions.
|
||||
pub fn quat_cross<T: RealField>(q1: &Qua<T>, q2: &Qua<T>) -> Qua<T> {
|
||||
pub fn quat_cross<T: RealNumber>(q1: &Qua<T>, q2: &Qua<T>) -> Qua<T> {
|
||||
q1 * q2
|
||||
}
|
||||
|
||||
/// The scalar product of two quaternions.
|
||||
pub fn quat_dot<T: RealField>(x: &Qua<T>, y: &Qua<T>) -> T {
|
||||
pub fn quat_dot<T: RealNumber>(x: &Qua<T>, y: &Qua<T>) -> T {
|
||||
x.dot(y)
|
||||
}
|
||||
|
||||
/// The magnitude of the quaternion `q`.
|
||||
pub fn quat_length<T: RealField>(q: &Qua<T>) -> T {
|
||||
pub fn quat_length<T: RealNumber>(q: &Qua<T>) -> T {
|
||||
q.norm()
|
||||
}
|
||||
|
||||
/// The magnitude of the quaternion `q`.
|
||||
pub fn quat_magnitude<T: RealField>(q: &Qua<T>) -> T {
|
||||
pub fn quat_magnitude<T: RealNumber>(q: &Qua<T>) -> T {
|
||||
q.norm()
|
||||
}
|
||||
|
||||
/// Normalizes the quaternion `q`.
|
||||
pub fn quat_normalize<T: RealField>(q: &Qua<T>) -> Qua<T> {
|
||||
pub fn quat_normalize<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
|
||||
q.normalize()
|
||||
}
|
||||
|
@ -1,23 +1,22 @@
|
||||
use na::RealField;
|
||||
|
||||
use crate::aliases::{Qua, TVec};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Component-wise equality comparison between two quaternions.
|
||||
pub fn quat_equal<T: RealField>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
pub fn quat_equal<T: RealNumber>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
crate::equal(&x.coords, &y.coords)
|
||||
}
|
||||
|
||||
/// Component-wise approximate equality comparison between two quaternions.
|
||||
pub fn quat_equal_eps<T: RealField>(x: &Qua<T>, y: &Qua<T>, epsilon: T) -> TVec<bool, 4> {
|
||||
pub fn quat_equal_eps<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, epsilon: T) -> TVec<bool, 4> {
|
||||
crate::equal_eps(&x.coords, &y.coords, epsilon)
|
||||
}
|
||||
|
||||
/// Component-wise non-equality comparison between two quaternions.
|
||||
pub fn quat_not_equal<T: RealField>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
pub fn quat_not_equal<T: RealNumber>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
crate::not_equal(&x.coords, &y.coords)
|
||||
}
|
||||
|
||||
/// Component-wise approximate non-equality comparison between two quaternions.
|
||||
pub fn quat_not_equal_eps<T: RealField>(x: &Qua<T>, y: &Qua<T>, epsilon: T) -> TVec<bool, 4> {
|
||||
pub fn quat_not_equal_eps<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, epsilon: T) -> TVec<bool, 4> {
|
||||
crate::not_equal_eps(&x.coords, &y.coords, epsilon)
|
||||
}
|
||||
|
@ -1,27 +1,28 @@
|
||||
use na::{RealField, Unit, UnitQuaternion};
|
||||
use na::{Unit, UnitQuaternion};
|
||||
|
||||
use crate::aliases::{Qua, TVec3};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Computes the quaternion exponential.
|
||||
pub fn quat_exp<T: RealField>(q: &Qua<T>) -> Qua<T> {
|
||||
pub fn quat_exp<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
|
||||
q.exp()
|
||||
}
|
||||
|
||||
/// Computes the quaternion logarithm.
|
||||
pub fn quat_log<T: RealField>(q: &Qua<T>) -> Qua<T> {
|
||||
pub fn quat_log<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
|
||||
q.ln()
|
||||
}
|
||||
|
||||
/// Raises the quaternion `q` to the power `y`.
|
||||
pub fn quat_pow<T: RealField>(q: &Qua<T>, y: T) -> Qua<T> {
|
||||
pub fn quat_pow<T: RealNumber>(q: &Qua<T>, y: T) -> Qua<T> {
|
||||
q.powf(y)
|
||||
}
|
||||
|
||||
/// Builds a quaternion from an axis and an angle, and right-multiply it to the quaternion `q`.
|
||||
pub fn quat_rotate<T: RealField>(q: &Qua<T>, angle: T, axis: &TVec3<T>) -> Qua<T> {
|
||||
pub fn quat_rotate<T: RealNumber>(q: &Qua<T>, angle: T, axis: &TVec3<T>) -> Qua<T> {
|
||||
q * UnitQuaternion::from_axis_angle(&Unit::new_normalize(*axis), angle).into_inner()
|
||||
}
|
||||
|
||||
//pub fn quat_sqrt<T: RealField>(q: &Qua<T>) -> Qua<T> {
|
||||
//pub fn quat_sqrt<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
@ -1,19 +1,20 @@
|
||||
use na::{RealField, Unit, UnitQuaternion};
|
||||
use na::{Unit, UnitQuaternion};
|
||||
|
||||
use crate::aliases::{Qua, TVec3};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// The rotation angle of this quaternion assumed to be normalized.
|
||||
pub fn quat_angle<T: RealField>(x: &Qua<T>) -> T {
|
||||
pub fn quat_angle<T: RealNumber>(x: &Qua<T>) -> T {
|
||||
UnitQuaternion::from_quaternion(*x).angle()
|
||||
}
|
||||
|
||||
/// Creates a quaternion from an axis and an angle.
|
||||
pub fn quat_angle_axis<T: RealField>(angle: T, axis: &TVec3<T>) -> Qua<T> {
|
||||
pub fn quat_angle_axis<T: RealNumber>(angle: T, axis: &TVec3<T>) -> Qua<T> {
|
||||
UnitQuaternion::from_axis_angle(&Unit::new_normalize(*axis), angle).into_inner()
|
||||
}
|
||||
|
||||
/// The rotation axis of a quaternion assumed to be normalized.
|
||||
pub fn quat_axis<T: RealField>(x: &Qua<T>) -> TVec3<T> {
|
||||
pub fn quat_axis<T: RealNumber>(x: &Qua<T>) -> TVec3<T> {
|
||||
if let Some(a) = UnitQuaternion::from_quaternion(*x).axis() {
|
||||
a.into_inner()
|
||||
} else {
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::RealNumber;
|
||||
use approx::AbsDiffEq;
|
||||
use na::RealField;
|
||||
|
||||
/// Default epsilon value used for approximate comparison.
|
||||
pub fn epsilon<T: AbsDiffEq<Epsilon = T>>() -> T {
|
||||
@ -22,6 +22,6 @@ pub fn epsilon<T: AbsDiffEq<Epsilon = T>>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn pi<T: RealField>() -> T {
|
||||
pub fn pi<T: RealNumber>() -> T {
|
||||
T::pi()
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
use crate::aliases::{TVec, TVec3};
|
||||
use crate::traits::Number;
|
||||
@ -13,7 +13,7 @@ pub fn cross<T: Number>(x: &TVec3<T>, y: &TVec3<T>) -> TVec3<T> {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`distance2`](fn.distance2.html)
|
||||
pub fn distance<T: RealField, const D: usize>(p0: &TVec<T, D>, p1: &TVec<T, D>) -> T {
|
||||
pub fn distance<T: RealNumber, const D: usize>(p0: &TVec<T, D>, p1: &TVec<T, D>) -> T {
|
||||
(p1 - p0).norm()
|
||||
}
|
||||
|
||||
@ -44,7 +44,7 @@ pub fn faceforward<T: Number, const D: usize>(
|
||||
/// * [`length2`](fn.length2.html)
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
pub fn length<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
x.norm()
|
||||
}
|
||||
|
||||
@ -57,12 +57,12 @@ pub fn length<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
/// * [`length`](fn.length.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
/// * [`nalgebra::norm`](../nalgebra/fn.norm.html)
|
||||
pub fn magnitude<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
pub fn magnitude<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
x.norm()
|
||||
}
|
||||
|
||||
/// Normalizes a vector.
