Run rustfmt.

This commit is contained in:
sebcrozet 2018-11-06 18:32:20 +01:00
parent ed07b78b97
commit 8341ec2f10
155 changed files with 1880 additions and 2060 deletions

View File

@ -1,7 +1,7 @@
use na::{DMatrix, DVector, Matrix2, Matrix3, Matrix4, MatrixN, Vector2, Vector3, Vector4, U10};
use rand::{IsaacRng, Rng}; use rand::{IsaacRng, Rng};
use test::{self, Bencher};
use na::{DMatrix, DVector, Matrix2, Matrix3, Matrix4, MatrixN, U10, Vector2, Vector3, Vector4};
use std::ops::{Add, Div, Mul, Sub}; use std::ops::{Add, Div, Mul, Sub};
use test::{self, Bencher};
#[path = "../common/macros.rs"] #[path = "../common/macros.rs"]
mod macros; mod macros;
@ -189,18 +189,10 @@ fn mat_mul_mat(bench: &mut Bencher) {
#[bench] #[bench]
fn mat100_from_fn(bench: &mut Bencher) { fn mat100_from_fn(bench: &mut Bencher) {
bench.iter(|| { bench.iter(|| DMatrix::from_fn(100, 100, |a, b| a + b))
DMatrix::from_fn(100, 100, |a, b| {
a + b
})
})
} }
#[bench] #[bench]
fn mat500_from_fn(bench: &mut Bencher) { fn mat500_from_fn(bench: &mut Bencher) {
bench.iter(|| { bench.iter(|| DMatrix::from_fn(500, 500, |a, b| a + b))
DMatrix::from_fn(500, 500, |a, b| {
a + b
})
})
} }

View File

@ -1,8 +1,8 @@
use na::{DVector, Vector2, Vector3, Vector4, VectorN};
use rand::{IsaacRng, Rng}; use rand::{IsaacRng, Rng};
use std::ops::{Add, Div, Mul, Sub};
use test::{self, Bencher}; use test::{self, Bencher};
use typenum::U10000; use typenum::U10000;
use na::{DVector, Vector2, Vector3, Vector4, VectorN};
use std::ops::{Add, Div, Mul, Sub};
#[path = "../common/macros.rs"] #[path = "../common/macros.rs"]
mod macros; mod macros;

View File

@ -1,7 +1,7 @@
use rand::{IsaacRng, Rng};
use test::{self, Bencher};
use na::{Quaternion, UnitQuaternion, Vector3}; use na::{Quaternion, UnitQuaternion, Vector3};
use rand::{IsaacRng, Rng};
use std::ops::{Add, Div, Mul, Sub}; use std::ops::{Add, Div, Mul, Sub};
use test::{self, Bencher};
#[path = "../common/macros.rs"] #[path = "../common/macros.rs"]
mod macros; mod macros;

View File

@ -6,12 +6,12 @@ extern crate rand;
extern crate test; extern crate test;
extern crate typenum; extern crate typenum;
use rand::{IsaacRng, Rng};
use na::DMatrix; use na::DMatrix;
use rand::{IsaacRng, Rng};
mod core; mod core;
mod linalg;
mod geometry; mod geometry;
mod linalg;
fn reproductible_dmatrix(nrows: usize, ncols: usize) -> DMatrix<f64> { fn reproductible_dmatrix(nrows: usize, ncols: usize) -> DMatrix<f64> {
let mut rng = IsaacRng::new_unseeded(); let mut rng = IsaacRng::new_unseeded();

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{Bidiagonal, DMatrix, Matrix4}; use na::{Bidiagonal, DMatrix, Matrix4};
use test::{self, Bencher};
#[path = "../common/macros.rs"] #[path = "../common/macros.rs"]
mod macros; mod macros;

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{Cholesky, DMatrix, DVector}; use na::{Cholesky, DMatrix, DVector};
use test::{self, Bencher};
#[bench] #[bench]
fn cholesky_100x100(bh: &mut Bencher) { fn cholesky_100x100(bh: &mut Bencher) {

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{DMatrix, DVector, FullPivLU}; use na::{DMatrix, DVector, FullPivLU};
use test::{self, Bencher};
// Without unpack. // Without unpack.
#[bench] #[bench]

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{DMatrix, Hessenberg, Matrix4}; use na::{DMatrix, Hessenberg, Matrix4};
use test::{self, Bencher};
#[path = "../common/macros.rs"] #[path = "../common/macros.rs"]
mod macros; mod macros;

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{DMatrix, DVector, LU}; use na::{DMatrix, DVector, LU};
use test::{self, Bencher};
// Without unpack. // Without unpack.
#[bench] #[bench]

View File

@ -1,11 +1,11 @@
mod solve;
mod cholesky;
mod qr;
mod hessenberg;
mod bidiagonal; mod bidiagonal;
mod lu; mod cholesky;
mod full_piv_lu; mod full_piv_lu;
mod svd; mod hessenberg;
mod lu;
mod qr;
mod schur; mod schur;
mod solve;
mod svd;
mod symmetric_eigen; mod symmetric_eigen;
// mod eigen; // mod eigen;

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{DMatrix, DVector, Matrix4, QR}; use na::{DMatrix, DVector, Matrix4, QR};
use test::{self, Bencher};
#[path = "../common/macros.rs"] #[path = "../common/macros.rs"]
mod macros; mod macros;

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{Matrix4, RealSchur}; use na::{Matrix4, RealSchur};
use test::{self, Bencher};
#[bench] #[bench]
fn schur_decompose_4x4(bh: &mut Bencher) { fn schur_decompose_4x4(bh: &mut Bencher) {

View File

@ -1,5 +1,5 @@
use test::Bencher;
use na::{DMatrix, DVector}; use na::{DMatrix, DVector};
use test::Bencher;
#[bench] #[bench]
fn solve_l_triangular_100x100(bh: &mut Bencher) { fn solve_l_triangular_100x100(bh: &mut Bencher) {

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{Matrix4, SVD}; use na::{Matrix4, SVD};
use test::{self, Bencher};
#[bench] #[bench]
fn svd_decompose_4x4(bh: &mut Bencher) { fn svd_decompose_4x4(bh: &mut Bencher) {

View File

@ -1,5 +1,5 @@
use test::{self, Bencher};
use na::{Matrix4, SymmetricEigen}; use na::{Matrix4, SymmetricEigen};
use test::{self, Bencher};
#[bench] #[bench]
fn symmetric_eigen_decompose_4x4(bh: &mut Bencher) { fn symmetric_eigen_decompose_4x4(bh: &mut Bencher) {

View File

@ -2,15 +2,13 @@ extern crate alga;
extern crate nalgebra as na; extern crate nalgebra as na;
use alga::linear::FiniteDimInnerSpace; use alga::linear::FiniteDimInnerSpace;
use na::{DefaultAllocator, Real, Unit, Vector2, Vector3, VectorN};
use na::allocator::Allocator; use na::allocator::Allocator;
use na::dimension::Dim; use na::dimension::Dim;
use na::{DefaultAllocator, Real, Unit, Vector2, Vector3, VectorN};
/// Reflects a vector wrt. the hyperplane with normal `plane_normal`. /// Reflects a vector wrt. the hyperplane with normal `plane_normal`.
fn reflect_wrt_hyperplane_with_algebraic_genericity<V>(plane_normal: &Unit<V>, vector: &V) -> V fn reflect_wrt_hyperplane_with_algebraic_genericity<V>(plane_normal: &Unit<V>, vector: &V) -> V
where where V: FiniteDimInnerSpace + Copy {
V: FiniteDimInnerSpace + Copy,
{
let n = plane_normal.as_ref(); // Get the underlying vector of type `V`. let n = plane_normal.as_ref(); // Get the underlying vector of type `V`.
*vector - *n * (n.dot(vector) * na::convert(2.0)) *vector - *n * (n.dot(vector) * na::convert(2.0))
} }
@ -31,9 +29,7 @@ where
/// Reflects a 2D vector wrt. the 2D line with normal `plane_normal`. /// Reflects a 2D vector wrt. the 2D line with normal `plane_normal`.
fn reflect_wrt_hyperplane2<N>(plane_normal: &Unit<Vector2<N>>, vector: &Vector2<N>) -> Vector2<N> fn reflect_wrt_hyperplane2<N>(plane_normal: &Unit<Vector2<N>>, vector: &Vector2<N>) -> Vector2<N>
where where N: Real {
N: Real,
{
let n = plane_normal.as_ref(); // Get the underlying Vector2 let n = plane_normal.as_ref(); // Get the underlying Vector2
vector - n * (n.dot(vector) * na::convert(2.0)) vector - n * (n.dot(vector) * na::convert(2.0))
} }
@ -41,9 +37,7 @@ where
/// Reflects a 3D vector wrt. the 3D plane with normal `plane_normal`. /// Reflects a 3D vector wrt. the 3D plane with normal `plane_normal`.
/// /!\ This is an exact replicate of `reflect_wrt_hyperplane2, but for 3D. /// /!\ This is an exact replicate of `reflect_wrt_hyperplane2, but for 3D.
fn reflect_wrt_hyperplane3<N>(plane_normal: &Unit<Vector3<N>>, vector: &Vector3<N>) -> Vector3<N> fn reflect_wrt_hyperplane3<N>(plane_normal: &Unit<Vector3<N>>, vector: &Vector3<N>) -> Vector3<N>
where where N: Real {
N: Real,
{
let n = plane_normal.as_ref(); // Get the underlying Vector3 let n = plane_normal.as_ref(); // Get the underlying Vector3
vector - n * (n.dot(vector) * na::convert(2.0)) vector - n * (n.dot(vector) * na::convert(2.0))
} }

View File

@ -2,8 +2,8 @@
extern crate approx; extern crate approx;
extern crate nalgebra as na; extern crate nalgebra as na;
use std::f32;
use na::{Isometry2, Point2, Vector2}; use na::{Isometry2, Point2, Vector2};
use std::f32;
fn use_dedicated_types() { fn use_dedicated_types() {
let iso = Isometry2::new(Vector2::new(1.0, 1.0), f32::consts::PI); let iso = Isometry2::new(Vector2::new(1.0, 1.0), f32::consts::PI);

View File

@ -9,9 +9,7 @@ use na::{Id, Isometry3, Point3, Vector3};
* intermediate value. * intermediate value.
*/ */
fn complicated_algorithm<T>(v: &Vector3<f32>, t: &T, n: usize) -> Vector3<f32> fn complicated_algorithm<T>(v: &Vector3<f32>, t: &T, n: usize) -> Vector3<f32>
where where T: Transformation<Point3<f32>> {
T: Transformation<Point3<f32>>,
{
let mut result = *v; let mut result = *v;
// Do lots of operations involving t. // Do lots of operations involving t.

View File

@ -49,10 +49,9 @@ fn main() {
3, 3,
[ [
// Components listed column-by-column. // Components listed column-by-column.
1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 1.0, 0.0, 0.0, ]
0.0, 0.0, 1.0, 0.0 .iter()
].iter()
.cloned(), .cloned(),
); );

View File

@ -2,8 +2,8 @@
extern crate approx; extern crate approx;
extern crate nalgebra as na; extern crate nalgebra as na;
use std::f32;
use na::{Isometry2, Point2, Vector2}; use na::{Isometry2, Point2, Vector2};
use std::f32;
fn main() { fn main() {
let t = Isometry2::new(Vector2::new(1.0, 1.0), f32::consts::PI); let t = Isometry2::new(Vector2::new(1.0, 1.0), f32::consts::PI);

View File

@ -1,9 +1,7 @@
use na::{MatrixMN, VectorN, use na::{
Matrix2, Matrix3, Matrix4, Matrix2, Matrix2x3, Matrix2x4, Matrix3, Matrix3x2, Matrix3x4, Matrix4, Matrix4x2, Matrix4x3,
Matrix2x3, Matrix3x2, Matrix4x2, MatrixMN, Quaternion, VectorN, U1, U2, U3, U4,
Matrix2x4, Matrix3x4, Matrix4x3, };
Quaternion,
U1, U2, U3, U4};
/// A matrix with components of type `N`. It has `R` rows, and `C` columns. /// A matrix with components of type `N`. It has `R` rows, and `C` columns.
/// ///
@ -270,7 +268,6 @@ pub type I8Vec3 = TVec3<i8>;
/// A 4D vector with `i8` components. /// A 4D vector with `i8` components.
pub type I8Vec4 = TVec4<i8>; pub type I8Vec4 = TVec4<i8>;
/// A 2x2 matrix with components of type `N`. /// A 2x2 matrix with components of type `N`.
pub type TMat2<N> = Matrix2<N>; pub type TMat2<N> = Matrix2<N>;
/// A 2x2 matrix with components of type `N`. /// A 2x2 matrix with components of type `N`.

View File

@ -1,9 +1,9 @@
use std::mem; use na::{self, DefaultAllocator, Real};
use num::FromPrimitive; use num::FromPrimitive;
use na::{self, Real, DefaultAllocator}; use std::mem;
use aliases::{TVec, TMat}; use aliases::{TMat, TVec};
use traits::{Number, Dimension, Alloc}; use traits::{Alloc, Dimension, Number};
/// For each matrix or vector component `x` if `x >= 0`; otherwise, it returns `-x`. /// For each matrix or vector component `x` if `x >= 0`; otherwise, it returns `-x`.
/// ///
@ -22,7 +22,7 @@ use traits::{Number, Dimension, Alloc};
/// ///
/// * [`sign`](fn.sign.html) /// * [`sign`](fn.sign.html)
pub fn abs<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, R, C> pub fn abs<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, R, C>
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
x.abs() x.abs()
} }
@ -44,7 +44,7 @@ pub fn abs<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N,
/// * [`round`](fn.round.html) /// * [`round`](fn.round.html)
/// * [`trunc`](fn.trunc.html) /// * [`trunc`](fn.trunc.html)
pub fn ceil<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn ceil<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| x.ceil()) x.map(|x| x.ceil())
} }
@ -94,7 +94,7 @@ pub fn clamp_scalar<N: Number>(x: N, min_val: N, max_val: N) -> N {
/// * [`clamp_scalar`](fn.clamp_scalar.html) /// * [`clamp_scalar`](fn.clamp_scalar.html)
/// * [`clamp_vec`](fn.clamp_vec.html) /// * [`clamp_vec`](fn.clamp_vec.html)
pub fn clamp<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: N, max_val: N) -> TVec<N, D> pub fn clamp<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: N, max_val: N) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| na::clamp(x, min_val, max_val)) x.map(|x| na::clamp(x, min_val, max_val))
} }
@ -125,8 +125,14 @@ pub fn clamp<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: N, max_val: N) ->
/// ///
/// * [`clamp_scalar`](fn.clamp_scalar.html) /// * [`clamp_scalar`](fn.clamp_scalar.html)
/// * [`clamp`](fn.clamp.html) /// * [`clamp`](fn.clamp.html)
pub fn clamp_vec<N: Number, D: Dimension>(x: &TVec<N, D>, min_val: &TVec<N, D>, max_val: &TVec<N, D>) -> TVec<N, D> pub fn clamp_vec<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { x: &TVec<N, D>,
min_val: &TVec<N, D>,
max_val: &TVec<N, D>,
) -> TVec<N, D>
where
DefaultAllocator: Alloc<N, D>,
{
x.zip_zip_map(min_val, max_val, |a, min, max| na::clamp(a, min, max)) x.zip_zip_map(min_val, max_val, |a, min, max| na::clamp(a, min, max))
} }
@ -161,7 +167,7 @@ pub fn float_bits_to_int(v: f32) -> i32 {
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html) /// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html) /// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
pub fn float_bits_to_int_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<i32, D> pub fn float_bits_to_int_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<i32, D>
where DefaultAllocator: Alloc<f32, D> { where DefaultAllocator: Alloc<f32, D> {
v.map(float_bits_to_int) v.map(float_bits_to_int)
} }
@ -196,7 +202,7 @@ pub fn float_bits_to_uint(v: f32) -> u32 {
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html) /// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html) /// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
pub fn float_bits_to_uint_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<u32, D> pub fn float_bits_to_uint_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<u32, D>
where DefaultAllocator: Alloc<f32, D> { where DefaultAllocator: Alloc<f32, D> {
v.map(float_bits_to_uint) v.map(float_bits_to_uint)
} }
@ -217,7 +223,7 @@ pub fn float_bits_to_uint_vec<D: Dimension>(v: &TVec<f32, D>) -> TVec<u32, D>
/// * [`round`](fn.round.html) /// * [`round`](fn.round.html)
/// * [`trunc`](fn.trunc.html) /// * [`trunc`](fn.trunc.html)
pub fn floor<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn floor<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| x.floor()) x.map(|x| x.floor())
} }
@ -244,7 +250,7 @@ pub fn floor<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
/// * [`round`](fn.round.html) /// * [`round`](fn.round.html)
/// * [`trunc`](fn.trunc.html) /// * [`trunc`](fn.trunc.html)
pub fn fract<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn fract<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| x.fract()) x.map(|x| x.fract())
} }
@ -271,7 +277,6 @@ pub fn fract<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html) /// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
pub fn int_bits_to_float(v: i32) -> f32 { pub fn int_bits_to_float(v: i32) -> f32 {
f32::from_bits(v as u32) f32::from_bits(v as u32)
} }
/// For each components of `v`, returns a floating-point value corresponding to a signed integer encoding of a floating-point value. /// For each components of `v`, returns a floating-point value corresponding to a signed integer encoding of a floating-point value.
@ -288,7 +293,7 @@ pub fn int_bits_to_float(v: i32) -> f32 {
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html) /// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html) /// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
pub fn int_bits_to_float_vec<D: Dimension>(v: &TVec<i32, D>) -> TVec<f32, D> pub fn int_bits_to_float_vec<D: Dimension>(v: &TVec<i32, D>) -> TVec<f32, D>
where DefaultAllocator: Alloc<f32, D> { where DefaultAllocator: Alloc<f32, D> {
v.map(int_bits_to_float) v.map(int_bits_to_float)
} }
@ -325,7 +330,7 @@ pub fn mix<N: Number>(x: N, y: N, a: N) -> N {
/// ///
/// * [`modf`](fn.modf.html) /// * [`modf`](fn.modf.html)
pub fn modf_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D> pub fn modf_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.zip_map(y, |x, y| x % y) x.zip_map(y, |x, y| x % y)
} }
@ -357,9 +362,8 @@ pub fn modf<N: Number>(x: N, i: N) -> N {
/// * [`fract`](fn.fract.html) /// * [`fract`](fn.fract.html)
/// * [`trunc`](fn.trunc.html) /// * [`trunc`](fn.trunc.html)
pub fn round<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn round<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| x.round()) x.map(|x| x.round())
} }
//pub fn roundEven<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> //pub fn roundEven<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
@ -382,14 +386,8 @@ pub fn round<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
/// * [`abs`](fn.abs.html) /// * [`abs`](fn.abs.html)
/// ///
pub fn sign<N: Number, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn sign<N: Number, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| { x.map(|x| if x.is_zero() { N::zero() } else { x.signum() })
if x.is_zero() {
N::zero()
} else {
x.signum()
}
})
} }
/// Returns 0.0 if `x <= edge0` and `1.0 if x >= edge1` and performs smooth Hermite interpolation between 0 and 1 when `edge0 < x < edge1`. /// Returns 0.0 if `x <= edge0` and `1.0 if x >= edge1` and performs smooth Hermite interpolation between 0 and 1 when `edge0 < x < edge1`.
@ -414,13 +412,13 @@ pub fn step_scalar<N: Number>(edge: N, x: N) -> N {
/// Returns 0.0 if `x[i] < edge`, otherwise it returns 1.0. /// Returns 0.0 if `x[i] < edge`, otherwise it returns 1.0.
pub fn step<N: Number, D: Dimension>(edge: N, x: &TVec<N, D>) -> TVec<N, D> pub fn step<N: Number, D: Dimension>(edge: N, x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| step_scalar(edge, x)) x.map(|x| step_scalar(edge, x))
} }
/// Returns 0.0 if `x[i] < edge[i]`, otherwise it returns 1.0. /// Returns 0.0 if `x[i] < edge[i]`, otherwise it returns 1.0.
pub fn step_vec<N: Number, D: Dimension>(edge: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D> pub fn step_vec<N: Number, D: Dimension>(edge: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
edge.zip_map(x, step_scalar) edge.zip_map(x, step_scalar)
} }
@ -441,7 +439,7 @@ pub fn step_vec<N: Number, D: Dimension>(edge: &TVec<N, D>, x: &TVec<N, D>) -> T
/// * [`fract`](fn.fract.html) /// * [`fract`](fn.fract.html)
/// * [`round`](fn.round.html) /// * [`round`](fn.round.html)
pub fn trunc<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn trunc<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| x.trunc()) x.map(|x| x.trunc())
} }
@ -460,7 +458,6 @@ pub fn trunc<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
/// * [`uint_bits_to_float`](fn.uint_bits_to_float.html) /// * [`uint_bits_to_float`](fn.uint_bits_to_float.html)
pub fn uint_bits_to_float_scalar(v: u32) -> f32 { pub fn uint_bits_to_float_scalar(v: u32) -> f32 {
f32::from_bits(v) f32::from_bits(v)
} }
/// For each component of `v`, returns a floating-point value corresponding to a unsigned integer encoding of a floating-point value. /// For each component of `v`, returns a floating-point value corresponding to a unsigned integer encoding of a floating-point value.
@ -477,6 +474,6 @@ pub fn uint_bits_to_float_scalar(v: u32) -> f32 {
/// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html) /// * [`int_bits_to_float_vec`](fn.int_bits_to_float_vec.html)
/// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html) /// * [`uint_bits_to_float_scalar`](fn.uint_bits_to_float_scalar.html)
pub fn uint_bits_to_float<D: Dimension>(v: &TVec<u32, D>) -> TVec<f32, D> pub fn uint_bits_to_float<D: Dimension>(v: &TVec<u32, D>) -> TVec<f32, D>
where DefaultAllocator: Alloc<f32, D> { where DefaultAllocator: Alloc<f32, D> {
v.map(uint_bits_to_float_scalar) v.map(uint_bits_to_float_scalar)
} }

