Add slerp for unit vectors.
This commit is contained in:
parent
a03fd6bff7
commit
832bf42b56
@ -1247,6 +1247,45 @@ impl<N: Real, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
pub fn slerp<S2: Storage<N, D>>(&self, rhs: &Unit<Vector<N, D, S2>>, t: N) -> Unit<VectorN<N, D>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> {
|
||||
// FIXME: the result is wrong when self and rhs are collinear with opposite direction.
|
||||
self.try_slerp(rhs, t, N::default_epsilon()).unwrap_or(Unit::new_unchecked(self.clone_owned()))
|
||||
}
|
||||
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
///
|
||||
/// Returns `None` if the two vectors are almost collinear and with opposite direction
|
||||
/// (in this case, there is an infinity of possible results).
|
||||
pub fn try_slerp<S2: Storage<N, D>>(&self, rhs: &Unit<Vector<N, D, S2>>, t: N, epsilon: N) -> Option<Unit<VectorN<N, D>>>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D> {
|
||||
let c_hang = self.dot(rhs);
|
||||
|
||||
// self == other
|
||||
if c_hang.abs() >= N::one() {
|
||||
return Some(Unit::new_unchecked(self.clone_owned()));
|
||||
}
|
||||
|
||||
let hang = c_hang.acos();
|
||||
let s_hang = (N::one() - c_hang * c_hang).sqrt();
|
||||
|
||||
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
|
||||
if relative_eq!(s_hang, N::zero(), epsilon = epsilon) {
|
||||
None
|
||||
} else {
|
||||
let ta = ((N::one() - t) * hang).sin() / s_hang;
|
||||
let tb = (t * hang).sin() / s_hang;
|
||||
let res = &**self * ta + &**rhs * tb;
|
||||
|
||||
Some(Unit::new_unchecked(res))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Real, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
||||
/// Normalizes this matrix in-place and returns its norm.
|
||||
#[inline]
|
||||
|
@ -451,9 +451,8 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
/// is not well-defined).
|
||||
#[inline]
|
||||
pub fn slerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
|
||||
self.try_slerp(other, t, N::zero()).expect(
|
||||
"Unable to perform a spherical quaternion interpolation when they \
|
||||
are 180 degree apart (the result is not unique).",
|
||||
Unit::new_unchecked(
|
||||
Quaternion::from_vector(Unit::new_unchecked(self.coords).slerp(&Unit::new_unchecked(other.coords), t).unwrap())
|
||||
)
|
||||
}
|
||||
|
||||
@ -474,26 +473,8 @@ impl<N: Real> UnitQuaternion<N> {
|
||||
t: N,
|
||||
epsilon: N,
|
||||
) -> Option<UnitQuaternion<N>> {
|
||||
let c_hang = self.coords.dot(&other.coords);
|
||||
|
||||
// self == other
|
||||
if c_hang.abs() >= N::one() {
|
||||
return Some(*self);
|
||||
}
|
||||
|
||||
let hang = c_hang.acos();
|
||||
let s_hang = (N::one() - c_hang * c_hang).sqrt();
|
||||
|
||||
// FIXME: what if s_hang is 0.0 ? The result is not well-defined.
|
||||
if relative_eq!(s_hang, N::zero(), epsilon = epsilon) {
|
||||
None
|
||||
} else {
|
||||
let ta = ((N::one() - t) * hang).sin() / s_hang;
|
||||
let tb = (t * hang).sin() / s_hang;
|
||||
let res = self.as_ref() * ta + other.as_ref() * tb;
|
||||
|
||||
Some(UnitQuaternion::new_unchecked(res))
|
||||
}
|
||||
Unit::new_unchecked(self.coords).try_slerp(&Unit::new_unchecked(other.coords), t, epsilon)
|
||||
.map(|q| Unit::new_unchecked(Quaternion::from_vector(q.unwrap())))
|
||||
}
|
||||
|
||||
/// Compute the conjugate of this unit quaternion in-place.
|
||||
|
Loading…
Reference in New Issue
Block a user