|
||||
pub fn normalize<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn normalize<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.normalize()
|
||||
}
|
||||
|
||||
@ -73,7 +73,7 @@ pub fn reflect_vec<T: Number, const D: usize>(i: &TVec<T, D>, n: &TVec<T, D>) ->
|
||||
}
|
||||
|
||||
/// For the incident vector `i` and surface normal `n`, and the ratio of indices of refraction `eta`, return the refraction vector.
|
||||
pub fn refract_vec<T: RealField, const D: usize>(
|
||||
pub fn refract_vec<T: RealNumber, const D: usize>(
|
||||
i: &TVec<T, D>,
|
||||
n: &TVec<T, D>,
|
||||
eta: T,
|
||||
|
@ -1,14 +1,15 @@
|
||||
use na::{self, RealField};
|
||||
use crate::RealNumber;
|
||||
use na;
|
||||
|
||||
/// The Euler constant.
|
||||
///
|
||||
/// This is a shorthand alias for [`euler`](fn.euler.html).
|
||||
pub fn e<T: RealField>() -> T {
|
||||
pub fn e<T: RealNumber>() -> T {
|
||||
T::e()
|
||||
}
|
||||
|
||||
/// The Euler constant.
|
||||
pub fn euler<T: RealField>() -> T {
|
||||
pub fn euler<T: RealNumber>() -> T {
|
||||
T::e()
|
||||
}
|
||||
|
||||
@ -28,12 +29,12 @@ pub fn euler<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn four_over_pi<T: RealField>() -> T {
|
||||
pub fn four_over_pi<T: RealNumber>() -> T {
|
||||
na::convert::<_, T>(4.0) / T::pi()
|
||||
}
|
||||
|
||||
/// Returns the golden ratio.
|
||||
pub fn golden_ratio<T: RealField>() -> T {
|
||||
pub fn golden_ratio<T: RealNumber>() -> T {
|
||||
(T::one() + root_five()) / na::convert(2.0)
|
||||
}
|
||||
|
||||
@ -53,7 +54,7 @@ pub fn golden_ratio<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn half_pi<T: RealField>() -> T {
|
||||
pub fn half_pi<T: RealNumber>() -> T {
|
||||
T::frac_pi_2()
|
||||
}
|
||||
|
||||
@ -63,7 +64,7 @@ pub fn half_pi<T: RealField>() -> T {
|
||||
///
|
||||
/// * [`ln_ten`](fn.ln_ten.html)
|
||||
/// * [`ln_two`](fn.ln_two.html)
|
||||
pub fn ln_ln_two<T: RealField>() -> T {
|
||||
pub fn ln_ln_two<T: RealNumber>() -> T {
|
||||
T::ln_2().ln()
|
||||
}
|
||||
|
||||
@ -73,7 +74,7 @@ pub fn ln_ln_two<T: RealField>() -> T {
|
||||
///
|
||||
/// * [`ln_ln_two`](fn.ln_ln_two.html)
|
||||
/// * [`ln_two`](fn.ln_two.html)
|
||||
pub fn ln_ten<T: RealField>() -> T {
|
||||
pub fn ln_ten<T: RealNumber>() -> T {
|
||||
T::ln_10()
|
||||
}
|
||||
|
||||
@ -83,7 +84,7 @@ pub fn ln_ten<T: RealField>() -> T {
|
||||
///
|
||||
/// * [`ln_ln_two`](fn.ln_ln_two.html)
|
||||
/// * [`ln_ten`](fn.ln_ten.html)
|
||||
pub fn ln_two<T: RealField>() -> T {
|
||||
pub fn ln_two<T: RealNumber>() -> T {
|
||||
T::ln_2()
|
||||
}
|
||||
|
||||
@ -106,12 +107,12 @@ pub use na::one;
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn one_over_pi<T: RealField>() -> T {
|
||||
pub fn one_over_pi<T: RealNumber>() -> T {
|
||||
T::frac_1_pi()
|
||||
}
|
||||
|
||||
/// Returns `1 / sqrt(2)`.
|
||||
pub fn one_over_root_two<T: RealField>() -> T {
|
||||
pub fn one_over_root_two<T: RealNumber>() -> T {
|
||||
T::one() / root_two()
|
||||
}
|
||||
|
||||
@ -131,7 +132,7 @@ pub fn one_over_root_two<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn one_over_two_pi<T: RealField>() -> T {
|
||||
pub fn one_over_two_pi<T: RealNumber>() -> T {
|
||||
T::frac_1_pi() * na::convert(0.5)
|
||||
}
|
||||
|
||||
@ -151,7 +152,7 @@ pub fn one_over_two_pi<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn quarter_pi<T: RealField>() -> T {
|
||||
pub fn quarter_pi<T: RealNumber>() -> T {
|
||||
T::frac_pi_4()
|
||||
}
|
||||
|
||||
@ -161,7 +162,7 @@ pub fn quarter_pi<T: RealField>() -> T {
|
||||
///
|
||||
/// * [`root_three`](fn.root_three.html)
|
||||
/// * [`root_two`](fn.root_two.html)
|
||||
pub fn root_five<T: RealField>() -> T {
|
||||
pub fn root_five<T: RealNumber>() -> T {
|
||||
na::convert::<_, T>(5.0).sqrt()
|
||||
}
|
||||
|
||||
@ -181,12 +182,12 @@ pub fn root_five<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn root_half_pi<T: RealField>() -> T {
|
||||
pub fn root_half_pi<T: RealNumber>() -> T {
|
||||
(T::pi() / na::convert(2.0)).sqrt()
|
||||
}
|
||||
|
||||
/// Returns `sqrt(ln(4))`.
|
||||
pub fn root_ln_four<T: RealField>() -> T {
|
||||
pub fn root_ln_four<T: RealNumber>() -> T {
|
||||
na::convert::<_, T>(4.0).ln().sqrt()
|
||||
}
|
||||
|
||||
@ -206,7 +207,7 @@ pub fn root_ln_four<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn root_pi<T: RealField>() -> T {
|
||||
pub fn root_pi<T: RealNumber>() -> T {
|
||||
T::pi().sqrt()
|
||||
}
|
||||
|
||||
@ -216,7 +217,7 @@ pub fn root_pi<T: RealField>() -> T {
|
||||
///
|
||||
/// * [`root_five`](fn.root_five.html)
|
||||
/// * [`root_two`](fn.root_two.html)
|
||||
pub fn root_three<T: RealField>() -> T {
|
||||
pub fn root_three<T: RealNumber>() -> T {
|
||||
na::convert::<_, T>(3.0).sqrt()
|
||||
}
|
||||
|
||||
@ -226,8 +227,8 @@ pub fn root_three<T: RealField>() -> T {
|
||||
///
|
||||
/// * [`root_five`](fn.root_five.html)
|
||||
/// * [`root_three`](fn.root_three.html)
|
||||
pub fn root_two<T: RealField>() -> T {
|
||||
// TODO: there should be a crate::sqrt_2() on the RealField trait.
|
||||
pub fn root_two<T: RealNumber>() -> T {
|
||||
// TODO: there should be a crate::sqrt_2() on the RealNumber trait.