View File

@ -1,7 +1,8 @@
use na::{Scalar, Real, U2, U3, U4}; use aliases::{
use aliases::{TMat, Qua, TVec1, TVec2, TVec3, TVec4, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, Qua, TMat, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3, TVec1,
TMat4, TMat4x2, TMat4x3}; TVec2, TVec3, TVec4,
};
use na::{Real, Scalar, U2, U3, U4};
/// Creates a new 1D vector. /// Creates a new 1D vector.
/// ///
@ -32,112 +33,173 @@ pub fn vec4<N: Scalar>(x: N, y: N, z: N, w: N) -> TVec4<N> {
TVec4::new(x, y, z, w) TVec4::new(x, y, z, w)
} }
/// Create a new 2x2 matrix. /// Create a new 2x2 matrix.
pub fn mat2<N: Scalar>(m11: N, m12: N, m21: N, m22: N) -> TMat2<N> { pub fn mat2<N: Scalar>(m11: N, m12: N, m21: N, m22: N) -> TMat2<N> {
TMat::<N, U2, U2>::new( TMat::<N, U2, U2>::new(m11, m12, m21, m22)
m11, m12,
m21, m22,
)
} }
/// Create a new 2x2 matrix. /// Create a new 2x2 matrix.
pub fn mat2x2<N: Scalar>(m11: N, m12: N, m21: N, m22: N) -> TMat2<N> { pub fn mat2x2<N: Scalar>(m11: N, m12: N, m21: N, m22: N) -> TMat2<N> {
TMat::<N, U2, U2>::new( TMat::<N, U2, U2>::new(m11, m12, m21, m22)
m11, m12,
m21, m22,
)
} }
/// Create a new 2x3 matrix. /// Create a new 2x3 matrix.
pub fn mat2x3<N: Scalar>(m11: N, m12: N, m13: N, m21: N, m22: N, m23: N) -> TMat2x3<N> { pub fn mat2x3<N: Scalar>(m11: N, m12: N, m13: N, m21: N, m22: N, m23: N) -> TMat2x3<N> {
TMat::<N, U2, U3>::new( TMat::<N, U2, U3>::new(m11, m12, m13, m21, m22, m23)
m11, m12, m13,
m21, m22, m23,
)
} }
/// Create a new 2x4 matrix. /// Create a new 2x4 matrix.
pub fn mat2x4<N: Scalar>(m11: N, m12: N, m13: N, m14: N, m21: N, m22: N, m23: N, m24: N) -> TMat2x4<N> { pub fn mat2x4<N: Scalar>(
TMat::<N, U2, U4>::new( m11: N,
m11, m12, m13, m14, m12: N,
m21, m22, m23, m24, m13: N,
) m14: N,
m21: N,
m22: N,
m23: N,
m24: N,
) -> TMat2x4<N>
{
TMat::<N, U2, U4>::new(m11, m12, m13, m14, m21, m22, m23, m24)
} }
/// Create a new 3x3 matrix. /// Create a new 3x3 matrix.
pub fn mat3<N: Scalar>(m11: N, m12: N, m13: N, m21: N, m22: N, m23: N, m31: N, m32: N, m33: N) -> TMat3<N> { pub fn mat3<N: Scalar>(
TMat::<N, U3, U3>::new( m11: N,
m11, m12, m13, m12: N,
m21, m22, m23, m13: N,
m31, m32, m33, m21: N,
) m22: N,
m23: N,
m31: N,
m32: N,
m33: N,
) -> TMat3<N>
{
TMat::<N, U3, U3>::new(m11, m12, m13, m21, m22, m23, m31, m32, m33)
} }
/// Create a new 3x2 matrix. /// Create a new 3x2 matrix.
pub fn mat3x2<N: Scalar>(m11: N, m12: N, m21: N, m22: N, m31: N, m32: N) -> TMat3x2<N> { pub fn mat3x2<N: Scalar>(m11: N, m12: N, m21: N, m22: N, m31: N, m32: N) -> TMat3x2<N> {
TMat::<N, U3, U2>::new( TMat::<N, U3, U2>::new(m11, m12, m21, m22, m31, m32)
m11, m12,
m21, m22,
m31, m32,
)
} }
/// Create a new 3x3 matrix. /// Create a new 3x3 matrix.
pub fn mat3x3<N: Scalar>(m11: N, m12: N, m13: N, m21: N, m22: N, m23: N, m31: N, m32: N, m33: N) -> TMat3<N> { pub fn mat3x3<N: Scalar>(
TMat::<N, U3, U3>::new( m11: N,
m11, m12, m13, m12: N,
m31, m32, m33, m13: N,
m21, m22, m23, m21: N,
) m22: N,
m23: N,
m31: N,
m32: N,
m33: N,
) -> TMat3<N>
{
TMat::<N, U3, U3>::new(m11, m12, m13, m31, m32, m33, m21, m22, m23)
} }
/// Create a new 3x4 matrix. /// Create a new 3x4 matrix.
pub fn mat3x4<N: Scalar>(m11: N, m12: N, m13: N, m14: N, m21: N, m22: N, m23: N, m24: N, m31: N, m32: N, m33: N, m34: N) -> TMat3x4<N> { pub fn mat3x4<N: Scalar>(
TMat::<N, U3, U4>::new( m11: N,
m11, m12, m13, m14, m12: N,
m21, m22, m23, m24, m13: N,
m31, m32, m33, m34, m14: N,
) m21: N,
m22: N,
m23: N,
m24: N,
m31: N,
m32: N,
m33: N,
m34: N,
) -> TMat3x4<N>
{
TMat::<N, U3, U4>::new(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34)
} }
/// Create a new 4x2 matrix. /// Create a new 4x2 matrix.
pub fn mat4x2<N: Scalar>(m11: N, m12: N, m21: N, m22: N, m31: N, m32: N, m41: N, m42: N) -> TMat4x2<N> { pub fn mat4x2<N: Scalar>(
TMat::<N, U4, U2>::new( m11: N,
m11, m12, m12: N,
m21, m22, m21: N,
m31, m32, m22: N,
m41, m42, m31: N,
) m32: N,
m41: N,
m42: N,
) -> TMat4x2<N>
{
TMat::<N, U4, U2>::new(m11, m12, m21, m22, m31, m32, m41, m42)
} }
/// Create a new 4x3 matrix. /// Create a new 4x3 matrix.
pub fn mat4x3<N: Scalar>(m11: N, m12: N, m13: N, m21: N, m22: N, m23: N, m31: N, m32: N, m33: N, m41: N, m42: N, m43: N) -> TMat4x3<N> { pub fn mat4x3<N: Scalar>(
TMat::<N, U4, U3>::new( m11: N,
m11, m12, m13, m12: N,
m21, m22, m23, m13: N,
m31, m32, m33, m21: N,
m41, m42, m43, m22: N,
m23: N,
m31: N,
m32: N,
m33: N,
m41: N,
m42: N,
m43: N,
) -> TMat4x3<N>
{
TMat::<N, U4, U3>::new(m11, m12, m13, m21, m22, m23, m31, m32, m33, m41, m42, m43)
}
/// Create a new 4x4 matrix.
pub fn mat4x4<N: Scalar>(
m11: N,
m12: N,
m13: N,
m14: N,
m21: N,
m22: N,
m23: N,
m24: N,
m31: N,
m32: N,
m33: N,
m34: N,
m41: N,
m42: N,
m43: N,
m44: N,
) -> TMat4<N>
{
TMat::<N, U4, U4>::new(
m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44,
) )
} }
/// Create a new 4x4 matrix. /// Create a new 4x4 matrix.
pub fn mat4x4<N: Scalar>(m11: N, m12: N, m13: N, m14: N, m21: N, m22: N, m23: N, m24: N, m31: N, m32: N, m33: N, m34: N, m41: N, m42: N, m43: N, m44: N) -> TMat4<N> { pub fn mat4<N: Scalar>(
m11: N,
m12: N,
m13: N,
m14: N,
m21: N,
m22: N,
m23: N,
m24: N,
m31: N,
m32: N,
m33: N,
m34: N,
m41: N,
m42: N,
m43: N,
m44: N,
) -> TMat4<N>
{
TMat::<N, U4, U4>::new( TMat::<N, U4, U4>::new(
m11, m12, m13, m14, m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44,
m21, m22, m23, m24,
m31, m32, m33, m34,
m41, m42, m43, m44,
)
}
/// Create a new 4x4 matrix.
pub fn mat4<N: Scalar>(m11: N, m12: N, m13: N, m14: N, m21: N, m22: N, m23: N, m24: N, m31: N, m32: N, m33: N, m34: N, m41: N, m42: N, m43: N, m44: N) -> TMat4<N> {
TMat::<N, U4, U4>::new(
m11, m12, m13, m14,
m21, m22, m23, m24,
m31, m32, m33, m34,
m41, m42, m43, m44,
) )
} }

View File

@ -1,5 +1,5 @@
use na::{Real, DefaultAllocator};
use aliases::TVec; use aliases::TVec;
use na::{DefaultAllocator, Real};
use traits::{Alloc, Dimension}; use traits::{Alloc, Dimension};
/// Component-wise exponential. /// Component-wise exponential.
@ -8,7 +8,7 @@ use traits::{Alloc, Dimension};
/// ///
/// * [`exp2`](fn.exp2.html) /// * [`exp2`](fn.exp2.html)
pub fn exp<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn exp<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
v.map(|x| x.exp()) v.map(|x| x.exp())
} }
@ -18,7 +18,7 @@ pub fn exp<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
/// ///
/// * [`exp`](fn.exp.html) /// * [`exp`](fn.exp.html)
pub fn exp2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn exp2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
v.map(|x| x.exp2()) v.map(|x| x.exp2())
} }
@ -28,9 +28,8 @@ pub fn exp2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
/// ///
/// * [`sqrt`](fn.sqrt.html) /// * [`sqrt`](fn.sqrt.html)
pub fn inversesqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn inversesqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
v.map(|x| N::one() / x.sqrt()) v.map(|x| N::one() / x.sqrt())
} }
/// Component-wise logarithm. /// Component-wise logarithm.
@ -39,7 +38,7 @@ pub fn inversesqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
/// ///
/// * [`log2`](fn.log2.html) /// * [`log2`](fn.log2.html)
pub fn log<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn log<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
v.map(|x| x.ln()) v.map(|x| x.ln())
} }
@ -49,13 +48,13 @@ pub fn log<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
/// ///
/// * [`log`](fn.log.html) /// * [`log`](fn.log.html)
pub fn log2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn log2<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
v.map(|x| x.log2()) v.map(|x| x.log2())
} }
/// Component-wise power. /// Component-wise power.
pub fn pow<N: Real, D: Dimension>(base: &TVec<N, D>, exponent: &TVec<N, D>) -> TVec<N, D> pub fn pow<N: Real, D: Dimension>(base: &TVec<N, D>, exponent: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
base.zip_map(exponent, |b, e| b.powf(e)) base.zip_map(exponent, |b, e| b.powf(e))
} }
@ -68,6 +67,6 @@ pub fn pow<N: Real, D: Dimension>(base: &TVec<N, D>, exponent: &TVec<N, D>) -> T
/// * [`inversesqrt`](fn.inversesqrt.html) /// * [`inversesqrt`](fn.inversesqrt.html)
/// * [`pow`](fn.pow.html) /// * [`pow`](fn.pow.html)
pub fn sqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn sqrt<N: Real, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
v.map(|x| x.sqrt()) v.map(|x| x.sqrt())
} }

View File

@ -1,5 +1,5 @@
use na::{Real, Orthographic3, Perspective3};
use aliases::TMat4; use aliases::TMat4;
use na::{Orthographic3, Perspective3, Real};
//pub fn frustum<N: Real>(left: N, right: N, bottom: N, top: N, near: N, far: N) -> TMat4<N> { //pub fn frustum<N: Real>(left: N, right: N, bottom: N, top: N, near: N, far: N) -> TMat4<N> {
// unimplemented!() // unimplemented!()
@ -90,7 +90,6 @@ pub fn ortho<N: Real>(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -
// unimplemented!() // unimplemented!()
//} //}
/// Creates a matrix for a perspective-view frustum based on the right handedness and OpenGL near and far clip planes definition. /// Creates a matrix for a perspective-view frustum based on the right handedness and OpenGL near and far clip planes definition.
/// ///
/// # Important note /// # Important note

View File

@ -1,6 +1,6 @@
use na::{self, Real, U3}; use na::{self, Real, U3};
use aliases::{TVec2, TVec3, TVec4, TMat4}; use aliases::{TMat4, TVec2, TVec3, TVec4};
/// Define a picking region. /// Define a picking region.
/// ///
@ -13,11 +13,15 @@ pub fn pick_matrix<N: Real>(center: &TVec2<N>, delta: &TVec2<N>, viewport: &TVec
let shift = TVec3::new( let shift = TVec3::new(
(viewport.z - (center.x - viewport.x) * na::convert(2.0)) / delta.x, (viewport.z - (center.x - viewport.x) * na::convert(2.0)) / delta.x,
(viewport.w - (center.y - viewport.y) * na::convert(2.0)) / delta.y, (viewport.w - (center.y - viewport.y) * na::convert(2.0)) / delta.y,
N::zero() N::zero(),
); );
let result = TMat4::new_translation(&shift); let result = TMat4::new_translation(&shift);
result.prepend_nonuniform_scaling(&TVec3::new(viewport.z / delta.x, viewport.w / delta.y, N::one())) result.prepend_nonuniform_scaling(&TVec3::new(
viewport.z / delta.x,
viewport.w / delta.y,
N::one(),
))
} }
/// Map the specified object coordinates `(obj.x, obj.y, obj.z)` into window coordinates using OpenGL near and far clip planes definition. /// Map the specified object coordinates `(obj.x, obj.y, obj.z)` into window coordinates using OpenGL near and far clip planes definition.
@ -36,7 +40,13 @@ pub fn pick_matrix<N: Real>(center: &TVec2<N>, delta: &TVec2<N>, viewport: &TVec
/// * [`unproject`](fn.unproject.html) /// * [`unproject`](fn.unproject.html)
/// * [`unproject_no`](fn.unproject_no.html) /// * [`unproject_no`](fn.unproject_no.html)
/// * [`unproject_zo`](fn.unproject_zo.html) /// * [`unproject_zo`](fn.unproject_zo.html)
pub fn project<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> { pub fn project<N: Real>(
obj: &TVec3<N>,
model: &TMat4<N>,
proj: &TMat4<N>,
viewport: TVec4<N>,
) -> TVec3<N>
{
project_no(obj, model, proj, viewport) project_no(obj, model, proj, viewport)
} }
@ -58,7 +68,13 @@ pub fn project<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewp
/// * [`unproject`](fn.unproject.html) /// * [`unproject`](fn.unproject.html)
/// * [`unproject_no`](fn.unproject_no.html) /// * [`unproject_no`](fn.unproject_no.html)
/// * [`unproject_zo`](fn.unproject_zo.html) /// * [`unproject_zo`](fn.unproject_zo.html)
pub fn project_no<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> { pub fn project_no<N: Real>(
obj: &TVec3<N>,
model: &TMat4<N>,
proj: &TMat4<N>,
viewport: TVec4<N>,
) -> TVec3<N>
{
let proj = project_zo(obj, model, proj, viewport); let proj = project_zo(obj, model, proj, viewport);
TVec3::new(proj.x, proj.y, proj.z * na::convert(0.5) + na::convert(0.5)) TVec3::new(proj.x, proj.y, proj.z * na::convert(0.5) + na::convert(0.5))
} }
@ -81,7 +97,13 @@ pub fn project_no<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, vi
/// * [`unproject`](fn.unproject.html) /// * [`unproject`](fn.unproject.html)
/// * [`unproject_no`](fn.unproject_no.html) /// * [`unproject_no`](fn.unproject_no.html)
/// * [`unproject_zo`](fn.unproject_zo.html) /// * [`unproject_zo`](fn.unproject_zo.html)
pub fn project_zo<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> { pub fn project_zo<N: Real>(
obj: &TVec3<N>,
model: &TMat4<N>,
proj: &TMat4<N>,
viewport: TVec4<N>,
) -> TVec3<N>
{
let normalized = proj * model * TVec4::new(obj.x, obj.y, obj.z, N::one()); let normalized = proj * model * TVec4::new(obj.x, obj.y, obj.z, N::one());
let scale = N::one() / normalized.w; let scale = N::one() / normalized.w;
@ -108,7 +130,13 @@ pub fn project_zo<N: Real>(obj: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, vi
/// * [`project_zo`](fn.project_zo.html) /// * [`project_zo`](fn.project_zo.html)
/// * [`unproject_no`](fn.unproject_no.html) /// * [`unproject_no`](fn.unproject_no.html)
/// * [`unproject_zo`](fn.unproject_zo.html) /// * [`unproject_zo`](fn.unproject_zo.html)
pub fn unproject<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> { pub fn unproject<N: Real>(
win: &TVec3<N>,
model: &TMat4<N>,
proj: &TMat4<N>,
viewport: TVec4<N>,
) -> TVec3<N>
{
unproject_no(win, model, proj, viewport) unproject_no(win, model, proj, viewport)
} }
@ -130,7 +158,13 @@ pub fn unproject<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, vie
/// * [`project_zo`](fn.project_zo.html) /// * [`project_zo`](fn.project_zo.html)
/// * [`unproject`](fn.unproject.html) /// * [`unproject`](fn.unproject.html)
/// * [`unproject_zo`](fn.unproject_zo.html) /// * [`unproject_zo`](fn.unproject_zo.html)
pub fn unproject_no<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> { pub fn unproject_no<N: Real>(
win: &TVec3<N>,
model: &TMat4<N>,
proj: &TMat4<N>,
viewport: TVec4<N>,
) -> TVec3<N>
{
let _2: N = na::convert(2.0); let _2: N = na::convert(2.0);
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros); let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
let pt = TVec4::new( let pt = TVec4::new(
@ -162,7 +196,13 @@ pub fn unproject_no<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>,
/// * [`project_zo`](fn.project_zo.html) /// * [`project_zo`](fn.project_zo.html)
/// * [`unproject`](fn.unproject.html) /// * [`unproject`](fn.unproject.html)
/// * [`unproject_no`](fn.unproject_no.html) /// * [`unproject_no`](fn.unproject_no.html)
pub fn unproject_zo<N: Real>(win: &TVec3<N>, model: &TMat4<N>, proj: &TMat4<N>, viewport: TVec4<N>) -> TVec3<N> { pub fn unproject_zo<N: Real>(
win: &TVec3<N>,
model: &TMat4<N>,
proj: &TMat4<N>,
viewport: TVec4<N>,
) -> TVec3<N>
{
let _2: N = na::convert(2.0); let _2: N = na::convert(2.0);
let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros); let transform = (proj * model).try_inverse().unwrap_or_else(TMat4::zeros);
let pt = TVec4::new( let pt = TVec4::new(

View File

@ -1,13 +1,18 @@
use na::DefaultAllocator; use na::DefaultAllocator;
use aliases::{TVec, TMat}; use aliases::{TMat, TVec};
use traits::{Alloc, Number, Dimension}; use traits::{Alloc, Dimension, Number};
/// Perform a component-wise equal-to comparison of two matrices. /// Perform a component-wise equal-to comparison of two matrices.
/// ///
/// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices. /// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices.
pub fn equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>) -> TVec<bool, C> pub fn equal_columns<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { x: &TMat<N, R, C>,
y: &TMat<N, R, C>,
) -> TVec<bool, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
let mut res = TVec::<_, C>::repeat(false); let mut res = TVec::<_, C>::repeat(false);
for i in 0..C::dim() { for i in 0..C::dim() {
@ -20,16 +25,28 @@ pub fn equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y
/// Returns the component-wise comparison of `|x - y| < epsilon`. /// Returns the component-wise comparison of `|x - y| < epsilon`.
/// ///
/// True if this expression is satisfied. /// True if this expression is satisfied.
pub fn equal_columns_eps<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: N) -> TVec<bool, C> pub fn equal_columns_eps<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { x: &TMat<N, R, C>,
y: &TMat<N, R, C>,
epsilon: N,
) -> TVec<bool, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
equal_columns_eps_vec(x, y, &TVec::<_, C>::repeat(epsilon)) equal_columns_eps_vec(x, y, &TVec::<_, C>::repeat(epsilon))
} }
/// Returns the component-wise comparison on each matrix column `|x - y| < epsilon`. /// Returns the component-wise comparison on each matrix column `|x - y| < epsilon`.
/// ///
/// True if this expression is satisfied. /// True if this expression is satisfied.
pub fn equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: &TVec<N, C>) -> TVec<bool, C> pub fn equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { x: &TMat<N, R, C>,
y: &TMat<N, R, C>,
epsilon: &TVec<N, C>,
) -> TVec<bool, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
let mut res = TVec::<_, C>::repeat(false); let mut res = TVec::<_, C>::repeat(false);
for i in 0..C::dim() { for i in 0..C::dim() {
@ -42,8 +59,13 @@ pub fn equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(x: &TMat<N,
/// Perform a component-wise not-equal-to comparison of two matrices. /// Perform a component-wise not-equal-to comparison of two matrices.
/// ///
/// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices. /// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices.
pub fn not_equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>) -> TVec<bool, C> pub fn not_equal_columns<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { x: &TMat<N, R, C>,
y: &TMat<N, R, C>,
) -> TVec<bool, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
let mut res = TVec::<_, C>::repeat(false); let mut res = TVec::<_, C>::repeat(false);
for i in 0..C::dim() { for i in 0..C::dim() {
@ -56,16 +78,28 @@ pub fn not_equal_columns<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C
/// Returns the component-wise comparison of `|x - y| < epsilon`. /// Returns the component-wise comparison of `|x - y| < epsilon`.
/// ///
/// True if this expression is not satisfied. /// True if this expression is not satisfied.
pub fn not_equal_columns_eps<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: N) -> TVec<bool, C> pub fn not_equal_columns_eps<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { x: &TMat<N, R, C>,
y: &TMat<N, R, C>,
epsilon: N,
) -> TVec<bool, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
not_equal_columns_eps_vec(x, y, &TVec::<_, C>::repeat(epsilon)) not_equal_columns_eps_vec(x, y, &TVec::<_, C>::repeat(epsilon))
} }
/// Returns the component-wise comparison of `|x - y| >= epsilon`. /// Returns the component-wise comparison of `|x - y| >= epsilon`.
/// ///
/// True if this expression is not satisfied. /// True if this expression is not satisfied.
pub fn not_equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>, epsilon: &TVec<N, C>) -> TVec<bool, C> pub fn not_equal_columns_eps_vec<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { x: &TMat<N, R, C>,
y: &TMat<N, R, C>,
epsilon: &TVec<N, C>,
) -> TVec<bool, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
let mut res = TVec::<_, C>::repeat(false); let mut res = TVec::<_, C>::repeat(false);
for i in 0..C::dim() { for i in 0..C::dim() {

View File

@ -1,11 +1,11 @@
use na::{DefaultAllocator, Real, Unit, Rotation3, Point3}; use na::{DefaultAllocator, Point3, Real, Rotation3, Unit};
use traits::{Dimension, Number, Alloc}; use aliases::{TMat, TMat4, TVec, TVec3};
use aliases::{TMat, TVec, TVec3, TMat4}; use traits::{Alloc, Dimension, Number};
/// The identity matrix. /// The identity matrix.
pub fn identity<N: Number, D: Dimension>() -> TMat<N, D, D> pub fn identity<N: Number, D: Dimension>() -> TMat<N, D, D>
where DefaultAllocator: Alloc<N, D, D> { where DefaultAllocator: Alloc<N, D, D> {
TMat::<N, D, D>::identity() TMat::<N, D, D>::identity()
} }
@ -38,7 +38,11 @@ pub fn look_at<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMa
/// * [`look_at`](fn.look_at.html) /// * [`look_at`](fn.look_at.html)
/// * [`look_at_rh`](fn.look_at_rh.html) /// * [`look_at_rh`](fn.look_at_rh.html)
pub fn look_at_lh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> { pub fn look_at_lh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
TMat::look_at_lh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up) TMat::look_at_lh(
&Point3::from_coordinates(*eye),
&Point3::from_coordinates(*center),
up,
)
} }
/// Build a right handed look at view matrix. /// Build a right handed look at view matrix.
@ -54,7 +58,11 @@ pub fn look_at_lh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) ->
/// * [`look_at`](fn.look_at.html) /// * [`look_at`](fn.look_at.html)
/// * [`look_at_lh`](fn.look_at_lh.html) /// * [`look_at_lh`](fn.look_at_lh.html)
pub fn look_at_rh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> { pub fn look_at_rh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
TMat::look_at_rh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up) TMat::look_at_rh(
&Point3::from_coordinates(*eye),
&Point3::from_coordinates(*center),
up,
)
} }
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle and right-multiply it to `m`. /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle and right-multiply it to `m`.

View File

@ -1,30 +1,41 @@
//! (Reexported) Additional features not specified by GLSL specification //! (Reexported) Additional features not specified by GLSL specification
pub use self::matrix_clip_space::{ortho, perspective}; pub use self::matrix_clip_space::{ortho, perspective};
pub use self::matrix_projection::{pick_matrix, project, project_no, project_zo, unproject, unproject_no, unproject_zo}; pub use self::matrix_projection::{
pub use self::matrix_relationnal::{equal_columns, equal_columns_eps, equal_columns_eps_vec, not_equal_columns, not_equal_columns_eps, not_equal_columns_eps_vec}; pick_matrix, project, project_no, project_zo, unproject, unproject_no, unproject_zo,
pub use self::matrix_transform::{identity, look_at, look_at_lh, rotate, scale, look_at_rh, translate, rotate_x, rotate_y, rotate_z}; };
pub use self::matrix_relationnal::{
equal_columns, equal_columns_eps, equal_columns_eps_vec, not_equal_columns,
not_equal_columns_eps, not_equal_columns_eps_vec,
};
pub use self::matrix_transform::{
identity, look_at, look_at_lh, look_at_rh, rotate, rotate_x, rotate_y, rotate_z, scale,
translate,
};
pub use self::quaternion_common::{quat_conjugate, quat_inverse, quat_lerp, quat_slerp};
pub use self::quaternion_geometric::{
quat_cross, quat_dot, quat_length, quat_magnitude, quat_normalize,
};
pub use self::quaternion_relational::{
quat_equal, quat_equal_eps, quat_not_equal, quat_not_equal_eps,
};
pub use self::quaternion_transform::{quat_exp, quat_log, quat_pow, quat_rotate};
pub use self::quaternion_trigonometric::{quat_angle, quat_angle_axis, quat_axis};
pub use self::scalar_common::{max3_scalar, max4_scalar, min3_scalar, min4_scalar}; pub use self::scalar_common::{max3_scalar, max4_scalar, min3_scalar, min4_scalar};
pub use self::scalar_constants::{epsilon, pi}; pub use self::scalar_constants::{epsilon, pi};
pub use self::vector_common::{max, max2, max3, max4, min, min2, min3, min4}; pub use self::vector_common::{max, max2, max3, max4, min, min2, min3, min4};
pub use self::vector_relational::{equal_eps, equal_eps_vec, not_equal_eps, not_equal_eps_vec}; pub use self::vector_relational::{equal_eps, equal_eps_vec, not_equal_eps, not_equal_eps_vec};
pub use self::quaternion_common::{quat_conjugate, quat_inverse, quat_lerp, quat_slerp};
pub use self::quaternion_geometric::{quat_cross, quat_dot, quat_length, quat_magnitude, quat_normalize};
pub use self::quaternion_relational::{quat_equal, quat_equal_eps, quat_not_equal, quat_not_equal_eps};
pub use self::quaternion_transform::{quat_exp, quat_log, quat_pow, quat_rotate};
pub use self::quaternion_trigonometric::{quat_angle, quat_angle_axis, quat_axis};
mod matrix_clip_space; mod matrix_clip_space;
mod matrix_projection; mod matrix_projection;
mod matrix_relationnal; mod matrix_relationnal;
mod matrix_transform; mod matrix_transform;
mod scalar_common;
mod scalar_constants;
mod vector_common;
mod vector_relational;
mod quaternion_common; mod quaternion_common;
mod quaternion_geometric; mod quaternion_geometric;
mod quaternion_relational; mod quaternion_relational;
mod quaternion_transform; mod quaternion_transform;
mod quaternion_trigonometric; mod quaternion_trigonometric;
mod scalar_common;
mod scalar_constants;
mod vector_common;
mod vector_relational;

View File

@ -31,5 +31,7 @@ pub fn quat_lerp<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
/// Interpolate spherically between `x` and `y`. /// Interpolate spherically between `x` and `y`.
pub fn quat_slerp<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> { pub fn quat_slerp<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
Unit::new_normalize(*x).slerp(&Unit::new_normalize(*y), a).unwrap() Unit::new_normalize(*x)
.slerp(&Unit::new_normalize(*y), a)
.unwrap()
} }

View File

@ -1,6 +1,5 @@
use na::{Real, U4}; use na::{Real, U4};
use aliases::{Qua, TVec}; use aliases::{Qua, TVec};
/// Component-wise equality comparison between two quaternions. /// Component-wise equality comparison between two quaternions.