|
||||
na::convert::<_, T>(2.0).sqrt()
|
||||
}
|
||||
|
||||
@ -247,7 +248,7 @@ pub fn root_two<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn root_two_pi<T: RealField>() -> T {
|
||||
pub fn root_two_pi<T: RealNumber>() -> T {
|
||||
T::two_pi().sqrt()
|
||||
}
|
||||
|
||||
@ -256,7 +257,7 @@ pub fn root_two_pi<T: RealField>() -> T {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`two_thirds`](fn.two_thirds.html)
|
||||
pub fn third<T: RealField>() -> T {
|
||||
pub fn third<T: RealNumber>() -> T {
|
||||
na::convert(1.0 / 3.0)
|
||||
}
|
||||
|
||||
@ -276,7 +277,7 @@ pub fn third<T: RealField>() -> T {
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn three_over_two_pi<T: RealField>() -> T {
|
||||
pub fn three_over_two_pi<T: RealNumber>() -> T {
|
||||
na::convert::<_, T>(3.0) / T::two_pi()
|
||||
}
|
||||
|
||||
@ -295,7 +296,7 @@ pub fn three_over_two_pi<T: RealField>() -> T {
|
||||
/// * [`three_over_two_pi`](fn.three_over_two_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn two_over_pi<T: RealField>() -> T {
|
||||
pub fn two_over_pi<T: RealNumber>() -> T {
|
||||
T::frac_2_pi()
|
||||
}
|
||||
|
||||
@ -315,7 +316,7 @@ pub fn two_over_pi<T: RealField>() -> T {
|
||||
/// * [`three_over_two_pi`](fn.three_over_two_pi.html)
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_pi`](fn.two_pi.html)
|
||||
pub fn two_over_root_pi<T: RealField>() -> T {
|
||||
pub fn two_over_root_pi<T: RealNumber>() -> T {
|
||||
T::frac_2_sqrt_pi()
|
||||
}
|
||||
|
||||
@ -335,7 +336,7 @@ pub fn two_over_root_pi<T: RealField>() -> T {
|
||||
/// * [`three_over_two_pi`](fn.three_over_two_pi.html)
|
||||
/// * [`two_over_pi`](fn.two_over_pi.html)
|
||||
/// * [`two_over_root_pi`](fn.two_over_root_pi.html)
|
||||
pub fn two_pi<T: RealField>() -> T {
|
||||
pub fn two_pi<T: RealNumber>() -> T {
|
||||
T::two_pi()
|
||||
}
|
||||
|
||||
@ -344,7 +345,7 @@ pub fn two_pi<T: RealField>() -> T {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`third`](fn.third.html)
|
||||
pub fn two_thirds<T: RealField>() -> T {
|
||||
pub fn two_thirds<T: RealNumber>() -> T {
|
||||
na::convert(2.0 / 3.0)
|
||||
}
|
||||
|
||||
|
@ -1,15 +1,15 @@
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
use crate::aliases::TMat;
|
||||
|
||||
/// Fast matrix inverse for affine matrix.
|
||||
pub fn affine_inverse<T: RealField, const D: usize>(m: TMat<T, D, D>) -> TMat<T, D, D> {
|
||||
pub fn affine_inverse<T: RealNumber, const D: usize>(m: TMat<T, D, D>) -> TMat<T, D, D> {
|
||||
// TODO: this should be optimized.
|
||||
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
}
|
||||
|
||||
/// Compute the transpose of the inverse of a matrix.
|
||||
pub fn inverse_transpose<T: RealField, const D: usize>(m: TMat<T, D, D>) -> TMat<T, D, D> {
|
||||
pub fn inverse_transpose<T: RealNumber, const D: usize>(m: TMat<T, D, D>) -> TMat<T, D, D> {
|
||||
m.try_inverse()
|
||||
.unwrap_or_else(TMat::<_, D, D>::zeros)
|
||||
.transpose()
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::{DefaultAllocator, RealField, Scalar, U3, U4};
|
||||
use na::{DefaultAllocator, RealNumber, Scalar, U3, U4};
|
||||
|
||||
use crate::aliases::*;
|
||||
|
||||
@ -53,7 +53,7 @@ pub fn packRGBM<T: Scalar>(rgb: &TVec3<T>) -> TVec4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn packSnorm<I: Scalar, T: RealField, const D: usize>(v: TVec<T, D>) -> TVec<I, D>
|
||||
pub fn packSnorm<I: Scalar, T: RealNumber, const D: usize>(v: TVec<T, D>) -> TVec<I, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<T, D> + Alloc<I, D>,
|
||||
{
|
||||
@ -104,7 +104,7 @@ pub fn packUint4x8(v: &U8Vec4) -> i32 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn packUnorm<UI: Scalar, T: RealField, const D: usize>(v: &TVec<T, D>) -> TVec<UI, D>
|
||||
pub fn packUnorm<UI: Scalar, T: RealNumber, const D: usize>(v: &TVec<T, D>) -> TVec<UI, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<T, D> + Alloc<UI, D>,
|
||||
{
|
||||
@ -199,7 +199,7 @@ pub fn unpackRGBM<T: Scalar>(rgbm: &TVec4<T>) -> TVec3<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn unpackSnorm<I: Scalar, T: RealField, const D: usize>(v: &TVec<I, D>) -> TVec<T, D>
|
||||
pub fn unpackSnorm<I: Scalar, T: RealNumber, const D: usize>(v: &TVec<I, D>) -> TVec<T, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<T, D> + Alloc<I, D>,
|
||||
{
|
||||
@ -250,7 +250,7 @@ pub fn unpackUint4x8(p: i32) -> U8Vec4 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn unpackUnorm<UI: Scalar, T: RealField, const D: usize>(v: &TVec<UI, D>) -> TVec<T, D>
|
||||
pub fn unpackUnorm<UI: Scalar, T: RealNumber, const D: usize>(v: &TVec<UI, D>) -> TVec<T, D>
|
||||
where
|
||||
DefaultAllocator: Alloc<T, D> + Alloc<UI, D>,
|
||||
{
|
||||
|
@ -1,36 +1,37 @@
|
||||
use na::{RealField, UnitQuaternion};
|
||||
use na::UnitQuaternion;
|
||||
|
||||
use crate::aliases::{Qua, TMat4, TVec, TVec3};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Euler angles of the quaternion `q` as (pitch, yaw, roll).
|
||||
pub fn quat_euler_angles<T: RealField>(x: &Qua<T>) -> TVec3<T> {
|
||||
pub fn quat_euler_angles<T: RealNumber>(x: &Qua<T>) -> TVec3<T> {
|
||||
let q = UnitQuaternion::new_unchecked(*x);
|
||||
let a = q.euler_angles();
|
||||
TVec3::new(a.2, a.1, a.0)
|
||||
}
|
||||
|
||||
/// Component-wise `>` comparison between two quaternions.
|
||||
pub fn quat_greater_than<T: RealField>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
pub fn quat_greater_than<T: RealNumber>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
crate::greater_than(&x.coords, &y.coords)
|
||||
}
|
||||
|
||||
/// Component-wise `>=` comparison between two quaternions.
|
||||
pub fn quat_greater_than_equal<T: RealField>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
pub fn quat_greater_than_equal<T: RealNumber>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
crate::greater_than_equal(&x.coords, &y.coords)
|
||||
}
|
||||
|
||||
/// Component-wise `<` comparison between two quaternions.
|
||||
pub fn quat_less_than<T: RealField>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
pub fn quat_less_than<T: RealNumber>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
crate::less_than(&x.coords, &y.coords)
|
||||
}
|
||||
|
||||
/// Component-wise `<=` comparison between two quaternions.
|
||||
pub fn quat_less_than_equal<T: RealField>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
pub fn quat_less_than_equal<T: RealNumber>(x: &Qua<T>, y: &Qua<T>) -> TVec<bool, 4> {
|
||||
crate::less_than_equal(&x.coords, &y.coords)
|
||||
}
|
||||
|
||||
/// Convert a quaternion to a rotation matrix in homogeneous coordinates.
|
||||
pub fn quat_cast<T: RealField>(x: &Qua<T>) -> TMat4<T> {
|
||||
pub fn quat_cast<T: RealNumber>(x: &Qua<T>) -> TMat4<T> {
|
||||
crate::quat_to_mat4(x)
|
||||
}
|
||||
|
||||
@ -41,34 +42,34 @@ pub fn quat_cast<T: RealField>(x: &Qua<T>) -> TMat4<T> {
|
||||
/// * `direction` - Direction vector point at where to look
|
||||
/// * `up` - Object up vector
|
||||
///
|
||||
pub fn quat_look_at<T: RealField>(direction: &TVec3<T>, up: &TVec3<T>) -> Qua<T> {
|
||||
pub fn quat_look_at<T: RealNumber>(direction: &TVec3<T>, up: &TVec3<T>) -> Qua<T> {
|
||||
quat_look_at_rh(direction, up)
|
||||
}
|
||||
|
||||
/// Computes a left-handed look-at quaternion (equivalent to a left-handed look-at matrix).
|
||||
pub fn quat_look_at_lh<T: RealField>(direction: &TVec3<T>, up: &TVec3<T>) -> Qua<T> {
|
||||
pub fn quat_look_at_lh<T: RealNumber>(direction: &TVec3<T>, up: &TVec3<T>) -> Qua<T> {
|
||||
UnitQuaternion::look_at_lh(direction, up).into_inner()
|
||||
}
|
||||
|
||||
/// Computes a right-handed look-at quaternion (equivalent to a right-handed look-at matrix).
|
||||
pub fn quat_look_at_rh<T: RealField>(direction: &TVec3<T>, up: &TVec3<T>) -> Qua<T> {
|
||||
pub fn quat_look_at_rh<T: RealNumber>(direction: &TVec3<T>, up: &TVec3<T>) -> Qua<T> {
|
||||
UnitQuaternion::look_at_rh(direction, up).into_inner()
|
||||
}
|
||||
|
||||
/// The "roll" Euler angle of the quaternion `x` assumed to be normalized.
|
||||
pub fn quat_roll<T: RealField>(x: &Qua<T>) -> T {
|
||||
pub fn quat_roll<T: RealNumber>(x: &Qua<T>) -> T {
|
||||
// TODO: optimize this.
|
||||
quat_euler_angles(x).z
|
||||
}
|
||||
|
||||
/// The "yaw" Euler angle of the quaternion `x` assumed to be normalized.
|
||||
pub fn quat_yaw<T: RealField>(x: &Qua<T>) -> T {
|
||||
pub fn quat_yaw<T: RealNumber>(x: &Qua<T>) -> T {
|
||||
// TODO: optimize this.
|
||||
quat_euler_angles(x).y
|
||||
}
|
||||
|
||||
/// The "pitch" Euler angle of the quaternion `x` assumed to be normalized.
|
||||
pub fn quat_pitch<T: RealField>(x: &Qua<T>) -> T {
|
||||
pub fn quat_pitch<T: RealNumber>(x: &Qua<T>) -> T {
|
||||
// TODO: optimize this.
|
||||
quat_euler_angles(x).x
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::{DefaultAllocator, RealField, Scalar, U3};
|
||||
use na::{DefaultAllocator, RealNumber, Scalar, U3};
|
||||
|
||||
use crate::aliases::TVec;
|
||||
use crate::traits::{Alloc, Dimension, Number};
|
||||
|
@ -1,10 +1,10 @@
|
||||
use na::{Quaternion, RealField, Scalar};
|
||||
use na::{Quaternion, Scalar};
|
||||
|
||||
use crate::aliases::{
|
||||
Qua, TMat, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3, TVec1,
|
||||
TVec2, TVec3, TVec4,
|
||||
};
|
||||
use crate::traits::Number;
|
||||
use crate::traits::{Number, RealNumber};
|
||||
|
||||
/// Creates a 2x2 matrix from a slice arranged in column-major order.
|
||||
pub fn make_mat2<T: Scalar>(ptr: &[T]) -> TMat2<T> {
|
||||
@ -120,7 +120,7 @@ pub fn mat4_to_mat2<T: Scalar>(m: &TMat4<T>) -> TMat2<T> {
|
||||
}
|
||||
|
||||
/// Creates a quaternion from a slice arranged as `[x, y, z, w]`.
|
||||
pub fn make_quat<T: RealField>(ptr: &[T]) -> Qua<T> {
|
||||
pub fn make_quat<T: RealNumber>(ptr: &[T]) -> Qua<T> {
|
||||
Quaternion::from(TVec4::from_column_slice(ptr))
|
||||
}
|
||||
|
||||
|
@ -1,163 +1,163 @@
|
||||
use na::{RealField, U3, U4};
|
||||
use na::{RealNumber, U3, U4};
|
||||
|
||||
use crate::aliases::{TMat, TVec};
|
||||
|
||||
pub fn derivedEulerAngleX<T: RealField>(angleX: T, angularVelocityX: T) -> TMat4<T> {
|
||||
pub fn derivedEulerAngleX<T: RealNumber>(angleX: T, angularVelocityX: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn derivedEulerAngleY<T: RealField>(angleY: T, angularVelocityY: T) -> TMat4<T> {
|
||||
pub fn derivedEulerAngleY<T: RealNumber>(angleY: T, angularVelocityY: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn derivedEulerAngleZ<T: RealField>(angleZ: T, angularVelocityZ: T) -> TMat4<T> {
|
||||
pub fn derivedEulerAngleZ<T: RealNumber>(angleZ: T, angularVelocityZ: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleX<T: RealField>(angleX: T) -> TMat4<T> {
|
||||
pub fn eulerAngleX<T: RealNumber>(angleX: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleXY<T: RealField>(angleX: T, angleY: T) -> TMat4<T> {
|
||||
pub fn eulerAngleXY<T: RealNumber>(angleX: T, angleY: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleXYX<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleXYX<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleXYZ<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleXYZ<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleXZ<T: RealField>(angleX: T, angleZ: T) -> TMat4<T> {
|
||||
pub fn eulerAngleXZ<T: RealNumber>(angleX: T, angleZ: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleXZX<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleXZX<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleXZY<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleXZY<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleY<T: RealField>(angleY: T) -> TMat4<T> {
|
||||
pub fn eulerAngleY<T: RealNumber>(angleY: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleYX<T: RealField>(angleY: T, angleX: T) -> TMat4<T> {
|
||||
pub fn eulerAngleYX<T: RealNumber>(angleY: T, angleX: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleYXY<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleYXY<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleYXZ<T: RealField>(yaw: T, pitch: T, roll: T) -> TMat4<T> {
|
||||
pub fn eulerAngleYXZ<T: RealNumber>(yaw: T, pitch: T, roll: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleYZ<T: RealField>(angleY: T, angleZ: T) -> TMat4<T> {
|
||||
pub fn eulerAngleYZ<T: RealNumber>(angleY: T, angleZ: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleYZX<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleYZX<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleYZY<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleYZY<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleZ<T: RealField>(angleZ: T) -> TMat4<T> {
|
||||
pub fn eulerAngleZ<T: RealNumber>(angleZ: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleZX<T: RealField>(angle: T, angleX: T) -> TMat4<T> {
|
||||
pub fn eulerAngleZX<T: RealNumber>(angle: T, angleX: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleZXY<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleZXY<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleZXZ<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleZXZ<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleZY<T: RealField>(angleZ: T, angleY: T) -> TMat4<T> {
|
||||
pub fn eulerAngleZY<T: RealNumber>(angleZ: T, angleY: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleZYX<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleZYX<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn eulerAngleZYZ<T: RealField>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
pub fn eulerAngleZYZ<T: RealNumber>(t1: T, t2: T, t3: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleXYX<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleXYX<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleXYZ<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleXYZ<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleXZX<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleXZX<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleXZY<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleXZY<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleYXY<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleYXY<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleYXZ<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleYXZ<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleYZX<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleYZX<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleYZY<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleYZY<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleZXY<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleZXY<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleZXZ<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleZXZ<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleZYX<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleZYX<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn extractEulerAngleZYZ<T: RealField>(M: &TMat4<T>) -> (T, T, T) {
|
||||
pub fn extractEulerAngleZYZ<T: RealNumber>(M: &TMat4<T>) -> (T, T, T) {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn orientate2<T: RealField>(angle: T) -> TMat3x3<T> {
|
||||
pub fn orientate2<T: RealNumber>(angle: T) -> TMat3x3<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn orientate3<T: RealField>(angles: TVec3<T>) -> TMat3x3<T> {
|
||||
pub fn orientate3<T: RealNumber>(angles: TVec3<T>) -> TMat3x3<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn orientate4<T: RealField>(angles: TVec3<T>) -> TMat4<T> {
|
||||
pub fn orientate4<T: RealNumber>(angles: TVec3<T>) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
pub fn yawPitchRoll<T: RealField>(yaw: T, pitch: T, roll: T) -> TMat4<T> {
|
||||
pub fn yawPitchRoll<T: RealNumber>(yaw: T, pitch: T, roll: T) -> TMat4<T> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
@ -1,13 +1,12 @@
|
||||
use na::RealField;
|
||||
|
||||
use crate::aliases::{TMat3, TMat4, TVec3};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Builds a 3x3 matrix `m` such that for any `v`: `m * v == cross(x, v)`.