View File

@ -1,4 +1,4 @@
use na::{Real, UnitQuaternion, Unit}; use na::{Real, Unit, UnitQuaternion};
use aliases::{Qua, TVec3}; use aliases::{Qua, TVec3};

View File

@ -1,7 +1,7 @@
use na::{self, DefaultAllocator}; use na::{self, DefaultAllocator};
use traits::{Alloc, Number, Dimension};
use aliases::TVec; use aliases::TVec;
use traits::{Alloc, Dimension, Number};
/// Component-wise maximum between a vector and a scalar. /// Component-wise maximum between a vector and a scalar.
/// ///
@ -17,7 +17,7 @@ use aliases::TVec;
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn max<N: Number, D: Dimension>(a: &TVec<N, D>, b: N) -> TVec<N, D> pub fn max<N: Number, D: Dimension>(a: &TVec<N, D>, b: N) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
a.map(|a| na::sup(&a, &b)) a.map(|a| na::sup(&a, &b))
} }
@ -35,7 +35,7 @@ pub fn max<N: Number, D: Dimension>(a: &TVec<N, D>, b: N) -> TVec<N, D>
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn max2<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>) -> TVec<N, D> pub fn max2<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
na::sup(a, b) na::sup(a, b)
} }
@ -53,7 +53,7 @@ pub fn max2<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>) -> TVec<N,
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn max3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D> pub fn max3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
max2(&max2(a, b), c) max2(&max2(a, b), c)
} }
@ -70,8 +70,15 @@ pub fn max3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N,
/// * [`min2`](fn.min2.html) /// * [`min2`](fn.min2.html)
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn max4<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>, d: &TVec<N, D>) -> TVec<N, D> pub fn max4<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { a: &TVec<N, D>,
b: &TVec<N, D>,
c: &TVec<N, D>,
d: &TVec<N, D>,
) -> TVec<N, D>
where
DefaultAllocator: Alloc<N, D>,
{
max2(&max2(a, b), &max2(c, d)) max2(&max2(a, b), &max2(c, d))
} }
@ -89,7 +96,7 @@ pub fn max4<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N,
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn min<N: Number, D: Dimension>(x: &TVec<N, D>, y: N) -> TVec<N, D> pub fn min<N: Number, D: Dimension>(x: &TVec<N, D>, y: N) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|x| na::inf(&x, &y)) x.map(|x| na::inf(&x, &y))
} }
@ -107,7 +114,7 @@ pub fn min<N: Number, D: Dimension>(x: &TVec<N, D>, y: N) -> TVec<N, D>
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn min2<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D> pub fn min2<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
na::inf(x, y) na::inf(x, y)
} }
@ -125,7 +132,7 @@ pub fn min2<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<N,
/// * [`min2`](fn.min2.html) /// * [`min2`](fn.min2.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn min3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D> pub fn min3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
min2(&min2(a, b), c) min2(&min2(a, b), c)
} }
@ -142,7 +149,14 @@ pub fn min3<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N,
/// * [`min`](fn.min.html) /// * [`min`](fn.min.html)
/// * [`min2`](fn.min2.html) /// * [`min2`](fn.min2.html)
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
pub fn min4<N: Number, D: Dimension>(a: &TVec<N, D>, b: &TVec<N, D>, c: &TVec<N, D>, d: &TVec<N, D>) -> TVec<N, D> pub fn min4<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { a: &TVec<N, D>,
b: &TVec<N, D>,
c: &TVec<N, D>,
d: &TVec<N, D>,
) -> TVec<N, D>
where
DefaultAllocator: Alloc<N, D>,
{
min2(&min2(a, b), &min2(c, d)) min2(&min2(a, b), &min2(c, d))
} }

View File

@ -1,7 +1,7 @@
use na::{DefaultAllocator}; use na::DefaultAllocator;
use traits::{Alloc, Number, Dimension};
use aliases::TVec; use aliases::TVec;
use traits::{Alloc, Dimension, Number};
/// Component-wise approximate equality of two vectors, using a scalar epsilon. /// Component-wise approximate equality of two vectors, using a scalar epsilon.
/// ///
@ -10,8 +10,14 @@ use aliases::TVec;
/// * [`equal_eps_vec`](fn.equal_eps_vec.html) /// * [`equal_eps_vec`](fn.equal_eps_vec.html)
/// * [`not_equal_eps`](fn.not_equal_eps.html) /// * [`not_equal_eps`](fn.not_equal_eps.html)
/// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html) /// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html)
pub fn equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: N) -> TVec<bool, D> pub fn equal_eps<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { x: &TVec<N, D>,
y: &TVec<N, D>,
epsilon: N,
) -> TVec<bool, D>
where
DefaultAllocator: Alloc<N, D>,
{
x.zip_map(y, |x, y| abs_diff_eq!(x, y, epsilon = epsilon)) x.zip_map(y, |x, y| abs_diff_eq!(x, y, epsilon = epsilon))
} }
@ -22,8 +28,14 @@ pub fn equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilo
/// * [`equal_eps`](fn.equal_eps.html) /// * [`equal_eps`](fn.equal_eps.html)
/// * [`not_equal_eps`](fn.not_equal_eps.html) /// * [`not_equal_eps`](fn.not_equal_eps.html)
/// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html) /// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html)
pub fn equal_eps_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: &TVec<N, D>) -> TVec<bool, D> pub fn equal_eps_vec<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { x: &TVec<N, D>,
y: &TVec<N, D>,
epsilon: &TVec<N, D>,
) -> TVec<bool, D>
where
DefaultAllocator: Alloc<N, D>,
{
x.zip_zip_map(y, epsilon, |x, y, eps| abs_diff_eq!(x, y, epsilon = eps)) x.zip_zip_map(y, epsilon, |x, y, eps| abs_diff_eq!(x, y, epsilon = eps))
} }
@ -34,8 +46,14 @@ pub fn equal_eps_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, ep
/// * [`equal_eps`](fn.equal_eps.html) /// * [`equal_eps`](fn.equal_eps.html)
/// * [`equal_eps_vec`](fn.equal_eps_vec.html) /// * [`equal_eps_vec`](fn.equal_eps_vec.html)
/// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html) /// * [`not_equal_eps_vec`](fn.not_equal_eps_vec.html)
pub fn not_equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: N) -> TVec<bool, D> pub fn not_equal_eps<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { x: &TVec<N, D>,
y: &TVec<N, D>,
epsilon: N,
) -> TVec<bool, D>
where
DefaultAllocator: Alloc<N, D>,
{
x.zip_map(y, |x, y| abs_diff_ne!(x, y, epsilon = epsilon)) x.zip_map(y, |x, y| abs_diff_ne!(x, y, epsilon = epsilon))
} }
@ -46,7 +64,13 @@ pub fn not_equal_eps<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, ep
/// * [`equal_eps`](fn.equal_eps.html) /// * [`equal_eps`](fn.equal_eps.html)
/// * [`equal_eps_vec`](fn.equal_eps_vec.html) /// * [`equal_eps_vec`](fn.equal_eps_vec.html)
/// * [`not_equal_eps`](fn.not_equal_eps.html) /// * [`not_equal_eps`](fn.not_equal_eps.html)
pub fn not_equal_eps_vec<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>, epsilon: &TVec<N, D>) -> TVec<bool, D> pub fn not_equal_eps_vec<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { x: &TVec<N, D>,
y: &TVec<N, D>,
epsilon: &TVec<N, D>,
) -> TVec<bool, D>
where
DefaultAllocator: Alloc<N, D>,
{
x.zip_zip_map(y, epsilon, |x, y, eps| abs_diff_ne!(x, y, epsilon = eps)) x.zip_zip_map(y, epsilon, |x, y, eps| abs_diff_ne!(x, y, epsilon = eps))
} }

View File

@ -1,7 +1,7 @@
use na::{Real, DefaultAllocator}; use na::{DefaultAllocator, Real};
use traits::{Number, Alloc, Dimension};
use aliases::{TVec, TVec3}; use aliases::{TVec, TVec3};
use traits::{Alloc, Dimension, Number};
/// The cross product of two vectors. /// The cross product of two vectors.
pub fn cross<N: Number, D: Dimension>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> { pub fn cross<N: Number, D: Dimension>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> {
@ -14,19 +14,25 @@ pub fn cross<N: Number, D: Dimension>(x: &TVec3<N>, y: &TVec3<N>) -> TVec3<N> {
/// ///
/// * [`distance2`](fn.distance2.html) /// * [`distance2`](fn.distance2.html)
pub fn distance<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N pub fn distance<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
(p1 - p0).norm() (p1 - p0).norm()
} }
/// The dot product of two vectors. /// The dot product of two vectors.
pub fn dot<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N pub fn dot<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.dot(y) x.dot(y)
} }
/// If `dot(nref, i) < 0.0`, return `n`, otherwise, return `-n`. /// If `dot(nref, i) < 0.0`, return `n`, otherwise, return `-n`.
pub fn faceforward<N: Number, D: Dimension>(n: &TVec<N, D>, i: &TVec<N, D>, nref: &TVec<N, D>) -> TVec<N, D> pub fn faceforward<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { n: &TVec<N, D>,
i: &TVec<N, D>,
nref: &TVec<N, D>,
) -> TVec<N, D>
where
DefaultAllocator: Alloc<N, D>,
{
if nref.dot(i) < N::zero() { if nref.dot(i) < N::zero() {
n.clone() n.clone()
} else { } else {
@ -44,7 +50,7 @@ pub fn faceforward<N: Number, D: Dimension>(n: &TVec<N, D>, i: &TVec<N, D>, nref
/// * [`magnitude`](fn.magnitude.html) /// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude2`](fn.magnitude2.html) /// * [`magnitude2`](fn.magnitude2.html)
pub fn length<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn length<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm() x.norm()
} }
@ -58,34 +64,32 @@ pub fn length<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
/// * [`magnitude2`](fn.magnitude2.html) /// * [`magnitude2`](fn.magnitude2.html)
/// * [`nalgebra::norm`](../nalgebra/fn.norm.html) /// * [`nalgebra::norm`](../nalgebra/fn.norm.html)
pub fn magnitude<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn magnitude<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm() x.norm()
} }
/// Normalizes a vector. /// Normalizes a vector.
pub fn normalize<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn normalize<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.normalize() x.normalize()
} }
/// For the incident vector `i` and surface orientation `n`, returns the reflection direction : `result = i - 2.0 * dot(n, i) * n`. /// For the incident vector `i` and surface orientation `n`, returns the reflection direction : `result = i - 2.0 * dot(n, i) * n`.
pub fn reflect_vec<N: Number, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>) -> TVec<N, D> pub fn reflect_vec<N: Number, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
let _2 = N::one() + N::one(); let _2 = N::one() + N::one();
i - n * (n.dot(i) * _2) i - n * (n.dot(i) * _2)
} }
/// For the incident vector `i` and surface normal `n`, and the ratio of indices of refraction `eta`, return the refraction vector. /// For the incident vector `i` and surface normal `n`, and the ratio of indices of refraction `eta`, return the refraction vector.
pub fn refract_vec<N: Real, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>, eta: N) -> TVec<N, D> pub fn refract_vec<N: Real, D: Dimension>(i: &TVec<N, D>, n: &TVec<N, D>, eta: N) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
let ni = n.dot(i); let ni = n.dot(i);
let k = N::one() - eta * eta * (N::one() - ni * ni); let k = N::one() - eta * eta * (N::one() - ni * ni);
if k < N::zero() { if k < N::zero() {
TVec::<_, D>::zeros() TVec::<_, D>::zeros()
} } else {
else {
i * eta - n * (eta * dot(n, i) + k.sqrt()) i * eta - n * (eta * dot(n, i) + k.sqrt())
} }
} }

View File

@ -1,7 +1,7 @@
use na::{Scalar, DefaultAllocator}; use na::{DefaultAllocator, Scalar};
use aliases::{TMat, TVec};
use traits::{Alloc, Dimension}; use traits::{Alloc, Dimension};
use aliases::{TVec, TMat};
/// The `index`-th column of the matrix `m`. /// The `index`-th column of the matrix `m`.
/// ///
@ -10,8 +10,13 @@ use aliases::{TVec, TMat};
/// * [`row`](fn.row.html) /// * [`row`](fn.row.html)
/// * [`set_column`](fn.set_column.html) /// * [`set_column`](fn.set_column.html)
/// * [`set_row`](fn.set_row.html) /// * [`set_row`](fn.set_row.html)
pub fn column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, R> pub fn column<N: Scalar, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { m: &TMat<N, R, C>,
index: usize,
) -> TVec<N, R>
where
DefaultAllocator: Alloc<N, R, C>,
{
m.column(index).into_owned() m.column(index).into_owned()
} }
@ -22,8 +27,14 @@ pub fn column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: u
/// * [`column`](fn.column.html) /// * [`column`](fn.column.html)
/// * [`row`](fn.row.html) /// * [`row`](fn.row.html)
/// * [`set_row`](fn.set_row.html) /// * [`set_row`](fn.set_row.html)
pub fn set_column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize, x: &TVec<N, R>) -> TMat<N, R, C> pub fn set_column<N: Scalar, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { m: &TMat<N, R, C>,
index: usize,
x: &TVec<N, R>,
) -> TMat<N, R, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
let mut res = m.clone(); let mut res = m.clone();
res.set_column(index, x); res.set_column(index, x);
res res
@ -37,7 +48,7 @@ pub fn set_column<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, inde
/// * [`set_column`](fn.set_column.html) /// * [`set_column`](fn.set_column.html)
/// * [`set_row`](fn.set_row.html) /// * [`set_row`](fn.set_row.html)
pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, C> pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, C>
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
m.row(index).into_owned().transpose() m.row(index).into_owned().transpose()
} }
@ -48,8 +59,14 @@ pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usiz
/// * [`column`](fn.column.html) /// * [`column`](fn.column.html)
/// * [`row`](fn.row.html) /// * [`row`](fn.row.html)
/// * [`set_column`](fn.set_column.html) /// * [`set_column`](fn.set_column.html)
pub fn set_row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize, x: &TVec<N, C>) -> TMat<N, R, C> pub fn set_row<N: Scalar, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { m: &TMat<N, R, C>,
index: usize,
x: &TVec<N, C>,
) -> TMat<N, R, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
let mut res = m.clone(); let mut res = m.clone();
res.set_row(index, &x.transpose()); res.set_row(index, &x.transpose());
res res

View File

@ -1,17 +1,19 @@
use na::{Real, DefaultAllocator}; use na::{DefaultAllocator, Real};
use traits::{Alloc, Dimension};
use aliases::TMat; use aliases::TMat;
use traits::{Alloc, Dimension};
/// Fast matrix inverse for affine matrix. /// Fast matrix inverse for affine matrix.
pub fn affine_inverse<N: Real, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D> pub fn affine_inverse<N: Real, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
where DefaultAllocator: Alloc<N, D, D> { where DefaultAllocator: Alloc<N, D, D> {
// FIXME: this should be optimized. // FIXME: this should be optimized.
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros) m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros)
} }
/// Compute the transpose of the inverse of a matrix. /// Compute the transpose of the inverse of a matrix.
pub fn inverse_transpose<N: Real, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D> pub fn inverse_transpose<N: Real, D: Dimension>(m: TMat<N, D, D>) -> TMat<N, D, D>
where DefaultAllocator: Alloc<N, D, D> { where DefaultAllocator: Alloc<N, D, D> {
m.try_inverse().unwrap_or_else(TMat::<_, D, D>::zeros).transpose() m.try_inverse()
.unwrap_or_else(TMat::<_, D, D>::zeros)
.transpose()
} }

View File

@ -1,17 +1,32 @@
//! (Reexported) Recommended features not specified by GLSL specification //! (Reexported) Recommended features not specified by GLSL specification
//pub use self::bitfield::*; //pub use self::bitfield::*;
pub use self::constants::{e, two_pi, euler, four_over_pi, golden_ratio, half_pi, ln_ln_two, ln_ten, ln_two, one, one_over_pi, one_over_root_two, one_over_two_pi, quarter_pi, root_five, root_half_pi, root_ln_four, root_pi, root_three, root_two, root_two_pi, third, three_over_two_pi, two_over_pi, two_over_root_pi, two_thirds, zero}; pub use self::constants::{
e, euler, four_over_pi, golden_ratio, half_pi, ln_ln_two, ln_ten, ln_two, one, one_over_pi,
one_over_root_two, one_over_two_pi, quarter_pi, root_five, root_half_pi, root_ln_four, root_pi,
root_three, root_two, root_two_pi, third, three_over_two_pi, two_over_pi, two_over_root_pi,
two_pi, two_thirds, zero,
};
//pub use self::integer::*; //pub use self::integer::*;
pub use self::matrix_access::{column, row, set_column, set_row}; pub use self::matrix_access::{column, row, set_column, set_row};
pub use self::matrix_inverse::{affine_inverse, inverse_transpose}; pub use self::matrix_inverse::{affine_inverse, inverse_transpose};
//pub use self::packing::*; //pub use self::packing::*;
//pub use self::reciprocal::*; //pub use self::reciprocal::*;
//pub use self::round::*; //pub use self::round::*;
pub use self::type_ptr::{make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3, make_mat3x2, make_mat3x3, make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4, make_quat, make_vec1, make_vec2, make_vec3, make_vec4, value_ptr, value_ptr_mut, vec1_to_vec2, vec1_to_vec3, vec1_to_vec4, vec2_to_vec1, vec2_to_vec2, vec2_to_vec3, vec2_to_vec4, vec3_to_vec1, vec3_to_vec2, vec3_to_vec3, vec3_to_vec4, vec4_to_vec1, vec4_to_vec2, vec4_to_vec3, vec4_to_vec4, mat2_to_mat3, mat2_to_mat4, mat3_to_mat2, mat3_to_mat4, mat4_to_mat2, mat4_to_mat3}; pub use self::type_ptr::{
make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3, make_mat3x2, make_mat3x3,
make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4, make_quat, make_vec1, make_vec2,
make_vec3, make_vec4, mat2_to_mat3, mat2_to_mat4, mat3_to_mat2, mat3_to_mat4, mat4_to_mat2,
mat4_to_mat3, value_ptr, value_ptr_mut, vec1_to_vec2, vec1_to_vec3, vec1_to_vec4, vec2_to_vec1,
vec2_to_vec2, vec2_to_vec3, vec2_to_vec4, vec3_to_vec1, vec3_to_vec2, vec3_to_vec3,
vec3_to_vec4, vec4_to_vec1, vec4_to_vec2, vec4_to_vec3, vec4_to_vec4,
};
//pub use self::ulp::*; //pub use self::ulp::*;
pub use self::quaternion::{quat_cast, quat_euler_angles, quat_greater_than, quat_greater_than_equal, quat_less_than, quat_less_than_equal, quat_look_at, quat_look_at_lh, quat_look_at_rh, quat_pitch, quat_roll, quat_yaw}; pub use self::quaternion::{
quat_cast, quat_euler_angles, quat_greater_than, quat_greater_than_equal, quat_less_than,
quat_less_than_equal, quat_look_at, quat_look_at_lh, quat_look_at_rh, quat_pitch, quat_roll,
quat_yaw,
};
//mod bitfield; //mod bitfield;
mod constants; mod constants;

View File

@ -1,7 +1,6 @@
use na::{Real, U4, UnitQuaternion}; use na::{Real, UnitQuaternion, U4};
use aliases::{Qua, TVec, TVec3, TMat4};
use aliases::{Qua, TMat4, TVec, TVec3};
/// Euler angles of the quaternion `q` as (pitch, yaw, roll). /// Euler angles of the quaternion `q` as (pitch, yaw, roll).
pub fn quat_euler_angles<N: Real>(x: &Qua<N>) -> TVec3<N> { pub fn quat_euler_angles<N: Real>(x: &Qua<N>) -> TVec3<N> {

View File

@ -1,8 +1,10 @@
use na::{Scalar, Real, DefaultAllocator, Quaternion}; use na::{DefaultAllocator, Quaternion, Real, Scalar};
use traits::{Number, Alloc, Dimension}; use aliases::{
use aliases::{Qua, TMat, TMat2, TMat3, TMat4, TVec1, TVec2, TVec3, TVec4, Qua, TMat, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3, TVec1,
TMat2x3, TMat2x4, TMat3x2, TMat3x4, TMat4x2, TMat4x3}; TVec2, TVec3, TVec4,
};
use traits::{Alloc, Dimension, Number};
/// Creates a 2x2 matrix from a slice arranged in column-major order. /// Creates a 2x2 matrix from a slice arranged in column-major order.
pub fn make_mat2<N: Scalar>(ptr: &[N]) -> TMat2<N> { pub fn make_mat2<N: Scalar>(ptr: &[N]) -> TMat2<N> {
@ -69,19 +71,12 @@ pub fn mat2_to_mat3<N: Number>(m: &TMat2<N>) -> TMat3<N> {
let _0 = N::zero(); let _0 = N::zero();
let _1 = N::one(); let _1 = N::one();
TMat3::new( TMat3::new(m.m11, m.m12, _0, m.m21, m.m22, _0, _0, _0, _1)
m.m11, m.m12, _0,
m.m21, m.m22, _0,
_0, _0, _1
)
} }
/// Converts a 3x3 matrix to a 2x2 matrix. /// Converts a 3x3 matrix to a 2x2 matrix.
pub fn mat3_to_mat2<N: Scalar>(m: &TMat3<N>) -> TMat2<N> { pub fn mat3_to_mat2<N: Scalar>(m: &TMat3<N>) -> TMat2<N> {
TMat2::new( TMat2::new(m.m11, m.m12, m.m21, m.m22)
m.m11, m.m12,
m.m21, m.m22
)
} }
/// Converts a 3x3 matrix to a 4x4 matrix. /// Converts a 3x3 matrix to a 4x4 matrix.
@ -90,19 +85,14 @@ pub fn mat3_to_mat4<N: Number>(m: &TMat3<N>) -> TMat4<N> {
let _1 = N::one(); let _1 = N::one();
TMat4::new( TMat4::new(
m.m11, m.m12, m.m13, _0, m.m11, m.m12, m.m13, _0, m.m21, m.m22, m.m23, _0, m.m31, m.m32, m.m33, _0, _0, _0, _0, _1,
m.m21, m.m22, m.m23, _0,
m.m31, m.m32, m.m33, _0,
_0, _0, _0, _1,
) )
} }
/// Converts a 4x4 matrix to a 3x3 matrix. /// Converts a 4x4 matrix to a 3x3 matrix.
pub fn mat4_to_mat3<N: Scalar>(m: &TMat4<N>) -> TMat3<N> { pub fn mat4_to_mat3<N: Scalar>(m: &TMat4<N>) -> TMat3<N> {
TMat3::new( TMat3::new(
m.m11, m.m12, m.m13, m.m11, m.m12, m.m13, m.m21, m.m22, m.m23, m.m31, m.m32, m.m33,
m.m21, m.m22, m.m23,
m.m31, m.m32, m.m33,
) )
} }
@ -112,19 +102,13 @@ pub fn mat2_to_mat4<N: Number>(m: &TMat2<N>) -> TMat4<N> {
let _1 = N::one(); let _1 = N::one();
TMat4::new( TMat4::new(
m.m11, m.m12, _0, _0, m.m11, m.m12, _0, _0, m.m21, m.m22, _0, _0, _0, _0, _1, _0, _0, _0, _0, _1,
m.m21, m.m22, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1,
) )
} }
/// Converts a 4x4 matrix to a 2x2 matrix. /// Converts a 4x4 matrix to a 2x2 matrix.
pub fn mat4_to_mat2<N: Scalar>(m: &TMat4<N>) -> TMat2<N> { pub fn mat4_to_mat2<N: Scalar>(m: &TMat4<N>) -> TMat2<N> {
TMat2::new( TMat2::new(m.m11, m.m12, m.m21, m.m22)
m.m11, m.m12,
m.m21, m.m22,
)
} }
/// Creates a quaternion from a slice arranged as `[x, y, z, w]`. /// Creates a quaternion from a slice arranged as `[x, y, z, w]`.
@ -400,13 +384,12 @@ pub fn make_vec4<N: Scalar>(ptr: &[N]) -> TVec4<N> {
/// Converts a matrix or vector to a slice arranged in column-major order. /// Converts a matrix or vector to a slice arranged in column-major order.
pub fn value_ptr<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> &[N] pub fn value_ptr<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> &[N]
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
x.as_slice() x.as_slice()
} }
/// Converts a matrix or vector to a mutable slice arranged in column-major order. /// Converts a matrix or vector to a mutable slice arranged in column-major order.
pub fn value_ptr_mut<N: Scalar, R: Dimension, C: Dimension>(x: &mut TMat<N, R, C>) -> &mut [N] pub fn value_ptr_mut<N: Scalar, R: Dimension, C: Dimension>(x: &mut TMat<N, R, C>) -> &mut [N]
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
x.as_mut_slice() x.as_mut_slice()
} }

View File

@ -1,7 +1,7 @@
use na::{self, DefaultAllocator}; use na::{self, DefaultAllocator};
use traits::{Number, Alloc, Dimension};
use aliases::TMat; use aliases::TMat;
use traits::{Alloc, Dimension, Number};
/// The sum of every component of the given matrix or vector. /// The sum of every component of the given matrix or vector.
/// ///
@ -22,7 +22,7 @@ use aliases::TMat;
/// * [`comp_min`](fn.comp_min.html) /// * [`comp_min`](fn.comp_min.html)
/// * [`comp_mul`](fn.comp_mul.html) /// * [`comp_mul`](fn.comp_mul.html)
pub fn comp_add<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N pub fn comp_add<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
m.iter().fold(N::zero(), |x, y| x + *y) m.iter().fold(N::zero(), |x, y| x + *y)
} }
@ -49,7 +49,7 @@ pub fn comp_add<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
/// * [`max3`](fn.max3.html) /// * [`max3`](fn.max3.html)
/// * [`max4`](fn.max4.html) /// * [`max4`](fn.max4.html)
pub fn comp_max<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N pub fn comp_max<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
m.iter().fold(N::min_value(), |x, y| na::sup(&x, y)) m.iter().fold(N::min_value(), |x, y| na::sup(&x, y))
} }
@ -76,7 +76,7 @@ pub fn comp_max<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
/// * [`min3`](fn.min3.html) /// * [`min3`](fn.min3.html)
/// * [`min4`](fn.min4.html) /// * [`min4`](fn.min4.html)
pub fn comp_min<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N pub fn comp_min<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
m.iter().fold(N::max_value(), |x, y| na::inf(&x, y)) m.iter().fold(N::max_value(), |x, y| na::inf(&x, y))
} }
@ -99,7 +99,7 @@ pub fn comp_min<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
/// * [`comp_max`](fn.comp_max.html) /// * [`comp_max`](fn.comp_max.html)
/// * [`comp_min`](fn.comp_min.html) /// * [`comp_min`](fn.comp_min.html)
pub fn comp_mul<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N pub fn comp_mul<N: Number, R: Dimension, C: Dimension>(m: &TMat<N, R, C>) -> N
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
m.iter().fold(N::one(), |x, y| x * *y) m.iter().fold(N::one(), |x, y| x * *y)
} }