|
||||
///
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`matrix_cross`](fn.matrix_cross.html)
|
||||
pub fn matrix_cross3<T: RealField>(x: &TVec3<T>) -> TMat3<T> {
|
||||
pub fn matrix_cross3<T: RealNumber>(x: &TVec3<T>) -> TMat3<T> {
|
||||
x.cross_matrix()
|
||||
}
|
||||
|
||||
@ -16,6 +15,6 @@ pub fn matrix_cross3<T: RealField>(x: &TVec3<T>) -> TMat3<T> {
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`matrix_cross3`](fn.matrix_cross3.html)
|
||||
pub fn matrix_cross<T: RealField>(x: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn matrix_cross<T: RealNumber>(x: &TVec3<T>) -> TMat4<T> {
|
||||
crate::mat3_to_mat4(&x.cross_matrix())
|
||||
}
|
||||
|
@ -1,13 +1,12 @@
|
||||
use na::RealField;
|
||||
|
||||
use crate::aliases::TVec;
|
||||
use crate::RealNumber;
|
||||
|
||||
/// The squared distance between two points.
|
||||
///
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`distance`](fn.distance.html)
|
||||
pub fn distance2<T: RealField, const D: usize>(p0: &TVec<T, D>, p1: &TVec<T, D>) -> T {
|
||||
pub fn distance2<T: RealNumber, const D: usize>(p0: &TVec<T, D>, p1: &TVec<T, D>) -> T {
|
||||
(p1 - p0).norm_squared()
|
||||
}
|
||||
|
||||
@ -18,7 +17,7 @@ pub fn distance2<T: RealField, const D: usize>(p0: &TVec<T, D>, p1: &TVec<T, D>)
|
||||
/// * [`l1_norm`](fn.l1_norm.html)
|
||||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_distance<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
pub fn l1_distance<T: RealNumber, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
l1_norm(&(y - x))
|
||||
}
|
||||
|
||||
@ -32,7 +31,7 @@ pub fn l1_distance<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>)
|
||||
/// * [`l1_distance`](fn.l1_distance.html)
|
||||
/// * [`l2_distance`](fn.l2_distance.html)
|
||||
/// * [`l2_norm`](fn.l2_norm.html)
|
||||
pub fn l1_norm<T: RealField, const D: usize>(v: &TVec<T, D>) -> T {
|
||||
pub fn l1_norm<T: RealNumber, const D: usize>(v: &TVec<T, D>) -> T {
|
||||
crate::comp_add(&v.abs())
|
||||
}
|
||||
|
||||
@ -50,7 +49,7 @@ pub fn l1_norm<T: RealField, const D: usize>(v: &TVec<T, D>) -> T {
|
||||
/// * [`length2`](fn.length2.html)
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_distance<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
pub fn l2_distance<T: RealNumber, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
l2_norm(&(y - x))
|
||||
}
|
||||
|
||||
@ -70,7 +69,7 @@ pub fn l2_distance<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>)
|
||||
/// * [`length2`](fn.length2.html)
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn l2_norm<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
pub fn l2_norm<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
x.norm()
|
||||
}
|
||||
|
||||
@ -85,7 +84,7 @@ pub fn l2_norm<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
/// * [`length`](fn.length.html)
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`magnitude2`](fn.magnitude2.html)
|
||||
pub fn length2<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
pub fn length2<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
@ -100,14 +99,14 @@ pub fn length2<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
/// * [`length2`](fn.length2.html)
|
||||
/// * [`magnitude`](fn.magnitude.html)
|
||||
/// * [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html)
|
||||
pub fn magnitude2<T: RealField, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
pub fn magnitude2<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> T {
|
||||
x.norm_squared()
|
||||
}
|
||||
|
||||
//pub fn lxNorm<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>, unsigned int Depth) -> T {
|
||||
//pub fn lxNorm<T: RealNumber, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>, unsigned int Depth) -> T {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn lxNorm<T: RealField, const D: usize>(x: &TVec<T, D>, unsigned int Depth) -> T {
|
||||
//pub fn lxNorm<T: RealNumber, const D: usize>(x: &TVec<T, D>, unsigned int Depth) -> T {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
@ -1,10 +1,10 @@
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
use crate::aliases::TVec3;
|
||||
|
||||
/// The normal vector of the given triangle.
|
||||
///
|
||||
/// The normal is computed as the normalized vector `cross(p2 - p1, p3 - p1)`.
|
||||
pub fn triangle_normal<T: RealField>(p1: &TVec3<T>, p2: &TVec3<T>, p3: &TVec3<T>) -> TVec3<T> {
|
||||
pub fn triangle_normal<T: RealNumber>(p1: &TVec3<T>, p2: &TVec3<T>, p3: &TVec3<T>) -> TVec3<T> {
|
||||
(p2 - p1).cross(&(p3 - p1)).normalize()
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
use crate::aliases::TVec;
|
||||
|
||||
@ -9,7 +9,7 @@ use crate::aliases::TVec;
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`normalize_dot`](fn.normalize_dot.html`)
|
||||
pub fn fast_normalize_dot<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
pub fn fast_normalize_dot<T: RealNumber, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
@ -19,7 +19,7 @@ pub fn fast_normalize_dot<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec
|
||||
/// # See also:
|
||||
///
|
||||
/// * [`fast_normalize_dot`](fn.fast_normalize_dot.html`)
|
||||
pub fn normalize_dot<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
pub fn normalize_dot<T: RealNumber, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
// XXX: improve those.
|
||||
x.normalize().dot(&y.normalize())
|
||||
}
|
||||
|
@ -1,97 +1,98 @@
|
||||
use na::{RealField, Rotation3, Unit, UnitQuaternion};
|
||||
use na::{Rotation3, Unit, UnitQuaternion};
|
||||
|
||||
use crate::aliases::{Qua, TMat3, TMat4, TVec3, TVec4};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Rotate the vector `v` by the quaternion `q` assumed to be normalized.
|
||||
pub fn quat_cross_vec<T: RealField>(q: &Qua<T>, v: &TVec3<T>) -> TVec3<T> {
|
||||
pub fn quat_cross_vec<T: RealNumber>(q: &Qua<T>, v: &TVec3<T>) -> TVec3<T> {
|
||||
UnitQuaternion::new_unchecked(*q) * v
|
||||
}
|
||||
|
||||
/// Rotate the vector `v` by the inverse of the quaternion `q` assumed to be normalized.
|
||||
pub fn quat_inv_cross_vec<T: RealField>(v: &TVec3<T>, q: &Qua<T>) -> TVec3<T> {
|
||||
pub fn quat_inv_cross_vec<T: RealNumber>(v: &TVec3<T>, q: &Qua<T>) -> TVec3<T> {
|
||||
UnitQuaternion::new_unchecked(*q).inverse() * v
|
||||
}
|
||||
|
||||
/// The quaternion `w` component.
|
||||
pub fn quat_extract_real_component<T: RealField>(q: &Qua<T>) -> T {
|
||||
pub fn quat_extract_real_component<T: RealNumber>(q: &Qua<T>) -> T {
|
||||
q.w
|
||||
}
|
||||
|
||||
/// Normalized linear interpolation between two quaternions.
|
||||
pub fn quat_fast_mix<T: RealField>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
pub fn quat_fast_mix<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
Unit::new_unchecked(*x)
|
||||
.nlerp(&Unit::new_unchecked(*y), a)
|
||||
.into_inner()
|
||||
}
|
||||
|
||||
//pub fn quat_intermediate<T: RealField>(prev: &Qua<T>, curr: &Qua<T>, next: &Qua<T>) -> Qua<T> {
|
||||
//pub fn quat_intermediate<T: RealNumber>(prev: &Qua<T>, curr: &Qua<T>, next: &Qua<T>) -> Qua<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
||||
/// The squared magnitude of a quaternion `q`.
|
||||
pub fn quat_length2<T: RealField>(q: &Qua<T>) -> T {
|
||||
pub fn quat_length2<T: RealNumber>(q: &Qua<T>) -> T {
|
||||
q.norm_squared()
|
||||
}
|
||||
|
||||
/// The squared magnitude of a quaternion `q`.
|
||||
pub fn quat_magnitude2<T: RealField>(q: &Qua<T>) -> T {
|
||||
pub fn quat_magnitude2<T: RealNumber>(q: &Qua<T>) -> T {
|
||||
q.norm_squared()
|
||||
}
|
||||
|
||||
/// The quaternion representing the identity rotation.
|
||||
pub fn quat_identity<T: RealField>() -> Qua<T> {
|
||||
pub fn quat_identity<T: RealNumber>() -> Qua<T> {
|
||||
UnitQuaternion::identity().into_inner()
|
||||
}
|
||||
|
||||
/// Rotates a vector by a quaternion assumed to be normalized.
|
||||
pub fn quat_rotate_vec3<T: RealField>(q: &Qua<T>, v: &TVec3<T>) -> TVec3<T> {
|
||||
pub fn quat_rotate_vec3<T: RealNumber>(q: &Qua<T>, v: &TVec3<T>) -> TVec3<T> {
|
||||
UnitQuaternion::new_unchecked(*q) * v
|
||||
}
|
||||
|
||||
/// Rotates a vector in homogeneous coordinates by a quaternion assumed to be normalized.
|
||||
pub fn quat_rotate_vec<T: RealField>(q: &Qua<T>, v: &TVec4<T>) -> TVec4<T> {
|
||||
pub fn quat_rotate_vec<T: RealNumber>(q: &Qua<T>, v: &TVec4<T>) -> TVec4<T> {
|
||||
let rotated = Unit::new_unchecked(*q) * v.fixed_rows::<3>(0);
|
||||
TVec4::new(rotated.x, rotated.y, rotated.z, v.w)
|
||||
}
|
||||
|
||||
/// The rotation required to align `orig` to `dest`.
|
||||
pub fn quat_rotation<T: RealField>(orig: &TVec3<T>, dest: &TVec3<T>) -> Qua<T> {
|
||||
pub fn quat_rotation<T: RealNumber>(orig: &TVec3<T>, dest: &TVec3<T>) -> Qua<T> {
|
||||
UnitQuaternion::rotation_between(orig, dest)
|
||||
.unwrap_or_else(UnitQuaternion::identity)
|
||||
.into_inner()
|
||||
}
|
||||
|
||||
/// The spherical linear interpolation between two quaternions.
|
||||
pub fn quat_short_mix<T: RealField>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
pub fn quat_short_mix<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
|
||||
Unit::new_normalize(*x)
|
||||
.slerp(&Unit::new_normalize(*y), a)
|
||||
.into_inner()
|
||||
}
|
||||
|
||||
//pub fn quat_squad<T: RealField>(q1: &Qua<T>, q2: &Qua<T>, s1: &Qua<T>, s2: &Qua<T>, h: T) -> Qua<T> {
|
||||
//pub fn quat_squad<T: RealNumber>(q1: &Qua<T>, q2: &Qua<T>, s1: &Qua<T>, s2: &Qua<T>, h: T) -> Qua<T> {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
||||
/// Converts a quaternion to a rotation matrix.
|
||||
pub fn quat_to_mat3<T: RealField>(x: &Qua<T>) -> TMat3<T> {
|
||||
pub fn quat_to_mat3<T: RealNumber>(x: &Qua<T>) -> TMat3<T> {
|
||||
UnitQuaternion::new_unchecked(*x)
|
||||
.to_rotation_matrix()
|
||||
.into_inner()
|
||||
}
|
||||
|
||||
/// Converts a quaternion to a rotation matrix in homogenous coordinates.
|
||||
pub fn quat_to_mat4<T: RealField>(x: &Qua<T>) -> TMat4<T> {
|
||||
pub fn quat_to_mat4<T: RealNumber>(x: &Qua<T>) -> TMat4<T> {
|
||||
UnitQuaternion::new_unchecked(*x).to_homogeneous()
|
||||
}
|
||||
|
||||
/// Converts a rotation matrix to a quaternion.
|
||||
pub fn mat3_to_quat<T: RealField>(x: &TMat3<T>) -> Qua<T> {
|
||||
pub fn mat3_to_quat<T: RealNumber>(x: &TMat3<T>) -> Qua<T> {
|
||||
let r = Rotation3::from_matrix_unchecked(*x);
|
||||
UnitQuaternion::from_rotation_matrix(&r).into_inner()
|
||||
}
|
||||
|
||||
/// Converts a rotation matrix in homogeneous coordinates to a quaternion.
|
||||
pub fn to_quat<T: RealField>(x: &TMat4<T>) -> Qua<T> {
|
||||
pub fn to_quat<T: RealNumber>(x: &TMat4<T>) -> Qua<T> {
|
||||
let rot = x.fixed_slice::<3, 3>(0, 0).into_owned();
|
||||
mat3_to_quat(&rot)
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
use na::{RealField, Rotation3, Unit, UnitQuaternion};
|
||||
use na::{Rotation3, Unit, UnitQuaternion};
|
||||
|
||||
use crate::aliases::{Qua, TMat4, TVec3};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Builds a rotation 4 * 4 matrix created from a normalized axis and an angle.
|
||||
///
|
||||
@ -9,7 +10,7 @@ use crate::aliases::{Qua, TMat4, TVec3};
|
||||
/// * `m` - Input matrix multiplied by this rotation matrix.
|
||||
/// * `angle` - Rotation angle expressed in radians.
|
||||
/// * `axis` - Rotation axis, must be normalized.
|
||||
pub fn rotate_normalized_axis<T: RealField>(m: &TMat4<T>, angle: T, axis: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn rotate_normalized_axis<T: RealNumber>(m: &TMat4<T>, angle: T, axis: &TVec3<T>) -> TMat4<T> {
|
||||
m * Rotation3::from_axis_angle(&Unit::new_unchecked(*axis), angle).to_homogeneous()
|
||||
}
|
||||
|
||||
@ -20,6 +21,6 @@ pub fn rotate_normalized_axis<T: RealField>(m: &TMat4<T>, angle: T, axis: &TVec3
|
||||
/// * `q` - Source orientation.
|
||||
/// * `angle` - Angle expressed in radians.
|
||||
/// * `axis` - Normalized axis of the rotation, must be normalized.
|
||||
pub fn quat_rotate_normalized_axis<T: RealField>(q: &Qua<T>, angle: T, axis: &TVec3<T>) -> Qua<T> {
|
||||
pub fn quat_rotate_normalized_axis<T: RealNumber>(q: &Qua<T>, angle: T, axis: &TVec3<T>) -> Qua<T> {
|
||||
q * UnitQuaternion::from_axis_angle(&Unit::new_unchecked(*axis), angle).into_inner()
|
||||
}
|
||||
|
@ -1,9 +1,10 @@
|
||||
use na::{RealField, Rotation3, Unit, UnitComplex};
|
||||
use na::{Rotation3, Unit, UnitComplex};
|
||||
|
||||
use crate::aliases::{TMat4, TVec2, TVec3, TVec4};
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Build the rotation matrix needed to align `normal` and `up`.
|
||||
pub fn orientation<T: RealField>(normal: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn orientation<T: RealNumber>(normal: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
if let Some(r) = Rotation3::rotation_between(normal, up) {
|
||||
r.to_homogeneous()
|
||||
} else {
|
||||
@ -12,52 +13,52 @@ pub fn orientation<T: RealField>(normal: &TVec3<T>, up: &TVec3<T>) -> TMat4<T> {
|
||||
}
|
||||
|
||||
/// Rotate a two dimensional vector.
|
||||
pub fn rotate_vec2<T: RealField>(v: &TVec2<T>, angle: T) -> TVec2<T> {
|
||||
pub fn rotate_vec2<T: RealNumber>(v: &TVec2<T>, angle: T) -> TVec2<T> {
|
||||
UnitComplex::new(angle) * v
|
||||
}
|
||||
|
||||
/// Rotate a three dimensional vector around an axis.
|
||||
pub fn rotate_vec3<T: RealField>(v: &TVec3<T>, angle: T, normal: &TVec3<T>) -> TVec3<T> {
|
||||
pub fn rotate_vec3<T: RealNumber>(v: &TVec3<T>, angle: T, normal: &TVec3<T>) -> TVec3<T> {
|
||||
Rotation3::from_axis_angle(&Unit::new_normalize(*normal), angle) * v
|
||||
}
|
||||
|
||||
/// Rotate a thee dimensional vector in homogeneous coordinates around an axis.
|
||||
pub fn rotate_vec4<T: RealField>(v: &TVec4<T>, angle: T, normal: &TVec3<T>) -> TVec4<T> {
|
||||
pub fn rotate_vec4<T: RealNumber>(v: &TVec4<T>, angle: T, normal: &TVec3<T>) -> TVec4<T> {
|
||||
Rotation3::from_axis_angle(&Unit::new_normalize(*normal), angle).to_homogeneous() * v
|
||||
}
|
||||
|
||||
/// Rotate a three dimensional vector around the `X` axis.