View File

@ -1,5 +1,5 @@
use traits::Number;
use aliases::TVec2; use aliases::TVec2;
use traits::Number;
/// The 2D perpendicular product between two vectors. /// The 2D perpendicular product between two vectors.
pub fn cross2d<N: Number>(v: &TVec2<N>, u: &TVec2<N>) -> N { pub fn cross2d<N: Number>(v: &TVec2<N>, u: &TVec2<N>) -> N {

View File

@ -1,5 +1,5 @@
use traits::Number;
use aliases::TVec3; use aliases::TVec3;
use traits::Number;
/// Returns `true` if `{a, b, c}` forms a left-handed trihedron. /// Returns `true` if `{a, b, c}` forms a left-handed trihedron.
/// ///

View File

@ -1,5 +1,7 @@
use aliases::{
TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3, TVec2, TVec3, TVec4,
};
use traits::Number; use traits::Number;
use aliases::{TVec2, TVec3, TVec4, TMat2, TMat2x3, TMat2x4, TMat3, TMat3x2, TMat3x4, TMat4, TMat4x2, TMat4x3};
/// Builds a 2x2 diagonal matrix. /// Builds a 2x2 diagonal matrix.
/// ///

View File

@ -1,25 +1,37 @@
//! (Reexported) Experimental features not specified by GLSL specification. //! (Reexported) Experimental features not specified by GLSL specification.
pub use self::component_wise::{comp_add, comp_max, comp_min, comp_mul}; pub use self::component_wise::{comp_add, comp_max, comp_min, comp_mul};
//pub use self::euler_angles::*; //pub use self::euler_angles::*;
pub use self::exterior_product::{cross2d}; pub use self::exterior_product::cross2d;
pub use self::handed_coordinate_space::{left_handed, right_handed}; pub use self::handed_coordinate_space::{left_handed, right_handed};
pub use self::matrix_cross_product::{matrix_cross, matrix_cross3}; pub use self::matrix_cross_product::{matrix_cross, matrix_cross3};
pub use self::matrix_operation::{diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4, diagonal4x2, diagonal4x3, diagonal4x4}; pub use self::matrix_operation::{
diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4, diagonal4x2,
diagonal4x3, diagonal4x4,
};
pub use self::norm::{distance2, l1_distance, l1_norm, l2_distance, l2_norm, length2, magnitude2}; pub use self::norm::{distance2, l1_distance, l1_norm, l2_distance, l2_norm, length2, magnitude2};
pub use self::normal::{triangle_normal}; pub use self::normal::triangle_normal;
pub use self::normalize_dot::{fast_normalize_dot, normalize_dot}; pub use self::normalize_dot::{fast_normalize_dot, normalize_dot};
pub use self::quaternion::{
mat3_to_quat, quat_cross_vec, quat_extract_real_component, quat_fast_mix, quat_identity,
quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_rotate_vec, quat_rotate_vec3,
quat_rotation, quat_short_mix, quat_to_mat3, quat_to_mat4, to_quat,
};
pub use self::rotate_normalized_axis::{quat_rotate_normalized_axis, rotate_normalized_axis}; pub use self::rotate_normalized_axis::{quat_rotate_normalized_axis, rotate_normalized_axis};
pub use self::rotate_vector::{orientation, rotate_vec2, rotate_vec3, rotate_vec4, rotate_x_vec4, rotate_x_vec3, rotate_y_vec4, rotate_y_vec3, rotate_z_vec4, rotate_z_vec3, slerp}; pub use self::rotate_vector::{
pub use self::transform::{rotation, scaling, translation, rotation2d, scaling2d, translation2d}; orientation, rotate_vec2, rotate_vec3, rotate_vec4, rotate_x_vec3, rotate_x_vec4,
pub use self::transform2::{proj, proj2d, reflect, reflect2d, scale_bias, scale_bias_matrix, shear2d_x, shear_x, shear_y, shear2d_y, shear_z}; rotate_y_vec3, rotate_y_vec4, rotate_z_vec3, rotate_z_vec4, slerp,
};
pub use self::transform::{rotation, rotation2d, scaling, scaling2d, translation, translation2d};
pub use self::transform2::{
proj, proj2d, reflect, reflect2d, scale_bias, scale_bias_matrix, shear2d_x, shear2d_y, shear_x,
shear_y, shear_z,
};
pub use self::transform2d::{rotate2d, scale2d, translate2d}; pub use self::transform2d::{rotate2d, scale2d, translate2d};
pub use self::vector_angle::{angle}; pub use self::vector_angle::angle;
pub use self::vector_query::{are_collinear, are_collinear2d, are_orthogonal, is_comp_null, is_normalized, is_null}; pub use self::vector_query::{
pub use self::quaternion::{quat_to_mat3, quat_rotate_vec, quat_cross_vec, mat3_to_quat, quat_extract_real_component, quat_fast_mix, quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_identity, quat_rotate_vec3, quat_rotation, quat_short_mix, quat_to_mat4, to_quat}; are_collinear, are_collinear2d, are_orthogonal, is_comp_null, is_normalized, is_null,
};
mod component_wise; mod component_wise;
//mod euler_angles; //mod euler_angles;
@ -30,6 +42,7 @@ mod matrix_operation;
mod norm; mod norm;
mod normal; mod normal;
mod normalize_dot; mod normalize_dot;
mod quaternion;
mod rotate_normalized_axis; mod rotate_normalized_axis;
mod rotate_vector; mod rotate_vector;
mod transform; mod transform;
@ -37,4 +50,3 @@ mod transform2;
mod transform2d; mod transform2d;
mod vector_angle; mod vector_angle;
mod vector_query; mod vector_query;
mod quaternion;

View File

@ -1,7 +1,7 @@
use na::{Real, DefaultAllocator}; use na::{DefaultAllocator, Real};
use traits::{Alloc, Dimension};
use aliases::TVec; use aliases::TVec;
use traits::{Alloc, Dimension};
/// The squared distance between two points. /// The squared distance between two points.
/// ///
@ -9,7 +9,7 @@ use aliases::TVec;
/// ///
/// * [`distance`](fn.distance.html) /// * [`distance`](fn.distance.html)
pub fn distance2<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N pub fn distance2<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
(p1 - p0).norm_squared() (p1 - p0).norm_squared()
} }
@ -21,7 +21,7 @@ pub fn distance2<N: Real, D: Dimension>(p0: &TVec<N, D>, p1: &TVec<N, D>) -> N
/// * [`l2_distance`](fn.l2_distance.html) /// * [`l2_distance`](fn.l2_distance.html)
/// * [`l2_norm`](fn.l2_norm.html) /// * [`l2_norm`](fn.l2_norm.html)
pub fn l1_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N pub fn l1_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
l1_norm(&(y - x)) l1_norm(&(y - x))
} }
@ -36,7 +36,7 @@ pub fn l1_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
/// * [`l2_distance`](fn.l2_distance.html) /// * [`l2_distance`](fn.l2_distance.html)
/// * [`l2_norm`](fn.l2_norm.html) /// * [`l2_norm`](fn.l2_norm.html)
pub fn l1_norm<N: Real, D: Dimension>(v: &TVec<N, D>) -> N pub fn l1_norm<N: Real, D: Dimension>(v: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
::comp_add(&v.abs()) ::comp_add(&v.abs())
} }
@ -55,7 +55,7 @@ pub fn l1_norm<N: Real, D: Dimension>(v: &TVec<N, D>) -> N
/// * [`magnitude`](fn.magnitude.html) /// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude2`](fn.magnitude2.html) /// * [`magnitude2`](fn.magnitude2.html)
pub fn l2_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N pub fn l2_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
l2_norm(&(y - x)) l2_norm(&(y - x))
} }
@ -76,7 +76,7 @@ pub fn l2_distance<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
/// * [`magnitude`](fn.magnitude.html) /// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude2`](fn.magnitude2.html) /// * [`magnitude2`](fn.magnitude2.html)
pub fn l2_norm<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn l2_norm<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm() x.norm()
} }
@ -92,7 +92,7 @@ pub fn l2_norm<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
/// * [`magnitude`](fn.magnitude.html) /// * [`magnitude`](fn.magnitude.html)
/// * [`magnitude2`](fn.magnitude2.html) /// * [`magnitude2`](fn.magnitude2.html)
pub fn length2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn length2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm_squared() x.norm_squared()
} }
@ -108,7 +108,7 @@ pub fn length2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
/// * [`magnitude`](fn.magnitude.html) /// * [`magnitude`](fn.magnitude.html)
/// * [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html) /// * [`nalgebra::norm_squared`](../nalgebra/fn.norm_squared.html)
pub fn magnitude2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N pub fn magnitude2<N: Real, D: Dimension>(x: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.norm_squared() x.norm_squared()
} }

View File

@ -1,7 +1,7 @@
use na::{Real, DefaultAllocator}; use na::{DefaultAllocator, Real};
use traits::{Dimension, Alloc};
use aliases::TVec; use aliases::TVec;
use traits::{Alloc, Dimension};
/// The dot product of the normalized version of `x` and `y`. /// The dot product of the normalized version of `x` and `y`.
/// ///
@ -11,7 +11,7 @@ use aliases::TVec;
/// ///
/// * [`normalize_dot`](fn.normalize_dot.html`) /// * [`normalize_dot`](fn.normalize_dot.html`)
pub fn fast_normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N pub fn fast_normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
// XXX: improve those. // XXX: improve those.
x.normalize().dot(&y.normalize()) x.normalize().dot(&y.normalize())
} }
@ -22,7 +22,7 @@ pub fn fast_normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>)
/// ///
/// * [`fast_normalize_dot`](fn.fast_normalize_dot.html`) /// * [`fast_normalize_dot`](fn.fast_normalize_dot.html`)
pub fn normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N pub fn normalize_dot<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
// XXX: improve those. // XXX: improve those.
x.normalize().dot(&y.normalize()) x.normalize().dot(&y.normalize())
} }

View File

@ -1,4 +1,4 @@
use na::{Real, Unit, Rotation3, UnitQuaternion, U3}; use na::{Real, Rotation3, Unit, UnitQuaternion, U3};
use aliases::{Qua, TMat3, TMat4, TVec3, TVec4}; use aliases::{Qua, TMat3, TMat4, TVec3, TVec4};
@ -19,7 +19,9 @@ pub fn quat_extract_real_component<N: Real>(q: &Qua<N>) -> N {
/// Normalized linear interpolation between two quaternions. /// Normalized linear interpolation between two quaternions.
pub fn quat_fast_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> { pub fn quat_fast_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
Unit::new_unchecked(*x).nlerp(&Unit::new_unchecked(*y), a).unwrap() Unit::new_unchecked(*x)
.nlerp(&Unit::new_unchecked(*y), a)
.unwrap()
} }
//pub fn quat_intermediate<N: Real>(prev: &Qua<N>, curr: &Qua<N>, next: &Qua<N>) -> Qua<N> { //pub fn quat_intermediate<N: Real>(prev: &Qua<N>, curr: &Qua<N>, next: &Qua<N>) -> Qua<N> {
@ -54,12 +56,16 @@ pub fn quat_rotate_vec<N: Real>(q: &Qua<N>, v: &TVec4<N>) -> TVec4<N> {
/// The rotation required to align `orig` to `dest`. /// The rotation required to align `orig` to `dest`.
pub fn quat_rotation<N: Real>(orig: &TVec3<N>, dest: &TVec3<N>) -> Qua<N> { pub fn quat_rotation<N: Real>(orig: &TVec3<N>, dest: &TVec3<N>) -> Qua<N> {
UnitQuaternion::rotation_between(orig, dest).unwrap_or_else(UnitQuaternion::identity).unwrap() UnitQuaternion::rotation_between(orig, dest)
.unwrap_or_else(UnitQuaternion::identity)
.unwrap()
} }
/// The spherical linear interpolation between two quaternions. /// The spherical linear interpolation between two quaternions.
pub fn quat_short_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> { pub fn quat_short_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
Unit::new_normalize(*x).slerp(&Unit::new_normalize(*y), a).unwrap() Unit::new_normalize(*x)
.slerp(&Unit::new_normalize(*y), a)
.unwrap()
} }
//pub fn quat_squad<N: Real>(q1: &Qua<N>, q2: &Qua<N>, s1: &Qua<N>, s2: &Qua<N>, h: N) -> Qua<N> { //pub fn quat_squad<N: Real>(q1: &Qua<N>, q2: &Qua<N>, s1: &Qua<N>, s2: &Qua<N>, h: N) -> Qua<N> {
@ -68,7 +74,9 @@ pub fn quat_short_mix<N: Real>(x: &Qua<N>, y: &Qua<N>, a: N) -> Qua<N> {
/// Converts a quaternion to a rotation matrix. /// Converts a quaternion to a rotation matrix.
pub fn quat_to_mat3<N: Real>(x: &Qua<N>) -> TMat3<N> { pub fn quat_to_mat3<N: Real>(x: &Qua<N>) -> TMat3<N> {
UnitQuaternion::new_unchecked(*x).to_rotation_matrix().unwrap() UnitQuaternion::new_unchecked(*x)
.to_rotation_matrix()
.unwrap()
} }
/// Converts a quaternion to a rotation matrix in homogenous coordinates. /// Converts a quaternion to a rotation matrix in homogenous coordinates.
@ -87,4 +95,3 @@ pub fn to_quat<N: Real>(x: &TMat4<N>) -> Qua<N> {
let rot = x.fixed_slice::<U3, U3>(0, 0).into_owned(); let rot = x.fixed_slice::<U3, U3>(0, 0).into_owned();
mat3_to_quat(&rot) mat3_to_quat(&rot)
} }

View File

@ -1,6 +1,6 @@
use na::{Real, Rotation3, Unit, UnitComplex}; use na::{Real, Rotation3, Unit, UnitComplex};
use aliases::{TVec2, TVec3, TVec4, TMat4}; use aliases::{TMat4, TVec2, TVec3, TVec4};
/// Build the rotation matrix needed to align `normal` and `up`. /// Build the rotation matrix needed to align `normal` and `up`.
pub fn orientation<N: Real>(normal: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> { pub fn orientation<N: Real>(normal: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
@ -58,5 +58,7 @@ pub fn rotate_z_vec4<N: Real>(v: &TVec4<N>, angle: N) -> TVec4<N> {
/// Computes a spherical linear interpolation between the vectors `x` and `y` assumed to be normalized. /// Computes a spherical linear interpolation between the vectors `x` and `y` assumed to be normalized.
pub fn slerp<N: Real>(x: &TVec3<N>, y: &TVec3<N>, a: N) -> TVec3<N> { pub fn slerp<N: Real>(x: &TVec3<N>, y: &TVec3<N>, a: N) -> TVec3<N> {
Unit::new_unchecked(*x).slerp(&Unit::new_unchecked(*y), a).unwrap() Unit::new_unchecked(*x)
.slerp(&Unit::new_unchecked(*y), a)
.unwrap()
} }

View File

@ -1,7 +1,7 @@
use na::{Real, Unit, Rotation2, Rotation3}; use na::{Real, Rotation2, Rotation3, Unit};
use aliases::{TMat3, TMat4, TVec2, TVec3};
use traits::Number; use traits::Number;
use aliases::{TVec3, TVec2, TMat3, TMat4};
/// A rotation 4 * 4 matrix created from an axis of 3 scalars and an angle expressed in radians. /// A rotation 4 * 4 matrix created from an axis of 3 scalars and an angle expressed in radians.
/// ///
@ -42,7 +42,6 @@ pub fn translation<N: Number>(v: &TVec3<N>) -> TMat4<N> {
TMat4::new_translation(v) TMat4::new_translation(v)
} }
/// A rotation 3 * 3 matrix created from an angle expressed in radians. /// A rotation 3 * 3 matrix created from an angle expressed in radians.
/// ///
/// # See also: /// # See also:

View File

@ -1,7 +1,7 @@
use na::{U2, U3}; use na::{U2, U3};
use aliases::{TMat3, TMat4, TVec2, TVec3};
use traits::Number; use traits::Number;
use aliases::{TVec2, TVec3, TMat3, TMat4};
/// Build planar projection matrix along normal axis and right-multiply it to `m`. /// Build planar projection matrix along normal axis and right-multiply it to `m`.
pub fn proj2d<N: Number>(m: &TMat3<N>, normal: &TVec2<N>) -> TMat3<N> { pub fn proj2d<N: Number>(m: &TMat3<N>, normal: &TVec2<N>) -> TMat3<N> {
@ -57,10 +57,7 @@ pub fn scale_bias_matrix<N: Number>(scale: N, bias: N) -> TMat4<N> {
let _1 = N::one(); let _1 = N::one();
TMat4::new( TMat4::new(
scale, _0, _0, bias, scale, _0, _0, bias, _0, scale, _0, bias, _0, _0, scale, bias, _0, _0, _0, _1,
_0, scale, _0, bias,
_0, _0, scale, bias,
_0, _0, _0, _1,
) )
} }
@ -74,11 +71,7 @@ pub fn shear2d_x<N: Number>(m: &TMat3<N>, y: N) -> TMat3<N> {
let _0 = N::zero(); let _0 = N::zero();
let _1 = N::one(); let _1 = N::one();
let shear = TMat3::new( let shear = TMat3::new(_1, y, _0, _0, _1, _0, _0, _0, _1);
_1, y, _0,
_0, _1, _0,
_0, _0, _1
);
m * shear m * shear
} }
@ -86,12 +79,7 @@ pub fn shear2d_x<N: Number>(m: &TMat3<N>, y: N) -> TMat3<N> {
pub fn shear_x<N: Number>(m: &TMat4<N>, y: N, z: N) -> TMat4<N> { pub fn shear_x<N: Number>(m: &TMat4<N>, y: N, z: N) -> TMat4<N> {
let _0 = N::zero(); let _0 = N::zero();
let _1 = N::one(); let _1 = N::one();
let shear = TMat4::new( let shear = TMat4::new(_1, _0, _0, _0, y, _1, _0, _0, z, _0, _1, _0, _0, _0, _0, _1);
_1, _0, _0, _0,
y, _1, _0, _0,
z, _0, _1, _0,
_0, _0, _0, _1,
);
m * shear m * shear
} }
@ -101,11 +89,7 @@ pub fn shear2d_y<N: Number>(m: &TMat3<N>, x: N) -> TMat3<N> {
let _0 = N::zero(); let _0 = N::zero();
let _1 = N::one(); let _1 = N::one();
let shear = TMat3::new( let shear = TMat3::new(_1, _0, _0, x, _1, _0, _0, _0, _1);
_1, _0, _0,
x, _1, _0,
_0, _0, _1
);
m * shear m * shear
} }
@ -113,12 +97,7 @@ pub fn shear2d_y<N: Number>(m: &TMat3<N>, x: N) -> TMat3<N> {
pub fn shear_y<N: Number>(m: &TMat4<N>, x: N, z: N) -> TMat4<N> { pub fn shear_y<N: Number>(m: &TMat4<N>, x: N, z: N) -> TMat4<N> {
let _0 = N::zero(); let _0 = N::zero();
let _1 = N::one(); let _1 = N::one();
let shear = TMat4::new( let shear = TMat4::new(_1, x, _0, _0, _0, _1, _0, _0, _0, z, _1, _0, _0, _0, _0, _1);
_1, x, _0, _0,
_0, _1, _0, _0,
_0, z, _1, _0,
_0, _0, _0, _1,
);
m * shear m * shear
} }
@ -127,12 +106,7 @@ pub fn shear_y<N: Number>(m: &TMat4<N>, x: N, z: N) -> TMat4<N> {
pub fn shear_z<N: Number>(m: &TMat4<N>, x: N, y: N) -> TMat4<N> { pub fn shear_z<N: Number>(m: &TMat4<N>, x: N, y: N) -> TMat4<N> {
let _0 = N::zero(); let _0 = N::zero();
let _1 = N::one(); let _1 = N::one();
let shear = TMat4::new( let shear = TMat4::new(_1, _0, x, _0, _0, _1, y, _0, _0, _0, _1, _0, _0, _0, _0, _1);
_1, _0, x, _0,
_0, _1, y, _0,
_0, _0, _1, _0,
_0, _0, _0, _1,
);
m * shear m * shear
} }

View File

@ -1,7 +1,7 @@
use na::{Real, UnitComplex}; use na::{Real, UnitComplex};
use traits::Number;
use aliases::{TMat3, TVec2}; use aliases::{TMat3, TVec2};
use traits::Number;
/// Builds a 2D rotation matrix from an angle and right-multiply it to `m`. /// Builds a 2D rotation matrix from an angle and right-multiply it to `m`.
/// ///

View File

@ -1,12 +1,11 @@
use na::{DefaultAllocator, Real}; use na::{DefaultAllocator, Real};
use traits::{Dimension, Alloc};
use aliases::TVec; use aliases::TVec;
use traits::{Alloc, Dimension};
/// The angle between two vectors. /// The angle between two vectors.
pub fn angle<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N pub fn angle<N: Real, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> N
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.angle(y) x.angle(y)
} }

View File

@ -1,7 +1,7 @@
use na::{Real, DefaultAllocator}; use na::{DefaultAllocator, Real};
use traits::{Number, Dimension, Alloc};
use aliases::{TVec, TVec2, TVec3}; use aliases::{TVec, TVec2, TVec3};
use traits::{Alloc, Dimension, Number};
/// Returns `true` if two vectors are collinear (up to an epsilon). /// Returns `true` if two vectors are collinear (up to an epsilon).
/// ///
@ -22,8 +22,14 @@ pub fn are_collinear2d<N: Number>(v0: &TVec2<N>, v1: &TVec2<N>, epsilon: N) -> b
} }
/// Returns `true` if two vectors are orthogonal (up to an epsilon). /// Returns `true` if two vectors are orthogonal (up to an epsilon).
pub fn are_orthogonal<N: Number, D: Dimension>(v0: &TVec<N, D>, v1: &TVec<N, D>, epsilon: N) -> bool pub fn are_orthogonal<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { v0: &TVec<N, D>,
v1: &TVec<N, D>,
epsilon: N,
) -> bool
where
DefaultAllocator: Alloc<N, D>,
{
abs_diff_eq!(v0.dot(v1), N::zero(), epsilon = epsilon) abs_diff_eq!(v0.dot(v1), N::zero(), epsilon = epsilon)
} }
@ -34,18 +40,18 @@ pub fn are_orthogonal<N: Number, D: Dimension>(v0: &TVec<N, D>, v1: &TVec<N, D>,
/// Returns `true` if all the components of `v` are zero (up to an epsilon). /// Returns `true` if all the components of `v` are zero (up to an epsilon).
pub fn is_comp_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> TVec<bool, D> pub fn is_comp_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
v.map(|x| abs_diff_eq!(x, N::zero(), epsilon = epsilon)) v.map(|x| abs_diff_eq!(x, N::zero(), epsilon = epsilon))
} }
/// Returns `true` if `v` has a magnitude of 1 (up to an epsilon). /// Returns `true` if `v` has a magnitude of 1 (up to an epsilon).
pub fn is_normalized<N: Real, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool pub fn is_normalized<N: Real, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
abs_diff_eq!(v.norm_squared(), N::one(), epsilon = epsilon * epsilon) abs_diff_eq!(v.norm_squared(), N::one(), epsilon = epsilon * epsilon)
} }
/// Returns `true` if `v` is zero (up to an epsilon). /// Returns `true` if `v` is zero (up to an epsilon).
pub fn is_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool pub fn is_null<N: Number, D: Dimension>(v: &TVec<N, D>, epsilon: N) -> bool
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
abs_diff_eq!(*v, TVec::<N, D>::zeros(), epsilon = epsilon) abs_diff_eq!(*v, TVec::<N, D>::zeros(), epsilon = epsilon)
} }

View File

@ -108,7 +108,7 @@
and **nalgebra** itself when you need more expressive types, and more powerful linear algebra operations like and **nalgebra** itself when you need more expressive types, and more powerful linear algebra operations like
matrix factorizations and slicing. Just remember that all the **nalgebra-glm** types are just aliases to **nalgebra** types, matrix factorizations and slicing. Just remember that all the **nalgebra-glm** types are just aliases to **nalgebra** types,
and keep in mind it is possible to convert, e.g., an `Isometry3` to a `Mat4` and vice-versa (see the [conversions section](#conversions)). and keep in mind it is possible to convert, e.g., an `Isometry3` to a `Mat4` and vice-versa (see the [conversions section](#conversions)).
*/ */
#![doc(html_favicon_url = "http://nalgebra.org/img/favicon.ico")] #![doc(html_favicon_url = "http://nalgebra.org/img/favicon.ico")]
@ -119,68 +119,82 @@ extern crate alga;
extern crate nalgebra as na; extern crate nalgebra as na;
pub use aliases::*; pub use aliases::*;
pub use common::{
abs, ceil, clamp, clamp_scalar, clamp_vec, float_bits_to_int, float_bits_to_int_vec,
float_bits_to_uint, float_bits_to_uint_vec, floor, fract, int_bits_to_float,
int_bits_to_float_vec, mix, modf, modf_vec, round, sign, smoothstep, step, step_scalar,
step_vec, trunc, uint_bits_to_float, uint_bits_to_float_scalar,
};
pub use constructors::*; pub use constructors::*;
pub use common::{abs, ceil, clamp, clamp_scalar, clamp_vec, float_bits_to_int, float_bits_to_int_vec, float_bits_to_uint, float_bits_to_uint_vec, floor, fract, int_bits_to_float, int_bits_to_float_vec, mix, modf, modf_vec, round, sign, smoothstep, step, step_scalar, step_vec, trunc, uint_bits_to_float, uint_bits_to_float_scalar};
pub use geometric::{reflect_vec, cross, distance, dot, faceforward, length, magnitude, normalize, refract_vec};
pub use matrix::{transpose, determinant, inverse, matrix_comp_mult, outer_product};
pub use traits::{Dimension, Number, Alloc};
pub use trigonometric::{acos, acosh, asin, asinh, atan, atan2, atanh, cos, cosh, degrees, radians, sin, sinh, tan, tanh};
pub use vector_relational::{all, any, equal, greater_than, greater_than_equal, less_than, less_than_equal, not, not_equal};
pub use exponential::{exp, exp2, inversesqrt, log, log2, pow, sqrt}; pub use exponential::{exp, exp2, inversesqrt, log, log2, pow, sqrt};
pub use geometric::{
cross, distance, dot, faceforward, length, magnitude, normalize, reflect_vec, refract_vec,
};
pub use matrix::{determinant, inverse, matrix_comp_mult, outer_product, transpose};
pub use traits::{Alloc, Dimension, Number};
pub use trigonometric::{
acos, acosh, asin, asinh, atan, atan2, atanh, cos, cosh, degrees, radians, sin, sinh, tan, tanh,
};
pub use vector_relational::{
all, any, equal, greater_than, greater_than_equal, less_than, less_than_equal, not, not_equal,
};
pub use gtx::{ pub use ext::{
comp_add, comp_max, comp_min, comp_mul, epsilon, equal_columns, equal_columns_eps, equal_columns_eps_vec, equal_eps, equal_eps_vec,
cross2d, identity, look_at, look_at_lh, look_at_rh, max, max2, max3, max3_scalar, max4, max4_scalar,
left_handed, right_handed, min, min2, min3, min3_scalar, min4, min4_scalar, not_equal_columns, not_equal_columns_eps,
matrix_cross, matrix_cross3, not_equal_columns_eps_vec, not_equal_eps, not_equal_eps_vec, ortho, perspective, pi,
diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4, diagonal4x2, diagonal4x3, diagonal4x4, pick_matrix, project, project_no, project_zo, quat_angle, quat_angle_axis, quat_axis,
distance2, l1_distance, l1_norm, l2_distance, l2_norm, length2, magnitude2, quat_conjugate, quat_cross, quat_dot, quat_equal, quat_equal_eps, quat_exp, quat_inverse,
triangle_normal, quat_length, quat_lerp, quat_log, quat_magnitude, quat_normalize, quat_not_equal,
fast_normalize_dot, normalize_dot, quat_not_equal_eps, quat_pow, quat_rotate, quat_slerp, rotate, rotate_x, rotate_y, rotate_z,
quat_rotate_normalized_axis, rotate_normalized_axis, scale, translate, unproject, unproject_no, unproject_zo,
orientation, rotate_vec2, rotate_vec3, rotate_vec4, rotate_x_vec4, rotate_x_vec3, rotate_y_vec4, rotate_y_vec3, rotate_z_vec4, rotate_z_vec3, slerp,
rotation, scaling, translation, rotation2d, scaling2d, translation2d,
proj, proj2d, reflect, reflect2d, scale_bias, scale_bias_matrix, shear2d_x, shear_x, shear_y, shear2d_y, shear_z,
rotate2d, scale2d, translate2d,
angle,
are_collinear, are_collinear2d, are_orthogonal, is_comp_null, is_normalized, is_null,
quat_to_mat3, quat_rotate_vec, quat_cross_vec, mat3_to_quat, quat_extract_real_component, quat_fast_mix, quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_identity, quat_rotate_vec3, quat_rotation, quat_short_mix, quat_to_mat4, to_quat
}; };
pub use gtc::{ pub use gtc::{
e, two_pi, euler, four_over_pi, golden_ratio, half_pi, ln_ln_two, ln_ten, ln_two, one, one_over_pi, one_over_root_two, one_over_two_pi, quarter_pi, root_five, root_half_pi, root_ln_four, root_pi, root_three, root_two, root_two_pi, third, three_over_two_pi, two_over_pi, two_over_root_pi, two_thirds, zero, affine_inverse, column, e, euler, four_over_pi, golden_ratio, half_pi, inverse_transpose,
column, row, set_column, set_row, ln_ln_two, ln_ten, ln_two, make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3,
affine_inverse, inverse_transpose, make_mat3x2, make_mat3x3, make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4,
make_mat2, make_mat2x2, make_mat2x3, make_mat2x4, make_mat3, make_mat3x2, make_mat3x3, make_mat3x4, make_mat4, make_mat4x2, make_mat4x3, make_mat4x4, make_quat, make_vec1, make_vec2, make_vec3, make_vec4, value_ptr, value_ptr_mut, vec1_to_vec2, vec1_to_vec3, vec1_to_vec4, vec2_to_vec1, vec2_to_vec2, vec2_to_vec3, vec2_to_vec4, vec3_to_vec1, vec3_to_vec2, vec3_to_vec3, vec3_to_vec4, vec4_to_vec1, vec4_to_vec2, vec4_to_vec3, vec4_to_vec4, mat2_to_mat3, mat2_to_mat4, mat3_to_mat2, mat3_to_mat4, mat4_to_mat2, mat4_to_mat3, make_quat, make_vec1, make_vec2, make_vec3, make_vec4, mat2_to_mat3, mat2_to_mat4,
quat_cast, quat_euler_angles, quat_greater_than, quat_greater_than_equal, quat_less_than, quat_less_than_equal, quat_look_at, quat_look_at_lh, quat_look_at_rh, quat_pitch, quat_roll, quat_yaw mat3_to_mat2, mat3_to_mat4, mat4_to_mat2, mat4_to_mat3, one, one_over_pi, one_over_root_two,
one_over_two_pi, quarter_pi, quat_cast, quat_euler_angles, quat_greater_than,
quat_greater_than_equal, quat_less_than, quat_less_than_equal, quat_look_at, quat_look_at_lh,
quat_look_at_rh, quat_pitch, quat_roll, quat_yaw, root_five, root_half_pi, root_ln_four,
root_pi, root_three, root_two, root_two_pi, row, set_column, set_row, third, three_over_two_pi,
two_over_pi, two_over_root_pi, two_pi, two_thirds, value_ptr, value_ptr_mut, vec1_to_vec2,
vec1_to_vec3, vec1_to_vec4, vec2_to_vec1, vec2_to_vec2, vec2_to_vec3, vec2_to_vec4,
vec3_to_vec1, vec3_to_vec2, vec3_to_vec3, vec3_to_vec4, vec4_to_vec1, vec4_to_vec2,
vec4_to_vec3, vec4_to_vec4, zero,
}; };
pub use ext::{ pub use gtx::{
ortho, perspective, angle, are_collinear, are_collinear2d, are_orthogonal, comp_add, comp_max, comp_min, comp_mul,
pick_matrix, project, project_no, project_zo, unproject, unproject_no, unproject_zo, cross2d, diagonal2x2, diagonal2x3, diagonal2x4, diagonal3x2, diagonal3x3, diagonal3x4,
equal_columns, equal_columns_eps, equal_columns_eps_vec, not_equal_columns, not_equal_columns_eps, not_equal_columns_eps_vec, diagonal4x2, diagonal4x3, diagonal4x4, distance2, fast_normalize_dot, is_comp_null,
identity, look_at, look_at_lh, rotate, scale, look_at_rh, translate, rotate_x, rotate_y, rotate_z, is_normalized, is_null, l1_distance, l1_norm, l2_distance, l2_norm, left_handed, length2,
max3_scalar, max4_scalar, min3_scalar, min4_scalar, magnitude2, mat3_to_quat, matrix_cross, matrix_cross3, normalize_dot, orientation, proj,
epsilon, pi, proj2d, quat_cross_vec, quat_extract_real_component, quat_fast_mix, quat_identity,
max, max2, max3, max4, min, min2, min3, min4, quat_inv_cross_vec, quat_length2, quat_magnitude2, quat_rotate_normalized_axis,
equal_eps, equal_eps_vec, not_equal_eps, not_equal_eps_vec, quat_rotate_vec, quat_rotate_vec3, quat_rotation, quat_short_mix, quat_to_mat3, quat_to_mat4,
quat_conjugate, quat_inverse, quat_lerp, quat_slerp, reflect, reflect2d, right_handed, rotate2d, rotate_normalized_axis, rotate_vec2, rotate_vec3,
quat_cross, quat_dot, quat_length, quat_magnitude, quat_normalize, rotate_vec4, rotate_x_vec3, rotate_x_vec4, rotate_y_vec3, rotate_y_vec4, rotate_z_vec3,
quat_equal, quat_equal_eps, quat_not_equal, quat_not_equal_eps, rotate_z_vec4, rotation, rotation2d, scale2d, scale_bias, scale_bias_matrix, scaling,
quat_exp, quat_log, quat_pow, quat_rotate, scaling2d, shear2d_x, shear2d_y, shear_x, shear_y, shear_z, slerp, to_quat, translate2d,
quat_angle, quat_angle_axis, quat_axis translation, translation2d, triangle_normal,
}; };
pub use na::{convert, convert_ref, convert_unchecked, convert_ref_unchecked, try_convert, try_convert_ref}; pub use na::{
pub use na::{Scalar, Real, DefaultAllocator, U1, U2, U3, U4}; convert, convert_ref, convert_ref_unchecked, convert_unchecked, try_convert, try_convert_ref,
};
pub use na::{DefaultAllocator, Real, Scalar, U1, U2, U3, U4};
mod aliases; mod aliases;
mod constructors;
mod common; mod common;
mod matrix; mod constructors;
mod exponential;
mod geometric; mod geometric;
mod matrix;
mod traits; mod traits;
mod trigonometric; mod trigonometric;
mod vector_relational; mod vector_relational;
mod exponential;
//mod integer; //mod integer;
//mod packing; //mod packing;

View File

@ -1,34 +1,46 @@
use na::{Scalar, Real, DefaultAllocator}; use na::{DefaultAllocator, Real, Scalar};
use traits::{Alloc, Dimension, Number};
use aliases::{TMat, TVec}; use aliases::{TMat, TVec};
use traits::{Alloc, Dimension, Number};
/// The determinant of the matrix `m`. /// The determinant of the matrix `m`.
pub fn determinant<N: Real, D: Dimension>(m: &TMat<N, D, D>) -> N pub fn determinant<N: Real, D: Dimension>(m: &TMat<N, D, D>) -> N
where DefaultAllocator: Alloc<N, D, D> { where DefaultAllocator: Alloc<N, D, D> {
m.determinant() m.determinant()
} }
/// The inverse of the matrix `m`. /// The inverse of the matrix `m`.
pub fn inverse<N: Real, D: Dimension>(m: &TMat<N, D, D>) -> TMat<N, D, D> pub fn inverse<N: Real, D: Dimension>(m: &TMat<N, D, D>) -> TMat<N, D, D>
where DefaultAllocator: Alloc<N, D, D> { where DefaultAllocator: Alloc<N, D, D> {
m.clone().try_inverse().unwrap_or_else(TMat::<N, D, D>::zeros) m.clone()
.try_inverse()
.unwrap_or_else(TMat::<N, D, D>::zeros)
} }
/// Component-wise multiplication of two matrices. /// Component-wise multiplication of two matrices.
pub fn matrix_comp_mult<N: Number, R: Dimension, C: Dimension>(x: &TMat<N, R, C>, y: &TMat<N, R, C>) -> TMat<N, R, C> pub fn matrix_comp_mult<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { x: &TMat<N, R, C>,
y: &TMat<N, R, C>,
) -> TMat<N, R, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
x.component_mul(y) x.component_mul(y)
} }
/// Treats the first parameter `c` as a column vector and the second parameter `r` as a row vector and does a linear algebraic matrix multiply `c * r`. /// Treats the first parameter `c` as a column vector and the second parameter `r` as a row vector and does a linear algebraic matrix multiply `c * r`.
pub fn outer_product<N: Number, R: Dimension, C: Dimension>(c: &TVec<N, R>, r: &TVec<N, C>) -> TMat<N, R, C> pub fn outer_product<N: Number, R: Dimension, C: Dimension>(
where DefaultAllocator: Alloc<N, R, C> { c: &TVec<N, R>,
r: &TVec<N, C>,
) -> TMat<N, R, C>
where
DefaultAllocator: Alloc<N, R, C>,
{
c * r.transpose() c * r.transpose()
} }
/// The transpose of the matrix `m`. /// The transpose of the matrix `m`.
pub fn transpose<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, C, R> pub fn transpose<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, C, R>
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
x.transpose() x.transpose()
} }

View File

@ -1,48 +1,81 @@
use num::{Signed, FromPrimitive, Bounded};
use approx::AbsDiffEq; use approx::AbsDiffEq;
use num::{Bounded, FromPrimitive, Signed};
use alga::general::{Ring, Lattice}; use alga::general::{Lattice, Ring};
use na::{Scalar, DimName, DimMin, U1};
use na::allocator::Allocator; use na::allocator::Allocator;
use na::{DimMin, DimName, Scalar, U1};
/// A type-level number representing a vector, matrix row, or matrix column, dimension. /// A type-level number representing a vector, matrix row, or matrix column, dimension.
pub trait Dimension: DimName + DimMin<Self, Output = Self> {} pub trait Dimension: DimName + DimMin<Self, Output = Self> {}
impl<D: DimName + DimMin<D, Output = Self>> Dimension for D {} impl<D: DimName + DimMin<D, Output = Self>> Dimension for D {}
/// A number that can either be an integer or a float. /// A number that can either be an integer or a float.
pub trait Number: Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded { pub trait Number:
Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded
{
} }
impl<T: Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded> Number for T { impl<T: Scalar + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + FromPrimitive + Bounded>
Number for T
{
} }
#[doc(hidden)] #[doc(hidden)]
pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>: pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>:
Allocator<N, R> + Allocator<N, C> + Allocator<N, U1, R> + Allocator<N, U1, C> + Allocator<N, R, C> + Allocator<N, C, R> + Allocator<N, R, R> + Allocator<N, C, C> + Allocator<N, R>
Allocator<bool, R> + Allocator<bool, C> + + Allocator<N, C>
Allocator<f32, R> + Allocator<f32, C> + + Allocator<N, U1, R>
Allocator<u32, R> + Allocator<u32, C> + + Allocator<N, U1, C>
Allocator<i32, R> + Allocator<i32, C> + + Allocator<N, R, C>
Allocator<f64, R> + Allocator<f64, C> + + Allocator<N, C, R>
Allocator<u64, R> + Allocator<u64, C> + + Allocator<N, R, R>
Allocator<i64, R> + Allocator<i64, C> + + Allocator<N, C, C>
Allocator<i16, R> + Allocator<i16, C> + + Allocator<bool, R>
Allocator<(usize, usize), R> + Allocator<(usize, usize), C> + Allocator<bool, C>
+ Allocator<f32, R>
+ Allocator<f32, C>
+ Allocator<u32, R>
+ Allocator<u32, C>
+ Allocator<i32, R>
+ Allocator<i32, C>
+ Allocator<f64, R>
+ Allocator<f64, C>
+ Allocator<u64, R>
+ Allocator<u64, C>
+ Allocator<i64, R>
+ Allocator<i64, C>
+ Allocator<i16, R>
+ Allocator<i16, C>
+ Allocator<(usize, usize), R>
+ Allocator<(usize, usize), C>
{ {
} }
impl<N: Scalar, R: Dimension, C: Dimension, T> impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where T: Allocator<N, R>
Alloc<N, R, C> for T + Allocator<N, C>
where T: Allocator<N, R> + Allocator<N, C> + Allocator<N, U1, R> + Allocator<N, U1, C> + Allocator<N, R, C> + Allocator<N, C, R> + Allocator<N, R, R> + Allocator<N, C, C> + + Allocator<N, U1, R>
Allocator<bool, R> + Allocator<bool, C> + + Allocator<N, U1, C>
Allocator<f32, R> + Allocator<f32, C> + + Allocator<N, R, C>
Allocator<u32, R> + Allocator<u32, C> + + Allocator<N, C, R>
Allocator<i32, R> + Allocator<i32, C> + + Allocator<N, R, R>
Allocator<f64, R> + Allocator<f64, C> + + Allocator<N, C, C>
Allocator<u64, R> + Allocator<u64, C> + + Allocator<bool, R>
Allocator<i64, R> + Allocator<i64, C> + + Allocator<bool, C>
Allocator<i16, R> + Allocator<i16, C> + + Allocator<f32, R>
Allocator<(usize, usize), R> + Allocator<(usize, usize), C> + Allocator<f32, C>
+ Allocator<u32, R>
+ Allocator<u32, C>
+ Allocator<i32, R>
+ Allocator<i32, C>
+ Allocator<f64, R>
+ Allocator<f64, C>
+ Allocator<u64, R>
+ Allocator<u64, C>
+ Allocator<i64, R>
+ Allocator<i64, C>
+ Allocator<i16, R>
+ Allocator<i16, C>
+ Allocator<(usize, usize), R>
+ Allocator<(usize, usize), C>
{ {
} }

View File

@ -1,95 +1,94 @@
use na::{self, Real, DefaultAllocator}; use na::{self, DefaultAllocator, Real};
use aliases::TVec; use aliases::TVec;
use traits::{Alloc, Dimension}; use traits::{Alloc, Dimension};
/// Component-wise arc-cosinus. /// Component-wise arc-cosinus.
pub fn acos<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn acos<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|e| e.acos()) x.map(|e| e.acos())
} }
/// Component-wise hyperbolic arc-cosinus. /// Component-wise hyperbolic arc-cosinus.
pub fn acosh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn acosh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|e| e.acosh()) x.map(|e| e.acosh())
} }
/// Component-wise arc-sinus. /// Component-wise arc-sinus.
pub fn asin<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn asin<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|e| e.asin()) x.map(|e| e.asin())
} }
/// Component-wise hyperbolic arc-sinus. /// Component-wise hyperbolic arc-sinus.
pub fn asinh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn asinh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|e| e.asinh()) x.map(|e| e.asinh())
} }
/// Component-wise arc-tangent of `y / x`. /// Component-wise arc-tangent of `y / x`.
pub fn atan2<N: Real, D: Dimension>(y: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D> pub fn atan2<N: Real, D: Dimension>(y: &TVec<N, D>, x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
y.zip_map(x, |y, x| y.atan2(x)) y.zip_map(x, |y, x| y.atan2(x))
} }
/// Component-wise arc-tangent. /// Component-wise arc-tangent.
pub fn atan<N: Real, D: Dimension>(y_over_x: &TVec<N, D>) -> TVec<N, D> pub fn atan<N: Real, D: Dimension>(y_over_x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
y_over_x.map(|e| e.atan()) y_over_x.map(|e| e.atan())
} }
/// Component-wise hyperbolic arc-tangent. /// Component-wise hyperbolic arc-tangent.
pub fn atanh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> pub fn atanh<N: Real, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.map(|e| e.atanh()) x.map(|e| e.atanh())
} }
/// Component-wise cosinus. /// Component-wise cosinus.
pub fn cos<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D> pub fn cos<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
angle.map(|e| e.cos()) angle.map(|e| e.cos())
} }
/// Component-wise hyperbolic cosinus. /// Component-wise hyperbolic cosinus.
pub fn cosh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D> pub fn cosh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
angle.map(|e| e.cosh()) angle.map(|e| e.cosh())
} }
/// Component-wise conversion from radians to degrees. /// Component-wise conversion from radians to degrees.
pub fn degrees<N: Real, D: Dimension>(radians: &TVec<N, D>) -> TVec<N, D> pub fn degrees<N: Real, D: Dimension>(radians: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
radians.map(|e| e * na::convert(180.0) / N::pi()) radians.map(|e| e * na::convert(180.0) / N::pi())
} }
/// Component-wise conversion fro degrees to radians. /// Component-wise conversion fro degrees to radians.
pub fn radians<N: Real, D: Dimension>(degrees: &TVec<N, D>) -> TVec<N, D> pub fn radians<N: Real, D: Dimension>(degrees: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
degrees.map(|e| e * N::pi() / na::convert(180.0)) degrees.map(|e| e * N::pi() / na::convert(180.0))
} }
/// Component-wise sinus. /// Component-wise sinus.
pub fn sin<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D> pub fn sin<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
angle.map(|e| e.sin()) angle.map(|e| e.sin())
} }
/// Component-wise hyperbolic sinus. /// Component-wise hyperbolic sinus.
pub fn sinh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D> pub fn sinh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
angle.map(|e| e.sinh()) angle.map(|e| e.sinh())
} }
/// Component-wise tangent. /// Component-wise tangent.
pub fn tan<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D> pub fn tan<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
angle.map(|e| e.tan()) angle.map(|e| e.tan())
} }
/// Component-wise hyperbolic tangent. /// Component-wise hyperbolic tangent.
pub fn tanh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D> pub fn tanh<N: Real, D: Dimension>(angle: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
angle.map(|e| e.tanh()) angle.map(|e| e.tanh())
} }

View File

@ -1,7 +1,7 @@
use na::{DefaultAllocator}; use na::DefaultAllocator;
use aliases::TVec; use aliases::TVec;
use traits::{Number, Alloc, Dimension}; use traits::{Alloc, Dimension, Number};
/// Checks that all the vector components are `true`. /// Checks that all the vector components are `true`.
/// ///
@ -21,7 +21,7 @@ use traits::{Number, Alloc, Dimension};
/// * [`any`](fn.any.html) /// * [`any`](fn.any.html)
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
pub fn all<D: Dimension>(v: &TVec<bool, D>) -> bool pub fn all<D: Dimension>(v: &TVec<bool, D>) -> bool
where DefaultAllocator: Alloc<bool, D> { where DefaultAllocator: Alloc<bool, D> {
v.iter().all(|x| *x) v.iter().all(|x| *x)
} }
@ -46,7 +46,7 @@ pub fn all<D: Dimension>(v: &TVec<bool, D>) -> bool
/// * [`all`](fn.all.html) /// * [`all`](fn.all.html)
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
pub fn any<D: Dimension>(v: &TVec<bool, D>) -> bool pub fn any<D: Dimension>(v: &TVec<bool, D>) -> bool
where DefaultAllocator: Alloc<bool, D> { where DefaultAllocator: Alloc<bool, D> {
v.iter().any(|x| *x) v.iter().any(|x| *x)
} }
@ -70,7 +70,7 @@ pub fn any<D: Dimension>(v: &TVec<bool, D>) -> bool
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
/// * [`not_equal`](fn.not_equal.html) /// * [`not_equal`](fn.not_equal.html)
pub fn equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D> pub fn equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.zip_map(y, |x, y| x == y) x.zip_map(y, |x, y| x == y)
} }
@ -94,7 +94,7 @@ pub fn equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bo
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
/// * [`not_equal`](fn.not_equal.html) /// * [`not_equal`](fn.not_equal.html)
pub fn greater_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D> pub fn greater_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.zip_map(y, |x, y| x > y) x.zip_map(y, |x, y| x > y)
} }
@ -117,8 +117,13 @@ pub fn greater_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) ->
/// * [`less_than_equal`](fn.less_than_equal.html) /// * [`less_than_equal`](fn.less_than_equal.html)
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
/// * [`not_equal`](fn.not_equal.html) /// * [`not_equal`](fn.not_equal.html)
pub fn greater_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D> pub fn greater_than_equal<N: Number, D: Dimension>(
where DefaultAllocator: Alloc<N, D> { x: &TVec<N, D>,
y: &TVec<N, D>,
) -> TVec<bool, D>
where
DefaultAllocator: Alloc<N, D>,
{
x.zip_map(y, |x, y| x >= y) x.zip_map(y, |x, y| x >= y)
} }
@ -142,7 +147,7 @@ pub fn greater_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
/// * [`not_equal`](fn.not_equal.html) /// * [`not_equal`](fn.not_equal.html)
pub fn less_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D> pub fn less_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.zip_map(y, |x, y| x < y) x.zip_map(y, |x, y| x < y)
} }
@ -166,7 +171,7 @@ pub fn less_than<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVe
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
/// * [`not_equal`](fn.not_equal.html) /// * [`not_equal`](fn.not_equal.html)
pub fn less_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D> pub fn less_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.zip_map(y, |x, y| x <= y) x.zip_map(y, |x, y| x <= y)
} }
@ -191,7 +196,7 @@ pub fn less_than_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>)
/// * [`less_than_equal`](fn.less_than_equal.html) /// * [`less_than_equal`](fn.less_than_equal.html)
/// * [`not_equal`](fn.not_equal.html) /// * [`not_equal`](fn.not_equal.html)
pub fn not<D: Dimension>(v: &TVec<bool, D>) -> TVec<bool, D> pub fn not<D: Dimension>(v: &TVec<bool, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<bool, D> { where DefaultAllocator: Alloc<bool, D> {
v.map(|x| !x) v.map(|x| !x)
} }
@ -215,6 +220,6 @@ pub fn not<D: Dimension>(v: &TVec<bool, D>) -> TVec<bool, D>
/// * [`less_than_equal`](fn.less_than_equal.html) /// * [`less_than_equal`](fn.less_than_equal.html)
/// * [`not`](fn.not.html) /// * [`not`](fn.not.html)
pub fn not_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D> pub fn not_equal<N: Number, D: Dimension>(x: &TVec<N, D>, y: &TVec<N, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
x.zip_map(y, |x, y| x != y) x.zip_map(y, |x, y| x != y)
} }

View File

@ -1,6 +1,6 @@
use test::{self, Bencher};
use na::{DMatrix, Matrix4}; use na::{DMatrix, Matrix4};
use nl::Hessenberg; use nl::Hessenberg;
use test::{self, Bencher};
#[bench] #[bench]
fn hessenberg_decompose_100x100(bh: &mut Bencher) { fn hessenberg_decompose_100x100(bh: &mut Bencher) {

View File

@ -1,6 +1,6 @@
use test::{self, Bencher};
use na::{DMatrix, Matrix4}; use na::{DMatrix, Matrix4};
use nl::LU; use nl::LU;
use test::{self, Bencher};
#[bench] #[bench]
fn lu_decompose_100x100(bh: &mut Bencher) { fn lu_decompose_100x100(bh: &mut Bencher) {

View File

@ -1,3 +1,3 @@
mod qr;
mod lu;
mod hessenberg; mod hessenberg;
mod lu;
mod qr;

View File

@ -1,6 +1,6 @@
use test::{self, Bencher};
use na::{DMatrix, Matrix4}; use na::{DMatrix, Matrix4};
use nl::QR; use nl::QR;
use test::{self, Bencher};
#[bench] #[bench]
fn qr_decompose_100x100(bh: &mut Bencher) { fn qr_decompose_100x100(bh: &mut Bencher) {