|
||||
pub fn rotate_x_vec3<T: RealField>(v: &TVec3<T>, angle: T) -> TVec3<T> {
|
||||
pub fn rotate_x_vec3<T: RealNumber>(v: &TVec3<T>, angle: T) -> TVec3<T> {
|
||||
Rotation3::from_axis_angle(&TVec3::x_axis(), angle) * v
|
||||
}
|
||||
|
||||
/// Rotate a three dimensional vector in homogeneous coordinates around the `X` axis.
|
||||
pub fn rotate_x_vec4<T: RealField>(v: &TVec4<T>, angle: T) -> TVec4<T> {
|
||||
pub fn rotate_x_vec4<T: RealNumber>(v: &TVec4<T>, angle: T) -> TVec4<T> {
|
||||
Rotation3::from_axis_angle(&TVec3::x_axis(), angle).to_homogeneous() * v
|
||||
}
|
||||
|
||||
/// Rotate a three dimensional vector around the `Y` axis.
|
||||
pub fn rotate_y_vec3<T: RealField>(v: &TVec3<T>, angle: T) -> TVec3<T> {
|
||||
pub fn rotate_y_vec3<T: RealNumber>(v: &TVec3<T>, angle: T) -> TVec3<T> {
|
||||
Rotation3::from_axis_angle(&TVec3::y_axis(), angle) * v
|
||||
}
|
||||
|
||||
/// Rotate a three dimensional vector in homogeneous coordinates around the `Y` axis.
|
||||
pub fn rotate_y_vec4<T: RealField>(v: &TVec4<T>, angle: T) -> TVec4<T> {
|
||||
pub fn rotate_y_vec4<T: RealNumber>(v: &TVec4<T>, angle: T) -> TVec4<T> {
|
||||
Rotation3::from_axis_angle(&TVec3::y_axis(), angle).to_homogeneous() * v
|
||||
}
|
||||
|
||||
/// Rotate a three dimensional vector around the `Z` axis.
|
||||
pub fn rotate_z_vec3<T: RealField>(v: &TVec3<T>, angle: T) -> TVec3<T> {
|
||||
pub fn rotate_z_vec3<T: RealNumber>(v: &TVec3<T>, angle: T) -> TVec3<T> {
|
||||
Rotation3::from_axis_angle(&TVec3::z_axis(), angle) * v
|
||||
}
|
||||
|
||||
/// Rotate a three dimensional vector in homogeneous coordinates around the `Z` axis.
|
||||
pub fn rotate_z_vec4<T: RealField>(v: &TVec4<T>, angle: T) -> TVec4<T> {
|
||||
pub fn rotate_z_vec4<T: RealNumber>(v: &TVec4<T>, angle: T) -> TVec4<T> {
|
||||
Rotation3::from_axis_angle(&TVec3::z_axis(), angle).to_homogeneous() * v
|
||||
}
|
||||
|
||||
/// Computes a spherical linear interpolation between the vectors `x` and `y` assumed to be normalized.
|
||||
pub fn slerp<T: RealField>(x: &TVec3<T>, y: &TVec3<T>, a: T) -> TVec3<T> {
|
||||
pub fn slerp<T: RealNumber>(x: &TVec3<T>, y: &TVec3<T>, a: T) -> TVec3<T> {
|
||||
Unit::new_unchecked(*x)
|
||||
.slerp(&Unit::new_unchecked(*y), a)
|
||||
.into_inner()
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{RealField, Rotation2, Rotation3, Unit};
|
||||
use na::{Rotation2, Rotation3, Unit};
|
||||
|
||||
use crate::aliases::{TMat3, TMat4, TVec2, TVec3};
|
||||
use crate::traits::Number;
|
||||
use crate::traits::{Number, RealNumber};
|
||||
|
||||
/// A rotation 4 * 4 matrix created from an axis of 3 scalars and an angle expressed in radians.
|
||||
///
|
||||
@ -12,7 +12,7 @@ use crate::traits::Number;
|
||||
/// * [`rotation2d`](fn.rotation2d.html)
|
||||
/// * [`scaling2d`](fn.scaling2d.html)
|
||||
/// * [`translation2d`](fn.translation2d.html)
|
||||
pub fn rotation<T: RealField>(angle: T, v: &TVec3<T>) -> TMat4<T> {
|
||||
pub fn rotation<T: RealNumber>(angle: T, v: &TVec3<T>) -> TMat4<T> {
|
||||
Rotation3::from_axis_angle(&Unit::new_normalize(*v), angle).to_homogeneous()
|
||||
}
|
||||
|
||||
@ -51,7 +51,7 @@ pub fn translation<T: Number>(v: &TVec3<T>) -> TMat4<T> {
|
||||
/// * [`translation`](fn.translation.html)
|
||||
/// * [`scaling2d`](fn.scaling2d.html)
|
||||
/// * [`translation2d`](fn.translation2d.html)
|
||||
pub fn rotation2d<T: RealField>(angle: T) -> TMat3<T> {
|
||||
pub fn rotation2d<T: RealNumber>(angle: T) -> TMat3<T> {
|
||||
Rotation2::new(angle).to_homogeneous()
|
||||
}
|
||||
|
||||
|
@ -31,7 +31,7 @@ pub fn reflect2d<T: Number>(m: &TMat3<T>, normal: &TVec2<T>) -> TMat3<T> {
|
||||
|
||||
{
|
||||
let mut part = res.fixed_slice_mut::<2, 2>(0, 0);
|
||||
part -= (normal * T::from_f64(2.0).unwrap()) * normal.transpose();
|
||||
part -= (normal * T::from_subset(&2.0)) * normal.transpose();
|
||||
}
|
||||
|
||||
m * res
|
||||
@ -43,7 +43,7 @@ pub fn reflect<T: Number>(m: &TMat4<T>, normal: &TVec3<T>) -> TMat4<T> {
|
||||
|
||||
{
|
||||
let mut part = res.fixed_slice_mut::<3, 3>(0, 0);
|
||||
part -= (normal * T::from_f64(2.0).unwrap()) * normal.transpose();
|
||||
part -= (normal * T::from_subset(&2.0)) * normal.transpose();
|
||||
}
|
||||
|
||||
m * res
|
||||
|
@ -1,7 +1,7 @@
|
||||
use na::{RealField, UnitComplex};
|
||||
use na::UnitComplex;
|
||||
|
||||
use crate::aliases::{TMat3, TVec2};
|
||||
use crate::traits::Number;
|
||||
use crate::traits::{Number, RealNumber};
|
||||
|
||||
/// Builds a 2D rotation matrix from an angle and right-multiply it to `m`.
|
||||
///
|
||||
@ -12,7 +12,7 @@ use crate::traits::Number;
|
||||
/// * [`scaling2d`](fn.scaling2d.html)
|
||||
/// * [`translate2d`](fn.translate2d.html)
|
||||
/// * [`translation2d`](fn.translation2d.html)
|
||||
pub fn rotate2d<T: RealField>(m: &TMat3<T>, angle: T) -> TMat3<T> {
|
||||
pub fn rotate2d<T: RealNumber>(m: &TMat3<T>, angle: T) -> TMat3<T> {
|
||||
m * UnitComplex::new(angle).to_homogeneous()
|
||||
}
|
||||
|
||||
|
@ -1,16 +1,16 @@
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
use crate::aliases::TVec;
|
||||
|
||||
/// The angle between two vectors.
|
||||
pub fn angle<T: RealField, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
pub fn angle<T: RealNumber, const D: usize>(x: &TVec<T, D>, y: &TVec<T, D>) -> T {
|
||||
x.angle(y)
|
||||
}
|
||||
|
||||
//pub fn oriented_angle<T: RealField>(x: &TVec2<T>, y: &TVec2<T>) -> T {
|
||||
//pub fn oriented_angle<T: RealNumber>(x: &TVec2<T>, y: &TVec2<T>) -> T {
|
||||
// unimplemented!()
|
||||
//}
|
||||
//
|
||||
//pub fn oriented_angle_ref<T: RealField>(x: &TVec3<T>, y: &TVec3<T>, refv: &TVec3<T>) -> T {
|
||||
//pub fn oriented_angle_ref<T: RealNumber>(x: &TVec3<T>, y: &TVec3<T>, refv: &TVec3<T>) -> T {
|
||||
// unimplemented!()
|
||||
//}
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::RealField;
|
||||
use crate::RealNumber;
|
||||
|
||||
use crate::aliases::{TVec, TVec2, TVec3};
|
||||
use crate::traits::Number;
|
||||
@ -40,7 +40,7 @@ pub fn is_comp_null<T: Number, const D: usize>(v: &TVec<T, D>, epsilon: T) -> TV
|
||||
}
|
||||
|
||||
/// Returns `true` if `v` has a magnitude of 1 (up to an epsilon).