View File

@ -1,5 +1,5 @@
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize}; use serde::{Deserialize, Serialize};
use num::Zero; use num::Zero;
use num_complex::Complex; use num_complex::Complex;
@ -15,26 +15,17 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
bound( MatrixN<N, D>: Serialize"))
serialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Serialize"
)
)
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
bound( MatrixN<N, D>: Deserialize<'de>"))
deserialize = "DefaultAllocator: Allocator<N, D>,
MatrixN<N, D>: Deserialize<'de>"
)
)
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct Cholesky<N: Scalar, D: Dim> pub struct Cholesky<N: Scalar, D: Dim>
where where DefaultAllocator: Allocator<N, D, D>
DefaultAllocator: Allocator<N, D, D>,
{ {
l: MatrixN<N, D>, l: MatrixN<N, D>,
} }
@ -47,8 +38,7 @@ where
} }
impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D> impl<N: CholeskyScalar + Zero, D: Dim> Cholesky<N, D>
where where DefaultAllocator: Allocator<N, D, D>
DefaultAllocator: Allocator<N, D, D>,
{ {
/// Computes the cholesky decomposition of the given symmetric-definite-positive square /// Computes the cholesky decomposition of the given symmetric-definite-positive square
/// matrix. /// matrix.
@ -124,9 +114,7 @@ where
/// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is /// Solves in-place the symmetric-definite-positive linear system `self * x = b`, where `x` is
/// the unknown to be determined. /// the unknown to be determined.
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
where where DefaultAllocator: Allocator<N, R2, C2> {
DefaultAllocator: Allocator<N, R2, C2>,
{
let dim = self.l.nrows(); let dim = self.l.nrows();
assert!( assert!(

View File

@ -1,5 +1,5 @@
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize}; use serde::{Deserialize, Serialize};
use num::Zero; use num::Zero;
use num_complex::Complex; use num_complex::Complex;
@ -19,27 +19,22 @@ use lapack;
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(
bound( bound(serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize, VectorN<N, D>: Serialize,
MatrixN<N, D>: Serialize" MatrixN<N, D>: Serialize")
)
) )
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(
bound( bound(deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize, VectorN<N, D>: Serialize,
MatrixN<N, D>: Deserialize<'de>" MatrixN<N, D>: Deserialize<'de>")
)
) )
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct Eigen<N: Scalar, D: Dim> pub struct Eigen<N: Scalar, D: Dim>
where where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
{ {
/// The eigenvalues of the decomposed matrix. /// The eigenvalues of the decomposed matrix.
pub eigenvalues: VectorN<N, D>, pub eigenvalues: VectorN<N, D>,
@ -58,8 +53,7 @@ where
} }
impl<N: EigenScalar + Real, D: Dim> Eigen<N, D> impl<N: EigenScalar + Real, D: Dim> Eigen<N, D>
where where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{ {
/// Computes the eigenvalues and eigenvectors of the square matrix `m`. /// Computes the eigenvalues and eigenvectors of the square matrix `m`.
/// ///
@ -68,7 +62,8 @@ where
mut m: MatrixN<N, D>, mut m: MatrixN<N, D>,
left_eigenvectors: bool, left_eigenvectors: bool,
eigenvectors: bool, eigenvectors: bool,
) -> Option<Eigen<N, D>> { ) -> Option<Eigen<N, D>>
{
assert!( assert!(
m.is_square(), m.is_square(),
"Unable to compute the eigenvalue decomposition of a non-square matrix." "Unable to compute the eigenvalue decomposition of a non-square matrix."
@ -234,9 +229,7 @@ where
/// ///
/// Panics if the eigenvalue computation does not converge. /// Panics if the eigenvalue computation does not converge.
pub fn complex_eigenvalues(mut m: MatrixN<N, D>) -> VectorN<Complex<N>, D> pub fn complex_eigenvalues(mut m: MatrixN<N, D>) -> VectorN<Complex<N>, D>
where where DefaultAllocator: Allocator<Complex<N>, D> {
DefaultAllocator: Allocator<Complex<N>, D>,
{
assert!( assert!(
m.is_square(), m.is_square(),
"Unable to compute the eigenvalue decomposition of a non-square matrix." "Unable to compute the eigenvalue decomposition of a non-square matrix."

View File

@ -13,30 +13,21 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>, Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Serialize, MatrixN<N, D>: Serialize,
VectorN<N, DimDiff<D, U1>>: Serialize" VectorN<N, DimDiff<D, U1>>: Serialize"))
)
)
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>, Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Deserialize<'de>, MatrixN<N, D>: Deserialize<'de>,
VectorN<N, DimDiff<D, U1>>: Deserialize<'de>" VectorN<N, DimDiff<D, U1>>: Deserialize<'de>"))
)
)
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct Hessenberg<N: Scalar, D: DimSub<U1>> pub struct Hessenberg<N: Scalar, D: DimSub<U1>>
where where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
{ {
h: MatrixN<N, D>, h: MatrixN<N, D>,
tau: VectorN<N, DimDiff<D, U1>>, tau: VectorN<N, DimDiff<D, U1>>,
@ -51,8 +42,7 @@ where
} }
impl<N: HessenbergScalar + Zero, D: DimSub<U1>> Hessenberg<N, D> impl<N: HessenbergScalar + Zero, D: DimSub<U1>> Hessenberg<N, D>
where where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
{ {
/// Computes the hessenberg decomposition of the matrix `m`. /// Computes the hessenberg decomposition of the matrix `m`.
pub fn new(mut m: MatrixN<N, D>) -> Hessenberg<N, D> { pub fn new(mut m: MatrixN<N, D>) -> Hessenberg<N, D> {
@ -104,8 +94,7 @@ where
} }
impl<N: HessenbergReal + Zero, D: DimSub<U1>> Hessenberg<N, D> impl<N: HessenbergReal + Zero, D: DimSub<U1>> Hessenberg<N, D>
where where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
{ {
/// Computes the matrices `(Q, H)` of this decomposition. /// Computes the matrices `(Q, H)` of this decomposition.
#[inline] #[inline]

View File

@ -68,8 +68,10 @@
#![deny(unused_qualifications)] #![deny(unused_qualifications)]
#![deny(unused_results)] #![deny(unused_results)]
#![deny(missing_docs)] #![deny(missing_docs)]
#![doc(html_favicon_url = "http://nalgebra.org/img/favicon.ico", #![doc(
html_root_url = "http://nalgebra.org/rustdoc")] html_favicon_url = "http://nalgebra.org/img/favicon.ico",
html_root_url = "http://nalgebra.org/rustdoc"
)]
extern crate alga; extern crate alga;
extern crate lapack; extern crate lapack;

View File

@ -20,30 +20,21 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<i32, DimMinimum<R, C>>, Allocator<i32, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize, MatrixMN<N, R, C>: Serialize,
PermutationSequence<DimMinimum<R, C>>: Serialize" PermutationSequence<DimMinimum<R, C>>: Serialize"))
)
)
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<i32, DimMinimum<R, C>>, Allocator<i32, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>, MatrixMN<N, R, C>: Deserialize<'de>,
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>" PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
)
)
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct LU<N: Scalar, R: DimMin<C>, C: Dim> pub struct LU<N: Scalar, R: DimMin<C>, C: Dim>
where where DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>
DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>,
{ {
lu: MatrixMN<N, R, C>, lu: MatrixMN<N, R, C>,
p: VectorN<i32, DimMinimum<R, C>>, p: VectorN<i32, DimMinimum<R, C>>,
@ -139,9 +130,7 @@ where
/// Applies the permutation matrix to a given matrix or vector in-place. /// Applies the permutation matrix to a given matrix or vector in-place.
#[inline] #[inline]
pub fn permute<C2: Dim>(&self, rhs: &mut MatrixMN<N, R, C2>) pub fn permute<C2: Dim>(&self, rhs: &mut MatrixMN<N, R, C2>)
where where DefaultAllocator: Allocator<N, R, C2> {
DefaultAllocator: Allocator<N, R, C2>,
{
let (nrows, ncols) = rhs.shape(); let (nrows, ncols) = rhs.shape();
N::xlaswp( N::xlaswp(
@ -156,9 +145,7 @@ where
} }
fn generic_solve_mut<R2: Dim, C2: Dim>(&self, trans: u8, b: &mut MatrixMN<N, R2, C2>) -> bool fn generic_solve_mut<R2: Dim, C2: Dim>(&self, trans: u8, b: &mut MatrixMN<N, R2, C2>) -> bool
where where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
{
let dim = self.lu.nrows(); let dim = self.lu.nrows();
assert!( assert!(
@ -246,9 +233,7 @@ where
/// ///
/// Returns `false` if no solution was found (the decomposed matrix is singular). /// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
where where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
{
self.generic_solve_mut(b'N', b) self.generic_solve_mut(b'N', b)
} }
@ -257,9 +242,7 @@ where
/// ///
/// Returns `false` if no solution was found (the decomposed matrix is singular). /// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
where where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
{
self.generic_solve_mut(b'T', b) self.generic_solve_mut(b'T', b)
} }

View File

@ -1,5 +1,5 @@
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize}; use serde::{Deserialize, Serialize};
use num::Zero; use num::Zero;
use num_complex::Complex; use num_complex::Complex;
@ -16,30 +16,21 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>, Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize, MatrixMN<N, R, C>: Serialize,
VectorN<N, DimMinimum<R, C>>: Serialize" VectorN<N, DimMinimum<R, C>>: Serialize"))
)
)
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>, Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>, MatrixMN<N, R, C>: Deserialize<'de>,
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>" VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"))
)
)
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct QR<N: Scalar, R: DimMin<C>, C: Dim> pub struct QR<N: Scalar, R: DimMin<C>, C: Dim>
where where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>
DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>,
{ {
qr: MatrixMN<N, R, C>, qr: MatrixMN<N, R, C>,
tau: VectorN<N, DimMinimum<R, C>>, tau: VectorN<N, DimMinimum<R, C>>,
@ -54,11 +45,10 @@ where
} }
impl<N: QRScalar + Zero, R: DimMin<C>, C: Dim> QR<N, R, C> impl<N: QRScalar + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>
DefaultAllocator: Allocator<N, R, C>
+ Allocator<N, R, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>>
+ Allocator<N, DimMinimum<R, C>, C> + Allocator<N, DimMinimum<R, C>, C>
+ Allocator<N, DimMinimum<R, C>>, + Allocator<N, DimMinimum<R, C>>
{ {
/// Computes the QR decomposition of the matrix `m`. /// Computes the QR decomposition of the matrix `m`.
pub fn new(mut m: MatrixMN<N, R, C>) -> QR<N, R, C> { pub fn new(mut m: MatrixMN<N, R, C>) -> QR<N, R, C> {
@ -105,11 +95,10 @@ where
} }
impl<N: QRReal + Zero, R: DimMin<C>, C: Dim> QR<N, R, C> impl<N: QRReal + Zero, R: DimMin<C>, C: Dim> QR<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>
DefaultAllocator: Allocator<N, R, C>
+ Allocator<N, R, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>>
+ Allocator<N, DimMinimum<R, C>, C> + Allocator<N, DimMinimum<R, C>, C>
+ Allocator<N, DimMinimum<R, C>>, + Allocator<N, DimMinimum<R, C>>
{ {
/// Retrieves the matrices `(Q, R)` of this decompositions. /// Retrieves the matrices `(Q, R)` of this decompositions.
pub fn unpack( pub fn unpack(
@ -131,7 +120,8 @@ where
return MatrixMN::from_element_generic(nrows, min_nrows_ncols, N::zero()); return MatrixMN::from_element_generic(nrows, min_nrows_ncols, N::zero());
} }
let mut q = self.qr let mut q = self
.qr
.generic_slice((0, 0), (nrows, min_nrows_ncols)) .generic_slice((0, 0), (nrows, min_nrows_ncols))
.into_owned(); .into_owned();

View File

@ -1,5 +1,5 @@
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize}; use serde::{Deserialize, Serialize};
use num::Zero; use num::Zero;
use num_complex::Complex; use num_complex::Complex;
@ -19,27 +19,22 @@ use lapack;
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(
bound( bound(serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
serialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize, VectorN<N, D>: Serialize,
MatrixN<N, D>: Serialize" MatrixN<N, D>: Serialize")
)
) )
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(
bound( bound(deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
deserialize = "DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
VectorN<N, D>: Serialize, VectorN<N, D>: Serialize,
MatrixN<N, D>: Deserialize<'de>" MatrixN<N, D>: Deserialize<'de>")
)
) )
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct RealSchur<N: Scalar, D: Dim> pub struct RealSchur<N: Scalar, D: Dim>
where where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
{ {
re: VectorN<N, D>, re: VectorN<N, D>,
im: VectorN<N, D>, im: VectorN<N, D>,
@ -56,8 +51,7 @@ where
} }
impl<N: RealSchurScalar + Real, D: Dim> RealSchur<N, D> impl<N: RealSchurScalar + Real, D: Dim> RealSchur<N, D>
where where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{ {
/// Computes the eigenvalues and real Schur form of the matrix `m`. /// Computes the eigenvalues and real Schur form of the matrix `m`.
/// ///
@ -152,9 +146,7 @@ where
/// Computes the complex eigenvalues of the decomposed matrix. /// Computes the complex eigenvalues of the decomposed matrix.
pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D> pub fn complex_eigenvalues(&self) -> VectorN<Complex<N>, D>
where where DefaultAllocator: Allocator<Complex<N>, D> {
DefaultAllocator: Allocator<Complex<N>, D>,
{
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) }; let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
for i in 0..out.len() { for i in 0..out.len() {

View File

@ -1,5 +1,5 @@
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize}; use serde::{Deserialize, Serialize};
use num::Signed; use num::Signed;
use std::cmp; use std::cmp;
@ -15,34 +15,25 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
bound(
serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
Allocator<N, R, R> + Allocator<N, R, R> +
Allocator<N, C, C>, Allocator<N, C, C>,
MatrixN<N, R>: Serialize, MatrixN<N, R>: Serialize,
MatrixN<N, C>: Serialize, MatrixN<N, C>: Serialize,
VectorN<N, DimMinimum<R, C>>: Serialize" VectorN<N, DimMinimum<R, C>>: Serialize"))
)
)
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
bound(
serialize = "DefaultAllocator: Allocator<N, DimMinimum<R, C>> +
Allocator<N, R, R> + Allocator<N, R, R> +
Allocator<N, C, C>, Allocator<N, C, C>,
MatrixN<N, R>: Deserialize<'de>, MatrixN<N, R>: Deserialize<'de>,
MatrixN<N, C>: Deserialize<'de>, MatrixN<N, C>: Deserialize<'de>,
VectorN<N, DimMinimum<R, C>>: Deserialize<'de>" VectorN<N, DimMinimum<R, C>>: Deserialize<'de>"))
)
)
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct SVD<N: Scalar, R: DimMin<C>, C: Dim> pub struct SVD<N: Scalar, R: DimMin<C>, C: Dim>
where where DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>
DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>,
{ {
/// The left-singular vectors `U` of this SVD. /// The left-singular vectors `U` of this SVD.
pub u: MatrixN<N, R>, // FIXME: should be MatrixMN<N, R, DimMinimum<R, C>> pub u: MatrixN<N, R>, // FIXME: should be MatrixMN<N, R, DimMinimum<R, C>>
@ -64,22 +55,20 @@ where
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`) /// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
/// supported by the Singular Value Decompotition. /// supported by the Singular Value Decompotition.
pub trait SVDScalar<R: DimMin<C>, C: Dim>: Scalar pub trait SVDScalar<R: DimMin<C>, C: Dim>: Scalar
where where DefaultAllocator: Allocator<Self, R, R>
DefaultAllocator: Allocator<Self, R, R>
+ Allocator<Self, R, C> + Allocator<Self, R, C>
+ Allocator<Self, DimMinimum<R, C>> + Allocator<Self, DimMinimum<R, C>>
+ Allocator<Self, C, C>, + Allocator<Self, C, C>
{ {
/// Computes the SVD decomposition of `m`. /// Computes the SVD decomposition of `m`.
fn compute(m: MatrixMN<Self, R, C>) -> Option<SVD<Self, R, C>>; fn compute(m: MatrixMN<Self, R, C>) -> Option<SVD<Self, R, C>>;
} }
impl<N: SVDScalar<R, C>, R: DimMin<C>, C: Dim> SVD<N, R, C> impl<N: SVDScalar<R, C>, R: DimMin<C>, C: Dim> SVD<N, R, C>
where where DefaultAllocator: Allocator<N, R, R>
DefaultAllocator: Allocator<N, R, R>
+ Allocator<N, R, C> + Allocator<N, R, C>
+ Allocator<N, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>
+ Allocator<N, C, C>, + Allocator<N, C, C>
{ {
/// Computes the Singular Value Decomposition of `matrix`. /// Computes the Singular Value Decomposition of `matrix`.
pub fn new(m: MatrixMN<N, R, C>) -> Option<Self> { pub fn new(m: MatrixMN<N, R, C>) -> Option<Self> {

View File

@ -1,5 +1,5 @@
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
use serde::{Serialize, Deserialize}; use serde::{Deserialize, Serialize};
use num::Zero; use num::Zero;
use std::ops::MulAssign; use std::ops::MulAssign;
@ -18,30 +18,21 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
bound(
serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D>, Allocator<N, D>,
VectorN<N, D>: Serialize, VectorN<N, D>: Serialize,
MatrixN<N, D>: Serialize" MatrixN<N, D>: Serialize"))
)
)
)] )]
#[cfg_attr( #[cfg_attr(
feature = "serde-serialize", feature = "serde-serialize",
serde( serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
bound(
deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D>, Allocator<N, D>,
VectorN<N, D>: Deserialize<'de>, VectorN<N, D>: Deserialize<'de>,
MatrixN<N, D>: Deserialize<'de>" MatrixN<N, D>: Deserialize<'de>"))
)
)
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct SymmetricEigen<N: Scalar, D: Dim> pub struct SymmetricEigen<N: Scalar, D: Dim>
where where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
{ {
/// The eigenvectors of the decomposed matrix. /// The eigenvectors of the decomposed matrix.
pub eigenvectors: MatrixN<N, D>, pub eigenvectors: MatrixN<N, D>,
@ -59,8 +50,7 @@ where
} }
impl<N: SymmetricEigenScalar + Real, D: Dim> SymmetricEigen<N, D> impl<N: SymmetricEigenScalar + Real, D: Dim> SymmetricEigen<N, D>
where where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{ {
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`. /// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
/// ///
@ -89,7 +79,8 @@ where
fn do_decompose( fn do_decompose(
mut m: MatrixN<N, D>, mut m: MatrixN<N, D>,
eigenvectors: bool, eigenvectors: bool,
) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)> { ) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)>
{
assert!( assert!(
m.is_square(), m.is_square(),
"Unable to compute the eigenvalue decomposition of a non-square matrix." "Unable to compute the eigenvalue decomposition of a non-square matrix."

View File

@ -1,7 +1,7 @@
use std::cmp; use std::cmp;
use nl::Cholesky;
use na::{DMatrix, DVector, Matrix3, Matrix4, Matrix4x3, Vector4}; use na::{DMatrix, DVector, Matrix3, Matrix4, Matrix4x3, Vector4};
use nl::Cholesky;
quickcheck!{ quickcheck!{
fn cholesky(m: DMatrix<f64>) -> bool { fn cholesky(m: DMatrix<f64>) -> bool {

View File

@ -1,7 +1,7 @@
use std::cmp; use std::cmp;
use nl::LU;
use na::{DMatrix, DVector, Matrix3x4, Matrix4, Matrix4x3, Vector4}; use na::{DMatrix, DVector, Matrix3x4, Matrix4, Matrix4x3, Vector4};
use nl::LU;
quickcheck!{ quickcheck!{
fn lup(m: DMatrix<f64>) -> bool { fn lup(m: DMatrix<f64>) -> bool {

View File

@ -1,7 +1,7 @@
mod real_eigensystem;
mod symmetric_eigen;
mod cholesky; mod cholesky;
mod lu; mod lu;
mod qr; mod qr;
mod svd; mod real_eigensystem;
mod real_schur; mod real_schur;
mod svd;
mod symmetric_eigen;

View File

@ -1,5 +1,5 @@
use nl::QR;
use na::{DMatrix, Matrix4x3}; use na::{DMatrix, Matrix4x3};
use nl::QR;
quickcheck!{ quickcheck!{
fn qr(m: DMatrix<f64>) -> bool { fn qr(m: DMatrix<f64>) -> bool {

View File

@ -1,7 +1,7 @@
use std::cmp; use std::cmp;
use nl::Eigen;
use na::{DMatrix, Matrix4}; use na::{DMatrix, Matrix4};
use nl::Eigen;
quickcheck!{ quickcheck!{
fn eigensystem(n: usize) -> bool { fn eigensystem(n: usize) -> bool {

View File

@ -1,6 +1,6 @@
use std::cmp;
use nl::RealSchur;
use na::{DMatrix, Matrix4}; use na::{DMatrix, Matrix4};
use nl::RealSchur;
use std::cmp;
quickcheck! { quickcheck! {
fn schur(n: usize) -> bool { fn schur(n: usize) -> bool {

View File

@ -1,5 +1,5 @@
use nl::SVD;
use na::{DMatrix, Matrix3x4}; use na::{DMatrix, Matrix3x4};
use nl::SVD;
quickcheck!{ quickcheck!{
fn svd(m: DMatrix<f64>) -> bool { fn svd(m: DMatrix<f64>) -> bool {

View File

@ -1,7 +1,7 @@
use std::cmp; use std::cmp;
use nl::SymmetricEigen;
use na::{DMatrix, Matrix4}; use na::{DMatrix, Matrix4};
use nl::SymmetricEigen;
quickcheck!{ quickcheck!{
fn symmetric_eigen(n: usize) -> bool { fn symmetric_eigen(n: usize) -> bool {

View File

@ -79,7 +79,8 @@ where
N: Scalar, N: Scalar,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>, DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{} {
}
// XXX: Bad name. // XXX: Bad name.
/// Restricts the given number of rows to be equal. /// Restricts the given number of rows to be equal.
@ -100,4 +101,5 @@ where
N: Scalar, N: Scalar,
DefaultAllocator: Allocator<N, R1, U1> + Allocator<N, SameShapeR<R1, R2>>, DefaultAllocator: Allocator<N, R1, U1> + Allocator<N, SameShapeR<R1, R2>>,
ShapeConstraint: SameNumberOfRows<R1, R2>, ShapeConstraint: SameNumberOfRows<R1, R2>,
{} {
}

View File

@ -161,8 +161,7 @@ impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matri
} }
impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where where N: Scalar + Zero + ClosedAdd + ClosedMul
N: Scalar + Zero + ClosedAdd + ClosedMul,
{ {
/// The dot product between two vectors or matrices (seen as vectors). /// The dot product between two vectors or matrices (seen as vectors).
/// ///
@ -324,9 +323,7 @@ where
} }
fn array_axpy<N>(y: &mut [N], a: N, x: &[N], beta: N, stride1: usize, stride2: usize, len: usize) fn array_axpy<N>(y: &mut [N], a: N, x: &[N], beta: N, stride1: usize, stride2: usize, len: usize)
where where N: Scalar + Zero + ClosedAdd + ClosedMul {
N: Scalar + Zero + ClosedAdd + ClosedMul,
{
for i in 0..len { for i in 0..len {
unsafe { unsafe {
let y = y.get_unchecked_mut(i * stride1); let y = y.get_unchecked_mut(i * stride1);
@ -336,9 +333,7 @@ where
} }
fn array_ax<N>(y: &mut [N], a: N, x: &[N], stride1: usize, stride2: usize, len: usize) fn array_ax<N>(y: &mut [N], a: N, x: &[N], stride1: usize, stride2: usize, len: usize)
where where N: Scalar + Zero + ClosedAdd + ClosedMul {
N: Scalar + Zero + ClosedAdd + ClosedMul,
{
for i in 0..len { for i in 0..len {
unsafe { unsafe {
*y.get_unchecked_mut(i * stride1) = a * *x.get_unchecked(i * stride2); *y.get_unchecked_mut(i * stride1) = a * *x.get_unchecked(i * stride2);
@ -576,8 +571,7 @@ where
} }
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S> impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
where where N: Scalar + Zero + ClosedAdd + ClosedMul
N: Scalar + Zero + ClosedAdd + ClosedMul,
{ {
/// Computes `self = alpha * x * y.transpose() + beta * self`. /// Computes `self = alpha * x * y.transpose() + beta * self`.
/// ///
@ -817,8 +811,7 @@ where
} }
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S> impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
where where N: Scalar + Zero + ClosedAdd + ClosedMul
N: Scalar + Zero + ClosedAdd + ClosedMul,
{ {
/// Computes `self = alpha * x * y.transpose() + beta * self`, where `self` is a **symmetric** /// Computes `self = alpha * x * y.transpose() + beta * self`, where `self` is a **symmetric**
/// matrix. /// matrix.
@ -876,8 +869,7 @@ where
} }
impl<N, D1: Dim, S: StorageMut<N, D1, D1>> SquareMatrix<N, D1, S> impl<N, D1: Dim, S: StorageMut<N, D1, D1>> SquareMatrix<N, D1, S>
where where N: Scalar + Zero + One + ClosedAdd + ClosedMul
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
{ {
/// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`. /// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`.
/// ///

View File

@ -238,9 +238,7 @@ impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S>
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor. /// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
#[inline] #[inline]
pub fn append_scaling_mut(&mut self, scaling: N) pub fn append_scaling_mut(&mut self, scaling: N)
where where D: DimNameSub<U1> {
D: DimNameSub<U1>,
{
let mut to_scale = self.fixed_rows_mut::<DimNameDiff<D, U1>>(0); let mut to_scale = self.fixed_rows_mut::<DimNameDiff<D, U1>>(0);
to_scale *= scaling; to_scale *= scaling;
} }
@ -248,9 +246,7 @@ impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S>
/// Computes in-place the transformation equal to an uniform scaling factor followed by `self`. /// Computes in-place the transformation equal to an uniform scaling factor followed by `self`.
#[inline] #[inline]
pub fn prepend_scaling_mut(&mut self, scaling: N) pub fn prepend_scaling_mut(&mut self, scaling: N)
where where D: DimNameSub<U1> {
D: DimNameSub<U1>,
{
let mut to_scale = self.fixed_columns_mut::<DimNameDiff<D, U1>>(0); let mut to_scale = self.fixed_columns_mut::<DimNameDiff<D, U1>>(0);
to_scale *= scaling; to_scale *= scaling;
} }
@ -319,16 +315,16 @@ impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S>
} }
impl<N: Real, D: DimNameSub<U1>> Transformation<Point<N, DimNameDiff<D, U1>>> for MatrixN<N, D> impl<N: Real, D: DimNameSub<U1>> Transformation<Point<N, DimNameDiff<D, U1>>> for MatrixN<N, D>
where where DefaultAllocator: Allocator<N, D, D>
DefaultAllocator: Allocator<N, D, D>
+ Allocator<N, DimNameDiff<D, U1>> + Allocator<N, DimNameDiff<D, U1>>
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>, + Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
{ {
#[inline] #[inline]
fn transform_vector( fn transform_vector(
&self, &self,
v: &VectorN<N, DimNameDiff<D, U1>>, v: &VectorN<N, DimNameDiff<D, U1>>,
) -> VectorN<N, DimNameDiff<D, U1>> { ) -> VectorN<N, DimNameDiff<D, U1>>
{
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0); let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0); let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
let n = normalizer.tr_dot(&v); let n = normalizer.tr_dot(&v);

View File

@ -8,8 +8,7 @@ pub struct ShapeConstraint;
/// Constraints `C1` and `R2` to be equivalent. /// Constraints `C1` and `R2` to be equivalent.
pub trait AreMultipliable<R1: Dim, C1: Dim, R2: Dim, C2: Dim>: DimEq<C1, R2> {} pub trait AreMultipliable<R1: Dim, C1: Dim, R2: Dim, C2: Dim>: DimEq<C1, R2> {}
impl<R1: Dim, C1: Dim, R2: Dim, C2: Dim> AreMultipliable<R1, C1, R2, C2> for ShapeConstraint where impl<R1: Dim, C1: Dim, R2: Dim, C2: Dim> AreMultipliable<R1, C1, R2, C2> for ShapeConstraint where ShapeConstraint: DimEq<C1, R2>
ShapeConstraint: DimEq<C1, R2>
{} {}
/// Constraints `D1` and `D2` to be equivalent. /// Constraints `D1` and `D2` to be equivalent.

View File

@ -26,8 +26,7 @@ use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vector, Ve
* *
*/ */
impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C> impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>
DefaultAllocator: Allocator<N, R, C>,
{ {
/// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics /// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics
/// if `nrows != R::to_usize()` or `ncols != C::to_usize()`. /// if `nrows != R::to_usize()` or `ncols != C::to_usize()`.
@ -55,18 +54,14 @@ where
/// Creates a matrix with all its elements set to 0. /// Creates a matrix with all its elements set to 0.
#[inline] #[inline]
pub fn zeros_generic(nrows: R, ncols: C) -> Self pub fn zeros_generic(nrows: R, ncols: C) -> Self
where where N: Zero {
N: Zero,
{
Self::from_element_generic(nrows, ncols, N::zero()) Self::from_element_generic(nrows, ncols, N::zero())
} }
/// Creates a matrix with all its elements filled by an iterator. /// Creates a matrix with all its elements filled by an iterator.
#[inline] #[inline]
pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
where where I: IntoIterator<Item = N> {
I: IntoIterator<Item = N>,
{
Self::from_data(DefaultAllocator::allocate_from_iterator(nrows, ncols, iter)) Self::from_data(DefaultAllocator::allocate_from_iterator(nrows, ncols, iter))
} }
@ -105,9 +100,7 @@ where
/// coordinates. /// coordinates.
#[inline] #[inline]
pub fn from_fn_generic<F>(nrows: R, ncols: C, mut f: F) -> Self pub fn from_fn_generic<F>(nrows: R, ncols: C, mut f: F) -> Self
where where F: FnMut(usize, usize) -> N {
F: FnMut(usize, usize) -> N,
{
let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) }; let mut res = unsafe { Self::new_uninitialized_generic(nrows, ncols) };
for j in 0..ncols.value() { for j in 0..ncols.value() {
@ -125,9 +118,7 @@ where
/// to the identity matrix. All other entries are set to zero. /// to the identity matrix. All other entries are set to zero.
#[inline] #[inline]
pub fn identity_generic(nrows: R, ncols: C) -> Self pub fn identity_generic(nrows: R, ncols: C) -> Self
where where N: Zero + One {
N: Zero + One,
{
Self::from_diagonal_element_generic(nrows, ncols, N::one()) Self::from_diagonal_element_generic(nrows, ncols, N::one())
} }
@ -137,9 +128,7 @@ where
/// to the identity matrix. All other entries are set to zero. /// to the identity matrix. All other entries are set to zero.
#[inline] #[inline]
pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: N) -> Self pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: N) -> Self
where where N: Zero + One {
N: Zero + One,
{
let mut res = Self::zeros_generic(nrows, ncols); let mut res = Self::zeros_generic(nrows, ncols);
for i in 0..::min(nrows.value(), ncols.value()) { for i in 0..::min(nrows.value(), ncols.value()) {
@ -155,9 +144,7 @@ where
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`. /// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
#[inline] #[inline]
pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[N]) -> Self pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[N]) -> Self
where where N: Zero {
N: Zero,
{
let mut res = Self::zeros_generic(nrows, ncols); let mut res = Self::zeros_generic(nrows, ncols);
assert!( assert!(
elts.len() <= ::min(nrows.value(), ncols.value()), elts.len() <= ::min(nrows.value(), ncols.value()),
@ -177,9 +164,7 @@ where
/// not have the same dimensions. /// not have the same dimensions.
#[inline] #[inline]
pub fn from_rows<SB>(rows: &[Matrix<N, U1, C, SB>]) -> Self pub fn from_rows<SB>(rows: &[Matrix<N, U1, C, SB>]) -> Self
where where SB: Storage<N, U1, C> {
SB: Storage<N, U1, C>,
{
assert!(rows.len() > 0, "At least one row must be given."); assert!(rows.len() > 0, "At least one row must be given.");
let nrows = R::try_to_usize().unwrap_or(rows.len()); let nrows = R::try_to_usize().unwrap_or(rows.len());
let ncols = rows[0].len(); let ncols = rows[0].len();
@ -207,9 +192,7 @@ where
/// columns do not have the same dimensions. /// columns do not have the same dimensions.
#[inline] #[inline]
pub fn from_columns<SB>(columns: &[Vector<N, R, SB>]) -> Self pub fn from_columns<SB>(columns: &[Vector<N, R, SB>]) -> Self
where where SB: Storage<N, R> {
SB: Storage<N, R>,
{
assert!(columns.len() > 0, "At least one column must be given."); assert!(columns.len() > 0, "At least one column must be given.");
let ncols = C::try_to_usize().unwrap_or(columns.len()); let ncols = C::try_to_usize().unwrap_or(columns.len());
let nrows = columns[0].len(); let nrows = columns[0].len();
@ -235,9 +218,7 @@ where
#[inline] #[inline]
#[cfg(feature = "std")] #[cfg(feature = "std")]
pub fn new_random_generic(nrows: R, ncols: C) -> Self pub fn new_random_generic(nrows: R, ncols: C) -> Self
where where Standard: Distribution<N> {
Standard: Distribution<N>,
{
Self::from_fn_generic(nrows, ncols, |_, _| rand::random()) Self::from_fn_generic(nrows, ncols, |_, _| rand::random())
} }
@ -248,7 +229,8 @@ where
ncols: C, ncols: C,
distribution: &mut Distr, distribution: &mut Distr,
rng: &mut G, rng: &mut G,
) -> Self { ) -> Self
{
Self::from_fn_generic(nrows, ncols, |_, _| distribution.sample(rng)) Self::from_fn_generic(nrows, ncols, |_, _| distribution.sample(rng))
} }
} }
@ -261,9 +243,7 @@ where
/// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0. /// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0.
#[inline] #[inline]
pub fn from_diagonal<SB: Storage<N, D>>(diag: &Vector<N, D, SB>) -> Self pub fn from_diagonal<SB: Storage<N, D>>(diag: &Vector<N, D, SB>) -> Self
where where N: Zero {
N: Zero,
{
let (dim, _) = diag.data.shape(); let (dim, _) = diag.data.shape();
let mut res = Self::zeros_generic(dim, dim); let mut res = Self::zeros_generic(dim, dim);
@ -703,9 +683,7 @@ where
/// The column vector with a 1 as its first component, and zero elsewhere. /// The column vector with a 1 as its first component, and zero elsewhere.
#[inline] #[inline]
pub fn x() -> Self pub fn x() -> Self
where where R::Value: Cmp<typenum::U0, Output = Greater> {
R::Value: Cmp<typenum::U0, Output = Greater>,
{
let mut res = Self::zeros(); let mut res = Self::zeros();
unsafe { unsafe {
*res.vget_unchecked_mut(0) = N::one(); *res.vget_unchecked_mut(0) = N::one();
@ -717,9 +695,7 @@ where
/// The column vector with a 1 as its second component, and zero elsewhere. /// The column vector with a 1 as its second component, and zero elsewhere.
#[inline] #[inline]
pub fn y() -> Self pub fn y() -> Self
where where R::Value: Cmp<typenum::U1, Output = Greater> {
R::Value: Cmp<typenum::U1, Output = Greater>,
{
let mut res = Self::zeros(); let mut res = Self::zeros();
unsafe { unsafe {
*res.vget_unchecked_mut(1) = N::one(); *res.vget_unchecked_mut(1) = N::one();
@ -731,9 +707,7 @@ where
/// The column vector with a 1 as its third component, and zero elsewhere. /// The column vector with a 1 as its third component, and zero elsewhere.
#[inline] #[inline]
pub fn z() -> Self pub fn z() -> Self
where where R::Value: Cmp<typenum::U2, Output = Greater> {
R::Value: Cmp<typenum::U2, Output = Greater>,
{
let mut res = Self::zeros(); let mut res = Self::zeros();
unsafe { unsafe {
*res.vget_unchecked_mut(2) = N::one(); *res.vget_unchecked_mut(2) = N::one();
@ -745,9 +719,7 @@ where
/// The column vector with a 1 as its fourth component, and zero elsewhere. /// The column vector with a 1 as its fourth component, and zero elsewhere.
#[inline] #[inline]
pub fn w() -> Self pub fn w() -> Self
where where R::Value: Cmp<typenum::U3, Output = Greater> {
R::Value: Cmp<typenum::U3, Output = Greater>,
{
let mut res = Self::zeros(); let mut res = Self::zeros();
unsafe { unsafe {
*res.vget_unchecked_mut(3) = N::one(); *res.vget_unchecked_mut(3) = N::one();
@ -759,9 +731,7 @@ where
/// The column vector with a 1 as its fifth component, and zero elsewhere. /// The column vector with a 1 as its fifth component, and zero elsewhere.
#[inline] #[inline]
pub fn a() -> Self pub fn a() -> Self
where where R::Value: Cmp<typenum::U4, Output = Greater> {
R::Value: Cmp<typenum::U4, Output = Greater>,
{
let mut res = Self::zeros(); let mut res = Self::zeros();
unsafe { unsafe {
*res.vget_unchecked_mut(4) = N::one(); *res.vget_unchecked_mut(4) = N::one();
@ -773,9 +743,7 @@ where
/// The column vector with a 1 as its sixth component, and zero elsewhere. /// The column vector with a 1 as its sixth component, and zero elsewhere.
#[inline] #[inline]
pub fn b() -> Self pub fn b() -> Self
where where R::Value: Cmp<typenum::U5, Output = Greater> {
R::Value: Cmp<typenum::U5, Output = Greater>,
{
let mut res = Self::zeros(); let mut res = Self::zeros();
unsafe { unsafe {
*res.vget_unchecked_mut(5) = N::one(); *res.vget_unchecked_mut(5) = N::one();
@ -787,54 +755,42 @@ where
/// The unit column vector with a 1 as its first component, and zero elsewhere. /// The unit column vector with a 1 as its first component, and zero elsewhere.
#[inline] #[inline]
pub fn x_axis() -> Unit<Self> pub fn x_axis() -> Unit<Self>
where where R::Value: Cmp<typenum::U0, Output = Greater> {
R::Value: Cmp<typenum::U0, Output = Greater>,
{
Unit::new_unchecked(Self::x()) Unit::new_unchecked(Self::x())
} }
/// The unit column vector with a 1 as its second component, and zero elsewhere. /// The unit column vector with a 1 as its second component, and zero elsewhere.
#[inline] #[inline]
pub fn y_axis() -> Unit<Self> pub fn y_axis() -> Unit<Self>
where where R::Value: Cmp<typenum::U1, Output = Greater> {
R::Value: Cmp<typenum::U1, Output = Greater>,
{
Unit::new_unchecked(Self::y()) Unit::new_unchecked(Self::y())
} }
/// The unit column vector with a 1 as its third component, and zero elsewhere. /// The unit column vector with a 1 as its third component, and zero elsewhere.
#[inline] #[inline]
pub fn z_axis() -> Unit<Self> pub fn z_axis() -> Unit<Self>
where where R::Value: Cmp<typenum::U2, Output = Greater> {
R::Value: Cmp<typenum::U2, Output = Greater>,
{
Unit::new_unchecked(Self::z()) Unit::new_unchecked(Self::z())
} }
/// The unit column vector with a 1 as its fourth component, and zero elsewhere. /// The unit column vector with a 1 as its fourth component, and zero elsewhere.
#[inline] #[inline]
pub fn w_axis() -> Unit<Self> pub fn w_axis() -> Unit<Self>
where where R::Value: Cmp<typenum::U3, Output = Greater> {
R::Value: Cmp<typenum::U3, Output = Greater>,
{
Unit::new_unchecked(Self::w()) Unit::new_unchecked(Self::w())
} }
/// The unit column vector with a 1 as its fifth component, and zero elsewhere. /// The unit column vector with a 1 as its fifth component, and zero elsewhere.
#[inline] #[inline]
pub fn a_axis() -> Unit<Self> pub fn a_axis() -> Unit<Self>
where where R::Value: Cmp<typenum::U4, Output = Greater> {
R::Value: Cmp<typenum::U4, Output = Greater>,
{
Unit::new_unchecked(Self::a()) Unit::new_unchecked(Self::a())
} }
/// The unit column vector with a 1 as its sixth component, and zero elsewhere. /// The unit column vector with a 1 as its sixth component, and zero elsewhere.
#[inline] #[inline]
pub fn b_axis() -> Unit<Self> pub fn b_axis() -> Unit<Self>
where where R::Value: Cmp<typenum::U5, Output = Greater> {
R::Value: Cmp<typenum::U5, Output = Greater>,
{
Unit::new_unchecked(Self::b()) Unit::new_unchecked(Self::b())
} }
} }

View File

@ -22,7 +22,8 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
ncols: C, ncols: C,
rstride: RStride, rstride: RStride,
cstride: CStride, cstride: CStride,
) -> Self { ) -> Self
{
let data = SliceStorage::from_raw_parts( let data = SliceStorage::from_raw_parts(
data.as_ptr().offset(start as isize), data.as_ptr().offset(start as isize),
(nrows, ncols), (nrows, ncols),
@ -42,7 +43,8 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
ncols: C, ncols: C,
rstride: RStride, rstride: RStride,
cstride: CStride, cstride: CStride,
) -> Self { ) -> Self
{
// NOTE: The assertion implements the following formula, but without subtractions to avoid // NOTE: The assertion implements the following formula, but without subtractions to avoid
// underflow panics: // underflow panics:
// len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1 // len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1
@ -73,7 +75,8 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
ncols: C, ncols: C,
rstride: RStride, rstride: RStride,
cstride: CStride, cstride: CStride,
) -> Self { ) -> Self
{
let data = SliceStorageMut::from_raw_parts( let data = SliceStorageMut::from_raw_parts(
data.as_mut_ptr().offset(start as isize), data.as_mut_ptr().offset(start as isize),
(nrows, ncols), (nrows, ncols),
@ -93,7 +96,8 @@ impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
ncols: C, ncols: C,
rstride: RStride, rstride: RStride,
cstride: CStride, cstride: CStride,
) -> Self { ) -> Self
{
// NOTE: The assertion implements the following formula, but without subtractions to avoid // NOTE: The assertion implements the following formula, but without subtractions to avoid
// underflow panics: // underflow panics:
// len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1 // len >= (ncols - 1) * cstride + (nrows - 1) * rstride + 1
@ -120,7 +124,8 @@ impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> {
start: usize, start: usize,
nrows: R, nrows: R,
ncols: C, ncols: C,
) -> Self { ) -> Self
{
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows) Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
} }
@ -145,7 +150,8 @@ impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> {
start: usize, start: usize,
nrows: R, nrows: R,
ncols: C, ncols: C,
) -> Self { ) -> Self
{
Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows) Self::from_slice_with_strides_generic_unchecked(data, start, nrows, ncols, U1, nrows)
} }

View File

@ -54,7 +54,8 @@ where
nrows: R, nrows: R,
ncols: C, ncols: C,
iter: I, iter: I,
) -> Self::Buffer { ) -> Self::Buffer
{
let mut res = unsafe { Self::allocate_uninitialized(nrows, ncols) }; let mut res = unsafe { Self::allocate_uninitialized(nrows, ncols) };
let mut count = 0; let mut count = 0;
@ -93,7 +94,8 @@ impl<N: Scalar, C: Dim> Allocator<N, Dynamic, C> for DefaultAllocator {
nrows: Dynamic, nrows: Dynamic,
ncols: C, ncols: C,
iter: I, iter: I,
) -> Self::Buffer { ) -> Self::Buffer
{
let it = iter.into_iter(); let it = iter.into_iter();
let res: Vec<N> = it.collect(); let res: Vec<N> = it.collect();
assert!(res.len() == nrows.value() * ncols.value(), assert!(res.len() == nrows.value() * ncols.value(),
@ -123,7 +125,8 @@ impl<N: Scalar, R: DimName> Allocator<N, R, Dynamic> for DefaultAllocator {
nrows: R, nrows: R,
ncols: Dynamic, ncols: Dynamic,
iter: I, iter: I,
) -> Self::Buffer { ) -> Self::Buffer
{
let it = iter.into_iter(); let it = iter.into_iter();
let res: Vec<N> = it.collect(); let res: Vec<N> = it.collect();
assert!(res.len() == nrows.value() * ncols.value(), assert!(res.len() == nrows.value() * ncols.value(),
@ -154,7 +157,8 @@ where
rto: RTo, rto: RTo,
cto: CTo, cto: CTo,
buf: <Self as Allocator<N, RFrom, CFrom>>::Buffer, buf: <Self as Allocator<N, RFrom, CFrom>>::Buffer,
) -> MatrixArray<N, RTo, CTo> { ) -> MatrixArray<N, RTo, CTo>
{
let mut res = <Self as Allocator<N, RTo, CTo>>::allocate_uninitialized(rto, cto); let mut res = <Self as Allocator<N, RTo, CTo>>::allocate_uninitialized(rto, cto);
let (rfrom, cfrom) = buf.shape(); let (rfrom, cfrom) = buf.shape();
@ -182,7 +186,8 @@ where
rto: Dynamic, rto: Dynamic,
cto: CTo, cto: CTo,
buf: MatrixArray<N, RFrom, CFrom>, buf: MatrixArray<N, RFrom, CFrom>,
) -> MatrixVec<N, Dynamic, CTo> { ) -> MatrixVec<N, Dynamic, CTo>
{
let mut res = <Self as Allocator<N, Dynamic, CTo>>::allocate_uninitialized(rto, cto); let mut res = <Self as Allocator<N, Dynamic, CTo>>::allocate_uninitialized(rto, cto);
let (rfrom, cfrom) = buf.shape(); let (rfrom, cfrom) = buf.shape();
@ -210,7 +215,8 @@ where
rto: RTo, rto: RTo,
cto: Dynamic, cto: Dynamic,
buf: MatrixArray<N, RFrom, CFrom>, buf: MatrixArray<N, RFrom, CFrom>,
) -> MatrixVec<N, RTo, Dynamic> { ) -> MatrixVec<N, RTo, Dynamic>
{
let mut res = <Self as Allocator<N, RTo, Dynamic>>::allocate_uninitialized(rto, cto); let mut res = <Self as Allocator<N, RTo, Dynamic>>::allocate_uninitialized(rto, cto);
let (rfrom, cfrom) = buf.shape(); let (rfrom, cfrom) = buf.shape();
@ -233,7 +239,8 @@ impl<N: Scalar, CFrom: Dim, CTo: Dim> Reallocator<N, Dynamic, CFrom, Dynamic, CT
rto: Dynamic, rto: Dynamic,
cto: CTo, cto: CTo,
buf: MatrixVec<N, Dynamic, CFrom>, buf: MatrixVec<N, Dynamic, CFrom>,
) -> MatrixVec<N, Dynamic, CTo> { ) -> MatrixVec<N, Dynamic, CTo>
{
let new_buf = buf.resize(rto.value() * cto.value()); let new_buf = buf.resize(rto.value() * cto.value());
MatrixVec::new(rto, cto, new_buf) MatrixVec::new(rto, cto, new_buf)
} }
@ -248,7 +255,8 @@ impl<N: Scalar, CFrom: Dim, RTo: DimName> Reallocator<N, Dynamic, CFrom, RTo, Dy
rto: RTo, rto: RTo,
cto: Dynamic, cto: Dynamic,
buf: MatrixVec<N, Dynamic, CFrom>, buf: MatrixVec<N, Dynamic, CFrom>,
) -> MatrixVec<N, RTo, Dynamic> { ) -> MatrixVec<N, RTo, Dynamic>
{
let new_buf = buf.resize(rto.value() * cto.value()); let new_buf = buf.resize(rto.value() * cto.value());
MatrixVec::new(rto, cto, new_buf) MatrixVec::new(rto, cto, new_buf)
} }
@ -263,7 +271,8 @@ impl<N: Scalar, RFrom: DimName, CTo: Dim> Reallocator<N, RFrom, Dynamic, Dynamic
rto: Dynamic, rto: Dynamic,
cto: CTo, cto: CTo,
buf: MatrixVec<N, RFrom, Dynamic>, buf: MatrixVec<N, RFrom, Dynamic>,
) -> MatrixVec<N, Dynamic, CTo> { ) -> MatrixVec<N, Dynamic, CTo>
{
let new_buf = buf.resize(rto.value() * cto.value()); let new_buf = buf.resize(rto.value() * cto.value());
MatrixVec::new(rto, cto, new_buf) MatrixVec::new(rto, cto, new_buf)
} }
@ -278,7 +287,8 @@ impl<N: Scalar, RFrom: DimName, RTo: DimName> Reallocator<N, RFrom, Dynamic, RTo
rto: RTo, rto: RTo,
cto: Dynamic, cto: Dynamic,
buf: MatrixVec<N, RFrom, Dynamic>, buf: MatrixVec<N, RFrom, Dynamic>,
) -> MatrixVec<N, RTo, Dynamic> { ) -> MatrixVec<N, RTo, Dynamic>
{
let new_buf = buf.resize(rto.value() * cto.value()); let new_buf = buf.resize(rto.value() * cto.value());
MatrixVec::new(rto, cto, new_buf) MatrixVec::new(rto, cto, new_buf)
} }

View File

@ -30,9 +30,7 @@ impl Dynamic {
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl Serialize for Dynamic { impl Serialize for Dynamic {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where where S: Serializer {
S: Serializer,
{
self.value.serialize(serializer) self.value.serialize(serializer)
} }
} }
@ -40,9 +38,7 @@ impl Serialize for Dynamic {
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'de> Deserialize<'de> for Dynamic { impl<'de> Deserialize<'de> for Dynamic {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where where D: Deserializer<'de> {
D: Deserializer<'de>,
{
usize::deserialize(deserializer).map(|x| Dynamic { value: x }) usize::deserialize(deserializer).map(|x| Dynamic { value: x })
} }
} }
@ -368,7 +364,8 @@ impl<
G: Bit + Any + Debug + Copy + PartialEq + Send + Sync, G: Bit + Any + Debug + Copy + PartialEq + Send + Sync,
> IsNotStaticOne > IsNotStaticOne
for UInt<UInt<UInt<UInt<UInt<UInt<UInt<UInt<UTerm, B1>, A>, B>, C>, D>, E>, F>, G> for UInt<UInt<UInt<UInt<UInt<UInt<UInt<UInt<UTerm, B1>, A>, B>, C>, D>, E>, F>, G>
{} {
}
impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Sync> NamedDim impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Sync> NamedDim
for UInt<U, B> for UInt<U, B>
@ -409,4 +406,5 @@ impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Syn
impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Sync> IsNotStaticOne impl<U: Unsigned + DimName, B: Bit + Any + Debug + Copy + PartialEq + Send + Sync> IsNotStaticOne
for UInt<U, B> for UInt<U, B>
{} {
}