|
||||
pub fn is_normalized<T: RealField, const D: usize>(v: &TVec<T, D>, epsilon: T) -> bool {
|
||||
pub fn is_normalized<T: RealNumber, const D: usize>(v: &TVec<T, D>, epsilon: T) -> bool {
|
||||
abs_diff_eq!(v.norm_squared(), T::one(), epsilon = epsilon * epsilon)
|
||||
}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
use na::{DefaultAllocator, RealField, Scalar, U3};
|
||||
use na::{DefaultAllocator, RealNumber, Scalar, U3};
|
||||
|
||||
use crate::aliases::TVec;
|
||||
use crate::traits::{Alloc, Dimension, Number};
|
||||
|
@ -129,7 +129,7 @@ extern crate approx;
|
||||
extern crate nalgebra as na;
|
||||
|
||||
pub use crate::aliases::*;
|
||||
pub use crate::traits::Number;
|
||||
pub use crate::traits::{Number, RealNumber};
|
||||
pub use common::{
|
||||
abs, ceil, clamp, clamp_scalar, clamp_vec, float_bits_to_int, float_bits_to_int_vec,
|
||||
float_bits_to_uint, float_bits_to_uint_vec, floor, fract, int_bits_to_float,
|
||||
@ -201,7 +201,7 @@ pub use gtx::{
|
||||
pub use na::{
|
||||
convert, convert_ref, convert_ref_unchecked, convert_unchecked, try_convert, try_convert_ref,
|
||||
};
|
||||
pub use na::{DefaultAllocator, RealField, Scalar, U1, U2, U3, U4};
|
||||
pub use na::{DefaultAllocator, Scalar, U1, U2, U3, U4};
|
||||
|
||||
mod aliases;
|
||||
mod common;
|
||||
|
@ -1,10 +1,10 @@
|
||||
use na::{Const, DimMin, RealField, Scalar};
|
||||
use na::{Const, DimMin, Scalar};
|
||||
|
||||
use crate::aliases::{TMat, TVec};
|
||||
use crate::traits::Number;
|
||||
use crate::traits::{Number, RealNumber};
|
||||
|
||||
/// The determinant of the matrix `m`.
|
||||
pub fn determinant<T: RealField, const D: usize>(m: &TMat<T, D, D>) -> T
|
||||
pub fn determinant<T: RealNumber, const D: usize>(m: &TMat<T, D, D>) -> T
|
||||
where
|
||||
Const<D>: DimMin<Const<D>, Output = Const<D>>,
|
||||
{
|
||||
@ -12,7 +12,7 @@ where
|
||||
}
|
||||
|
||||
/// The inverse of the matrix `m`.
|
||||
pub fn inverse<T: RealField, const D: usize>(m: &TMat<T, D, D>) -> TMat<T, D, D> {
|
||||
pub fn inverse<T: RealNumber, const D: usize>(m: &TMat<T, D, D>) -> TMat<T, D, D> {
|
||||
m.clone()
|
||||
.try_inverse()
|
||||
.unwrap_or_else(TMat::<T, D, D>::zeros)
|
||||
|
@ -1,8 +1,8 @@
|
||||
use approx::AbsDiffEq;
|
||||
use num::{Bounded, FromPrimitive, Signed};
|
||||
use num::{Bounded, Signed};
|
||||
|
||||
use na::Scalar;
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub, RealField, SupersetOf};
|
||||
use std::cmp::PartialOrd;
|
||||
|
||||
/// A number that can either be an integer or a float.
|
||||
@ -15,8 +15,8 @@ pub trait Number:
|
||||
+ ClosedMul
|
||||
+ AbsDiffEq<Epsilon = Self>
|
||||
+ Signed
|
||||
+ FromPrimitive
|
||||
+ Bounded
|
||||
+ SupersetOf<f64>
|
||||
{
|
||||
}
|
||||
|
||||
@ -29,8 +29,13 @@ impl<
|
||||
+ ClosedMul
|
||||
+ AbsDiffEq<Epsilon = Self>
|
||||
+ Signed
|
||||
+ FromPrimitive
|
||||
+ Bounded,
|
||||
+ Bounded
|
||||
+ SupersetOf<f64>,
|
||||
> Number for T
|
||||
{
|
||||
}
|
||||
|
||||
/// A number that can be any float type.
|
||||
pub trait RealNumber: Number + RealField {}
|
||||
|
||||
impl<T: Number + RealField> RealNumber for T {}
|
||||
|
@ -1,78 +1,79 @@
|
||||
use na::{self, RealField};
|
||||
use na;
|
||||
|
||||
use crate::aliases::TVec;
|
||||
use crate::RealNumber;
|
||||
|
||||
/// Component-wise arc-cosinus.
|
||||
pub fn acos<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn acos<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|e| e.acos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-cosinus.
|
||||
pub fn acosh<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn acosh<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|e| e.acosh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-sinus.
|
||||
pub fn asin<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn asin<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|e| e.asin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-sinus.
|
||||
pub fn asinh<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn asinh<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|e| e.asinh())
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent of `y / x`.
|
||||
pub fn atan2<T: RealField, const D: usize>(y: &TVec<T, D>, x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn atan2<T: RealNumber, const D: usize>(y: &TVec<T, D>, x: &TVec<T, D>) -> TVec<T, D> {
|
||||
y.zip_map(x, |y, x| y.atan2(x))
|
||||
}
|
||||
|
||||
/// Component-wise arc-tangent.
|
||||
pub fn atan<T: RealField, const D: usize>(y_over_x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn atan<T: RealNumber, const D: usize>(y_over_x: &TVec<T, D>) -> TVec<T, D> {
|
||||
y_over_x.map(|e| e.atan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic arc-tangent.
|
||||
pub fn atanh<T: RealField, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn atanh<T: RealNumber, const D: usize>(x: &TVec<T, D>) -> TVec<T, D> {
|
||||
x.map(|e| e.atanh())
|
||||
}
|
||||
|
||||
/// Component-wise cosinus.
|
||||
pub fn cos<T: RealField, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn cos<T: RealNumber, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
angle.map(|e| e.cos())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic cosinus.
|
||||
pub fn cosh<T: RealField, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn cosh<T: RealNumber, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
angle.map(|e| e.cosh())
|
||||
}
|
||||
|
||||
/// Component-wise conversion from radians to degrees.
|
||||
pub fn degrees<T: RealField, const D: usize>(radians: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn degrees<T: RealNumber, const D: usize>(radians: &TVec<T, D>) -> TVec<T, D> {
|
||||
radians.map(|e| e * na::convert(180.0) / T::pi())
|
||||
}
|
||||
|
||||
/// Component-wise conversion fro degrees to radians.
|
||||
pub fn radians<T: RealField, const D: usize>(degrees: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn radians<T: RealNumber, const D: usize>(degrees: &TVec<T, D>) -> TVec<T, D> {
|
||||
degrees.map(|e| e * T::pi() / na::convert(180.0))
|
||||
}
|
||||
|
||||
/// Component-wise sinus.
|
||||
pub fn sin<T: RealField, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn sin<T: RealNumber, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
angle.map(|e| e.sin())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic sinus.
|
||||
pub fn sinh<T: RealField, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn sinh<T: RealNumber, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
angle.map(|e| e.sinh())
|
||||
}
|
||||
|
||||
/// Component-wise tangent.
|
||||
pub fn tan<T: RealField, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn tan<T: RealNumber, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
angle.map(|e| e.tan())
|
||||
}
|
||||
|
||||
/// Component-wise hyperbolic tangent.
|
||||
pub fn tanh<T: RealField, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
pub fn tanh<T: RealNumber, const D: usize>(angle: &TVec<T, D>) -> TVec<T, D> {
|
||||
angle.map(|e| e.tanh())
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user