View File

@ -16,9 +16,7 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Extracts the upper triangular part of this matrix (including the diagonal). /// Extracts the upper triangular part of this matrix (including the diagonal).
#[inline] #[inline]
pub fn upper_triangle(&self) -> MatrixMN<N, R, C> pub fn upper_triangle(&self) -> MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
let mut res = self.clone_owned(); let mut res = self.clone_owned();
res.fill_lower_triangle(N::zero(), 1); res.fill_lower_triangle(N::zero(), 1);
@ -28,9 +26,7 @@ impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Extracts the upper triangular part of this matrix (including the diagonal). /// Extracts the upper triangular part of this matrix (including the diagonal).
#[inline] #[inline]
pub fn lower_triangle(&self) -> MatrixMN<N, R, C> pub fn lower_triangle(&self) -> MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
let mut res = self.clone_owned(); let mut res = self.clone_owned();
res.fill_upper_triangle(N::zero(), 1); res.fill_upper_triangle(N::zero(), 1);
@ -50,9 +46,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Fills `self` with the identity matrix. /// Fills `self` with the identity matrix.
#[inline] #[inline]
pub fn fill_with_identity(&mut self) pub fn fill_with_identity(&mut self)
where where N: Zero + One {
N: Zero + One,
{
self.fill(N::zero()); self.fill(N::zero());
self.fill_diagonal(N::one()); self.fill_diagonal(N::one());
} }
@ -551,9 +545,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`. /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
pub fn resize(self, new_nrows: usize, new_ncols: usize, val: N) -> DMatrix<N> pub fn resize(self, new_nrows: usize, new_ncols: usize, val: N) -> DMatrix<N>
where where DefaultAllocator: Reallocator<N, R, C, Dynamic, Dynamic> {
DefaultAllocator: Reallocator<N, R, C, Dynamic, Dynamic>,
{
self.resize_generic(Dynamic::new(new_nrows), Dynamic::new(new_ncols), val) self.resize_generic(Dynamic::new(new_nrows), Dynamic::new(new_ncols), val)
} }
@ -562,9 +554,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`. /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
pub fn fixed_resize<R2: DimName, C2: DimName>(self, val: N) -> MatrixMN<N, R2, C2> pub fn fixed_resize<R2: DimName, C2: DimName>(self, val: N) -> MatrixMN<N, R2, C2>
where where DefaultAllocator: Reallocator<N, R, C, R2, C2> {
DefaultAllocator: Reallocator<N, R, C, R2, C2>,
{
self.resize_generic(R2::name(), C2::name(), val) self.resize_generic(R2::name(), C2::name(), val)
} }
@ -642,7 +632,8 @@ unsafe fn compress_rows<N: Scalar>(
ncols: usize, ncols: usize,
i: usize, i: usize,
nremove: usize, nremove: usize,
) { )
{
let new_nrows = nrows - nremove; let new_nrows = nrows - nremove;
if new_nrows == 0 || ncols == 0 { if new_nrows == 0 || ncols == 0 {
@ -681,7 +672,8 @@ unsafe fn extend_rows<N: Scalar>(
ncols: usize, ncols: usize,
i: usize, i: usize,
ninsert: usize, ninsert: usize,
) { )
{
let new_nrows = nrows + ninsert; let new_nrows = nrows + ninsert;
if new_nrows == 0 || ncols == 0 { if new_nrows == 0 || ncols == 0 {

View File

@ -18,9 +18,7 @@ pub fn reject<G: Gen, F: FnMut(&T) -> bool, T: Arbitrary>(g: &mut G, f: F) -> T
#[doc(hidden)] #[doc(hidden)]
#[inline] #[inline]
pub fn reject_rand<G: Rng + ?Sized, F: FnMut(&T) -> bool, T>(g: &mut G, f: F) -> T pub fn reject_rand<G: Rng + ?Sized, F: FnMut(&T) -> bool, T>(g: &mut G, f: F) -> T
where where Standard: Distribution<T> {
Standard: Distribution<T>,
{
use std::iter; use std::iter;
iter::repeat(()).map(|_| g.gen()).find(f).unwrap() iter::repeat(()).map(|_| g.gen()).find(f).unwrap()
} }

View File

@ -99,9 +99,7 @@ where
S: Serialize, S: Serialize,
{ {
fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error> fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error>
where where T: Serializer {
T: Serializer,
{
self.data.serialize(serializer) self.data.serialize(serializer)
} }
} }
@ -115,9 +113,7 @@ where
S: Deserialize<'de>, S: Deserialize<'de>,
{ {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where where D: Deserializer<'de> {
D: Deserializer<'de>,
{
S::deserialize(deserializer).map(|x| Matrix { S::deserialize(deserializer).map(|x| Matrix {
data: x, data: x,
_phantoms: PhantomData, _phantoms: PhantomData,
@ -319,9 +315,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Moves this matrix into one that owns its data. /// Moves this matrix into one that owns its data.
#[inline] #[inline]
pub fn into_owned(self) -> MatrixMN<N, R, C> pub fn into_owned(self) -> MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
Matrix::from_data(self.data.into_owned()) Matrix::from_data(self.data.into_owned())
} }
@ -355,9 +349,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Clones this matrix to one that owns its data. /// Clones this matrix to one that owns its data.
#[inline] #[inline]
pub fn clone_owned(&self) -> MatrixMN<N, R, C> pub fn clone_owned(&self) -> MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
Matrix::from_data(self.data.clone_owned()) Matrix::from_data(self.data.clone_owned())
} }
@ -393,9 +385,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns a matrix containing the result of `f` applied to each of its entries. /// Returns a matrix containing the result of `f` applied to each of its entries.
#[inline] #[inline]
pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C> pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C>
where where DefaultAllocator: Allocator<N2, R, C> {
DefaultAllocator: Allocator<N2, R, C>,
{
let (nrows, ncols) = self.data.shape(); let (nrows, ncols) = self.data.shape();
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) }; let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
@ -541,9 +531,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Transposes `self`. /// Transposes `self`.
#[inline] #[inline]
pub fn transpose(&self) -> MatrixMN<N, C, R> pub fn transpose(&self) -> MatrixMN<N, C, R>
where where DefaultAllocator: Allocator<N, C, R> {
DefaultAllocator: Allocator<N, C, R>,
{
let (nrows, ncols) = self.data.shape(); let (nrows, ncols) = self.data.shape();
unsafe { unsafe {
@ -666,9 +654,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Replaces each component of `self` by the result of a closure `f` applied on it. /// Replaces each component of `self` by the result of a closure `f` applied on it.
#[inline] #[inline]
pub fn apply<F: FnMut(N) -> N>(&mut self, mut f: F) pub fn apply<F: FnMut(N) -> N>(&mut self, mut f: F)
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
let (nrows, ncols) = self.shape(); let (nrows, ncols) = self.shape();
for j in 0..ncols { for j in 0..ncols {
@ -765,9 +751,7 @@ impl<N: Real, R: Dim, C: Dim, S: Storage<Complex<N>, R, C>> Matrix<Complex<N>, R
/// The conjugate transposition of `self`. /// The conjugate transposition of `self`.
#[inline] #[inline]
pub fn conjugate_transpose(&self) -> MatrixMN<Complex<N>, C, R> pub fn conjugate_transpose(&self) -> MatrixMN<Complex<N>, C, R>
where where DefaultAllocator: Allocator<Complex<N>, C, R> {
DefaultAllocator: Allocator<Complex<N>, C, R>,
{
let (nrows, ncols) = self.data.shape(); let (nrows, ncols) = self.data.shape();
unsafe { unsafe {
@ -808,9 +792,7 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0. /// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0.
#[inline] #[inline]
pub fn diagonal(&self) -> VectorN<N, D> pub fn diagonal(&self) -> VectorN<N, D>
where where DefaultAllocator: Allocator<N, D> {
DefaultAllocator: Allocator<N, D>,
{
assert!( assert!(
self.is_square(), self.is_square(),
"Unable to get the diagonal of a non-square matrix." "Unable to get the diagonal of a non-square matrix."
@ -831,9 +813,7 @@ impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// Computes a trace of a square matrix, i.e., the sum of its diagonal elements. /// Computes a trace of a square matrix, i.e., the sum of its diagonal elements.
#[inline] #[inline]
pub fn trace(&self) -> N pub fn trace(&self) -> N
where where N: Ring {
N: Ring,
{
assert!( assert!(
self.is_square(), self.is_square(),
"Cannot compute the trace of non-square matrix." "Cannot compute the trace of non-square matrix."
@ -855,9 +835,7 @@ impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
/// coordinates. /// coordinates.
#[inline] #[inline]
pub fn to_homogeneous(&self) -> VectorN<N, DimSum<D, U1>> pub fn to_homogeneous(&self) -> VectorN<N, DimSum<D, U1>>
where where DefaultAllocator: Allocator<N, DimSum<D, U1>> {
DefaultAllocator: Allocator<N, DimSum<D, U1>>,
{
let len = self.len(); let len = self.len();
let hnrows = DimSum::<D, U1>::from_usize(len + 1); let hnrows = DimSum::<D, U1>::from_usize(len + 1);
let mut res = unsafe { VectorN::<N, _>::new_uninitialized_generic(hnrows, U1) }; let mut res = unsafe { VectorN::<N, _>::new_uninitialized_generic(hnrows, U1) };
@ -923,7 +901,8 @@ where
other: &Self, other: &Self,
epsilon: Self::Epsilon, epsilon: Self::Epsilon,
max_relative: Self::Epsilon, max_relative: Self::Epsilon,
) -> bool { ) -> bool
{
self.relative_eq(other, epsilon, max_relative) self.relative_eq(other, epsilon, max_relative)
} }
} }
@ -1040,7 +1019,8 @@ impl<N, R: Dim, C: Dim, S> Eq for Matrix<N, R, C, S>
where where
N: Scalar + Eq, N: Scalar + Eq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
{} {
}
impl<N, R: Dim, C: Dim, S> PartialEq for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> PartialEq for Matrix<N, R, C, S>
where where
@ -1220,8 +1200,7 @@ impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
impl<N: Real, S: Storage<N, U3>> Vector<N, U3, S> impl<N: Real, S: Storage<N, U3>> Vector<N, U3, S>
where where DefaultAllocator: Allocator<N, U3>
DefaultAllocator: Allocator<N, U3>,
{ {
/// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`. /// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`.
#[inline] #[inline]
@ -1311,18 +1290,14 @@ impl<N: Real, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns a normalized version of this matrix. /// Returns a normalized version of this matrix.
#[inline] #[inline]
pub fn normalize(&self) -> MatrixMN<N, R, C> pub fn normalize(&self) -> MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
self / self.norm() self / self.norm()
} }
/// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`. /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
#[inline] #[inline]
pub fn try_normalize(&self, min_norm: N) -> Option<MatrixMN<N, R, C>> pub fn try_normalize(&self, min_norm: N) -> Option<MatrixMN<N, R, C>>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
let n = self.norm(); let n = self.norm();
if n <= min_norm { if n <= min_norm {
@ -1446,7 +1421,8 @@ where
other: &Self, other: &Self,
epsilon: Self::Epsilon, epsilon: Self::Epsilon,
max_relative: Self::Epsilon, max_relative: Self::Epsilon,
) -> bool { ) -> bool
{
self.as_ref() self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative) .relative_eq(other.as_ref(), epsilon, max_relative)
} }

View File

@ -146,8 +146,7 @@ where
} }
impl<N: Real, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C> impl<N: Real, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>
DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
fn norm_squared(&self) -> N { fn norm_squared(&self) -> N {
@ -181,8 +180,7 @@ where
} }
impl<N: Real, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C> impl<N: Real, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>
DefaultAllocator: Allocator<N, R, C>,
{ {
type Real = N; type Real = N;
@ -202,8 +200,7 @@ where
// use `x()` instead of `::canonical_basis_element` // use `x()` instead of `::canonical_basis_element`
// use `::new(x, y, z)` instead of `::from_slice` // use `::new(x, y, z)` instead of `::from_slice`
impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C> impl<N: Real, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>
DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
fn orthonormalize(vs: &mut [MatrixMN<N, R, C>]) -> usize { fn orthonormalize(vs: &mut [MatrixMN<N, R, C>]) -> usize {
@ -236,9 +233,7 @@ where
#[inline] #[inline]
fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F) fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
where where F: FnMut(&Self) -> bool {
F: FnMut(&Self) -> bool,
{
// FIXME: is this necessary? // FIXME: is this necessary?
assert!( assert!(
vs.len() <= Self::dimension(), vs.len() <= Self::dimension(),

View File

@ -107,7 +107,8 @@ where
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
Prod<R::Value, C::Value>: ArrayLength<N>, Prod<R::Value, C::Value>: ArrayLength<N>,
GenericArray<N, Prod<R::Value, C::Value>>: Copy, GenericArray<N, Prod<R::Value, C::Value>>: Copy,
{} {
}
impl<N, R, C> Clone for MatrixArray<N, R, C> impl<N, R, C> Clone for MatrixArray<N, R, C>
where where
@ -132,7 +133,8 @@ where
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
Prod<R::Value, C::Value>: ArrayLength<N>, Prod<R::Value, C::Value>: ArrayLength<N>,
{} {
}
impl<N, R, C> PartialEq for MatrixArray<N, R, C> impl<N, R, C> PartialEq for MatrixArray<N, R, C>
where where
@ -182,17 +184,13 @@ where
#[inline] #[inline]
fn into_owned(self) -> Owned<N, R, C> fn into_owned(self) -> Owned<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
self self
} }
#[inline] #[inline]
fn clone_owned(&self) -> Owned<N, R, C> fn clone_owned(&self) -> Owned<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
let it = self.iter().cloned(); let it = self.iter().cloned();
DefaultAllocator::allocate_from_iterator(self.shape().0, self.shape().1, it) DefaultAllocator::allocate_from_iterator(self.shape().0, self.shape().1, it)
@ -232,7 +230,8 @@ where
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
Prod<R::Value, C::Value>: ArrayLength<N>, Prod<R::Value, C::Value>: ArrayLength<N>,
DefaultAllocator: Allocator<N, R, C, Buffer = Self>, DefaultAllocator: Allocator<N, R, C, Buffer = Self>,
{} {
}
unsafe impl<N, R, C> ContiguousStorageMut<N, R, C> for MatrixArray<N, R, C> unsafe impl<N, R, C> ContiguousStorageMut<N, R, C> for MatrixArray<N, R, C>
where where
@ -242,7 +241,8 @@ where
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
Prod<R::Value, C::Value>: ArrayLength<N>, Prod<R::Value, C::Value>: ArrayLength<N>,
DefaultAllocator: Allocator<N, R, C, Buffer = Self>, DefaultAllocator: Allocator<N, R, C, Buffer = Self>,
{} {
}
/* /*
* *
@ -260,9 +260,7 @@ where
Prod<R::Value, C::Value>: ArrayLength<N>, Prod<R::Value, C::Value>: ArrayLength<N>,
{ {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where where S: Serializer {
S: Serializer,
{
let mut serializer = serializer.serialize_seq(Some(R::dim() * C::dim()))?; let mut serializer = serializer.serialize_seq(Some(R::dim() * C::dim()))?;
for e in self.iter() { for e in self.iter() {
@ -283,9 +281,7 @@ where
Prod<R::Value, C::Value>: ArrayLength<N>, Prod<R::Value, C::Value>: ArrayLength<N>,
{ {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where where D: Deserializer<'a> {
D: Deserializer<'a>,
{
deserializer.deserialize_seq(MatrixArrayVisitor::new()) deserializer.deserialize_seq(MatrixArrayVisitor::new())
} }
} }
@ -330,9 +326,7 @@ where
#[inline] #[inline]
fn visit_seq<V>(self, mut visitor: V) -> Result<MatrixArray<N, R, C>, V::Error> fn visit_seq<V>(self, mut visitor: V) -> Result<MatrixArray<N, R, C>, V::Error>
where where V: SeqAccess<'a> {
V: SeqAccess<'a>,
{
let mut out: Self::Value = unsafe { mem::uninitialized() }; let mut out: Self::Value = unsafe { mem::uninitialized() };
let mut curr = 0; let mut curr = 0;

View File

@ -91,7 +91,8 @@ slice_storage_impl!("A mutable matrix data storage for mutable matrix slice. Onl
impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Copy impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Copy
for SliceStorage<'a, N, R, C, RStride, CStride> for SliceStorage<'a, N, R, C, RStride, CStride>
{} {
}
impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Clone impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Clone
for SliceStorage<'a, N, R, C, RStride, CStride> for SliceStorage<'a, N, R, C, RStride, CStride>
@ -206,7 +207,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
start: (usize, usize), start: (usize, usize),
shape: (usize, usize), shape: (usize, usize),
steps: (usize, usize), steps: (usize, usize),
) { )
{
let my_shape = self.shape(); let my_shape = self.shape();
// NOTE: we don't do any subtraction to avoid underflow for zero-sized matrices. // NOTE: we don't do any subtraction to avoid underflow for zero-sized matrices.
// //
@ -803,7 +805,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
pub fn rows_range<RowRange: SliceRange<R>>( pub fn rows_range<RowRange: SliceRange<R>>(
&self, &self,
rows: RowRange, rows: RowRange,
) -> MatrixSlice<N, RowRange::Size, C, S::RStride, S::CStride> { ) -> MatrixSlice<N, RowRange::Size, C, S::RStride, S::CStride>
{
self.slice_range(rows, ..) self.slice_range(rows, ..)
} }
@ -812,7 +815,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
pub fn columns_range<ColRange: SliceRange<C>>( pub fn columns_range<ColRange: SliceRange<C>>(
&self, &self,
cols: ColRange, cols: ColRange,
) -> MatrixSlice<N, R, ColRange::Size, S::RStride, S::CStride> { ) -> MatrixSlice<N, R, ColRange::Size, S::RStride, S::CStride>
{
self.slice_range(.., cols) self.slice_range(.., cols)
} }
} }
@ -841,7 +845,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
pub fn rows_range_mut<RowRange: SliceRange<R>>( pub fn rows_range_mut<RowRange: SliceRange<R>>(
&mut self, &mut self,
rows: RowRange, rows: RowRange,
) -> MatrixSliceMut<N, RowRange::Size, C, S::RStride, S::CStride> { ) -> MatrixSliceMut<N, RowRange::Size, C, S::RStride, S::CStride>
{
self.slice_range_mut(rows, ..) self.slice_range_mut(rows, ..)
} }
@ -850,7 +855,8 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
pub fn columns_range_mut<ColRange: SliceRange<C>>( pub fn columns_range_mut<ColRange: SliceRange<C>>(
&mut self, &mut self,
cols: ColRange, cols: ColRange,
) -> MatrixSliceMut<N, R, ColRange::Size, S::RStride, S::CStride> { ) -> MatrixSliceMut<N, R, ColRange::Size, S::RStride, S::CStride>
{
self.slice_range_mut(.., cols) self.slice_range_mut(.., cols)
} }
} }

View File

@ -94,8 +94,7 @@ impl<N, R: Dim, C: Dim> Deref for MatrixVec<N, R, C> {
* *
*/ */
unsafe impl<N: Scalar, C: Dim> Storage<N, Dynamic, C> for MatrixVec<N, Dynamic, C> unsafe impl<N: Scalar, C: Dim> Storage<N, Dynamic, C> for MatrixVec<N, Dynamic, C>
where where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>,
{ {
type RStride = U1; type RStride = U1;
type CStride = Dynamic; type CStride = Dynamic;
@ -122,17 +121,13 @@ where
#[inline] #[inline]
fn into_owned(self) -> Owned<N, Dynamic, C> fn into_owned(self) -> Owned<N, Dynamic, C>
where where DefaultAllocator: Allocator<N, Dynamic, C> {
DefaultAllocator: Allocator<N, Dynamic, C>,
{
self self
} }
#[inline] #[inline]
fn clone_owned(&self) -> Owned<N, Dynamic, C> fn clone_owned(&self) -> Owned<N, Dynamic, C>
where where DefaultAllocator: Allocator<N, Dynamic, C> {
DefaultAllocator: Allocator<N, Dynamic, C>,
{
self.clone() self.clone()
} }
@ -143,8 +138,7 @@ where
} }
unsafe impl<N: Scalar, R: DimName> Storage<N, R, Dynamic> for MatrixVec<N, R, Dynamic> unsafe impl<N: Scalar, R: DimName> Storage<N, R, Dynamic> for MatrixVec<N, R, Dynamic>
where where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>,
{ {
type RStride = U1; type RStride = U1;
type CStride = R; type CStride = R;
@ -171,17 +165,13 @@ where
#[inline] #[inline]
fn into_owned(self) -> Owned<N, R, Dynamic> fn into_owned(self) -> Owned<N, R, Dynamic>
where where DefaultAllocator: Allocator<N, R, Dynamic> {
DefaultAllocator: Allocator<N, R, Dynamic>,
{
self self
} }
#[inline] #[inline]
fn clone_owned(&self) -> Owned<N, R, Dynamic> fn clone_owned(&self) -> Owned<N, R, Dynamic>
where where DefaultAllocator: Allocator<N, R, Dynamic> {
DefaultAllocator: Allocator<N, R, Dynamic>,
{
self.clone() self.clone()
} }
@ -197,8 +187,7 @@ where
* *
*/ */
unsafe impl<N: Scalar, C: Dim> StorageMut<N, Dynamic, C> for MatrixVec<N, Dynamic, C> unsafe impl<N: Scalar, C: Dim> StorageMut<N, Dynamic, C> for MatrixVec<N, Dynamic, C>
where where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>,
{ {
#[inline] #[inline]
fn ptr_mut(&mut self) -> *mut N { fn ptr_mut(&mut self) -> *mut N {
@ -211,17 +200,14 @@ where
} }
} }
unsafe impl<N: Scalar, C: Dim> ContiguousStorage<N, Dynamic, C> for MatrixVec<N, Dynamic, C> where unsafe impl<N: Scalar, C: Dim> ContiguousStorage<N, Dynamic, C> for MatrixVec<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
{} {}
unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for MatrixVec<N, Dynamic, C> where unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for MatrixVec<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
{} {}
unsafe impl<N: Scalar, R: DimName> StorageMut<N, R, Dynamic> for MatrixVec<N, R, Dynamic> unsafe impl<N: Scalar, R: DimName> StorageMut<N, R, Dynamic> for MatrixVec<N, R, Dynamic>
where where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>,
{ {
#[inline] #[inline]
fn ptr_mut(&mut self) -> *mut N { fn ptr_mut(&mut self) -> *mut N {
@ -249,10 +235,8 @@ impl<N: Abomonation, R: Dim, C: Dim> Abomonation for MatrixVec<N, R, C> {
} }
} }
unsafe impl<N: Scalar, R: DimName> ContiguousStorage<N, R, Dynamic> for MatrixVec<N, R, Dynamic> where unsafe impl<N: Scalar, R: DimName> ContiguousStorage<N, R, Dynamic> for MatrixVec<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
{} {}
unsafe impl<N: Scalar, R: DimName> ContiguousStorageMut<N, R, Dynamic> for MatrixVec<N, R, Dynamic> where unsafe impl<N: Scalar, R: DimName> ContiguousStorageMut<N, R, Dynamic> for MatrixVec<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
{} {}

View File

@ -724,9 +724,7 @@ impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C,
/// Adds a scalar to `self`. /// Adds a scalar to `self`.
#[inline] #[inline]
pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C> pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C>
where where DefaultAllocator: Allocator<N, R, C> {
DefaultAllocator: Allocator<N, R, C>,
{
let mut res = self.clone_owned(); let mut res = self.clone_owned();
res.add_scalar_mut(rhs); res.add_scalar_mut(rhs);
res res
@ -735,9 +733,7 @@ impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C,
/// Adds a scalar to `self` in-place. /// Adds a scalar to `self` in-place.
#[inline] #[inline]
pub fn add_scalar_mut(&mut self, rhs: N) pub fn add_scalar_mut(&mut self, rhs: N)
where where S: StorageMut<N, R, C> {
S: StorageMut<N, R, C>,
{
for e in self.iter_mut() { for e in self.iter_mut() {
*e += rhs *e += rhs
} }

View File

@ -100,8 +100,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where where DefaultAllocator: Allocator<N, D, D>
DefaultAllocator: Allocator<N, D, D>,
{ {
/// Checks that this matrix is orthogonal and has a determinant equal to 1. /// Checks that this matrix is orthogonal and has a determinant equal to 1.
#[inline] #[inline]

View File

@ -105,13 +105,11 @@ pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
/// Builds a matrix data storage that does not contain any reference. /// Builds a matrix data storage that does not contain any reference.
fn into_owned(self) -> Owned<N, R, C> fn into_owned(self) -> Owned<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>;
DefaultAllocator: Allocator<N, R, C>;
/// Clones this data storage to one that does not contain any reference. /// Clones this data storage to one that does not contain any reference.
fn clone_owned(&self) -> Owned<N, R, C> fn clone_owned(&self) -> Owned<N, R, C>
where where DefaultAllocator: Allocator<N, R, C>;
DefaultAllocator: Allocator<N, R, C>;
} }
/// Trait implemented by matrix data storage that can provide a mutable access to its elements. /// Trait implemented by matrix data storage that can provide a mutable access to its elements.

View File

@ -25,9 +25,7 @@ pub struct Unit<T> {
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<T: Serialize> Serialize for Unit<T> { impl<T: Serialize> Serialize for Unit<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where where S: Serializer {
S: Serializer,
{
self.value.serialize(serializer) self.value.serialize(serializer)
} }
} }
@ -35,9 +33,7 @@ impl<T: Serialize> Serialize for Unit<T> {
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Unit<T> { impl<'de, T: Deserialize<'de>> Deserialize<'de> for Unit<T> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where where D: Deserializer<'de> {
D: Deserializer<'de>,
{
T::deserialize(deserializer).map(|x| Unit { value: x }) T::deserialize(deserializer).map(|x| Unit { value: x })
} }
} }
@ -143,8 +139,7 @@ impl<T> AsRef<T> for Unit<T> {
* *
*/ */
impl<T: NormedSpace> SubsetOf<T> for Unit<T> impl<T: NormedSpace> SubsetOf<T> for Unit<T>
where where T::Field: RelativeEq
T::Field: RelativeEq,
{ {
#[inline] #[inline]
fn to_superset(&self) -> T { fn to_superset(&self) -> T {

View File

@ -13,15 +13,13 @@ use num_complex::Complex;
/// A random orthogonal matrix. /// A random orthogonal matrix.
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct RandomOrthogonal<N: Real, D: Dim = Dynamic> pub struct RandomOrthogonal<N: Real, D: Dim = Dynamic>
where where DefaultAllocator: Allocator<N, D, D>
DefaultAllocator: Allocator<N, D, D>,
{ {
m: MatrixN<N, D>, m: MatrixN<N, D>,
} }
impl<N: Real, D: Dim> RandomOrthogonal<N, D> impl<N: Real, D: Dim> RandomOrthogonal<N, D>
where where DefaultAllocator: Allocator<N, D, D>
DefaultAllocator: Allocator<N, D, D>,
{ {
/// Retrieve the generated matrix. /// Retrieve the generated matrix.
pub fn unwrap(self) -> MatrixN<N, D> { pub fn unwrap(self) -> MatrixN<N, D> {

Some files were not shown because too many files have changed in this diff Show More