Add utility methods.

Added look_at for 3d rotation matrix and 3d transform.
Rotation matrices constructors are now the static methods Rotmat::from_angle,
Rotmat::from_axis_angle.
This commit is contained in:
Sébastien Crozet 2013-07-22 23:20:03 +02:00
parent 0577f3e364
commit 81389a911a
2 changed files with 68 additions and 36 deletions

View File

@ -3,6 +3,7 @@ use std::rand::{Rand, Rng, RngUtil};
use std::cmp::ApproxEq; use std::cmp::ApproxEq;
use traits::division_ring::DivisionRing; use traits::division_ring::DivisionRing;
use traits::rlmul::{RMul, LMul}; use traits::rlmul::{RMul, LMul};
use traits::cross::Cross;
use traits::dim::Dim; use traits::dim::Dim;
use traits::inv::Inv; use traits::inv::Inv;
use traits::transpose::Transpose; use traits::transpose::Transpose;
@ -25,50 +26,68 @@ impl<M: Clone> Rotmat<M>
{ self.submat.clone() } { self.submat.clone() }
} }
pub fn rotmat2<N: Clone + Trigonometric + Neg<N>>(angle: N) -> Rotmat<Mat2<N>> impl<N: Clone + Trigonometric + Neg<N>> Rotmat<Mat2<N>>
{ {
let (sia, coa) = angle.sin_cos(); pub fn from_angle(angle: N) -> Rotmat<Mat2<N>>
{
let (sia, coa) = angle.sin_cos();
Rotmat Rotmat { submat: Mat2::new(coa.clone(), -sia, sia.clone(), coa) }
{ submat: Mat2::new(coa.clone(), -sia, sia.clone(), coa) } }
} }
pub fn rotmat3<N: Clone + Trigonometric + DivisionRing + Algebraic> impl<N: Clone + Trigonometric + DivisionRing + Algebraic> Rotmat<Mat3<N>>
(axisangle: Vec3<N>) -> Rotmat<Mat3<N>>
{ {
if axisangle.sqnorm().is_zero() pub fn from_axis_angle(axisangle: Vec3<N>) -> Rotmat<Mat3<N>>
{ One::one() }
else
{ {
let mut axis = axisangle; if axisangle.sqnorm().is_zero()
let angle = axis.normalize(); { One::one() }
let _1 = One::one::<N>(); else
let ux = axis.x.clone(); {
let uy = axis.y.clone(); let mut axis = axisangle;
let uz = axis.z.clone(); let angle = axis.normalize();
let sqx = ux * ux; let _1 = One::one::<N>();
let sqy = uy * uy; let ux = axis.x.clone();
let sqz = uz * uz; let uy = axis.y.clone();
let (sin, cos) = angle.sin_cos(); let uz = axis.z.clone();
let one_m_cos = _1 - cos; let sqx = ux * ux;
let sqy = uy * uy;
let sqz = uz * uz;
let (sin, cos) = angle.sin_cos();
let one_m_cos = _1 - cos;
Rotmat { Rotmat {
submat: Mat3::new( submat: Mat3::new(
(sqx + (_1 - sqx) * cos), (sqx + (_1 - sqx) * cos),
(ux * uy * one_m_cos - uz * sin), (ux * uy * one_m_cos - uz * sin),
(ux * uz * one_m_cos + uy * sin), (ux * uz * one_m_cos + uy * sin),
(ux * uy * one_m_cos + uz * sin), (ux * uy * one_m_cos + uz * sin),
(sqy + (_1 - sqy) * cos), (sqy + (_1 - sqy) * cos),
(uy * uz * one_m_cos - ux * sin), (uy * uz * one_m_cos - ux * sin),
(ux * uz * one_m_cos - uy * sin), (ux * uz * one_m_cos - uy * sin),
(uy * uz * one_m_cos + ux * sin), (uy * uz * one_m_cos + ux * sin),
(sqz + (_1 - sqz) * cos)) (sqz + (_1 - sqz) * cos))
}
} }
} }
} }
impl<N: Clone + DivisionRing + Algebraic> Rotmat<Mat3<N>>
{
pub fn look_at(&mut self, at: &Vec3<N>, up: &Vec3<N>)
{
let zaxis = at.normalized();
let xaxis = up.cross(&zaxis).normalized();
let yaxis = zaxis.cross(&xaxis);
self.submat = Mat3::new(xaxis.x.clone(), yaxis.x.clone(), zaxis.x.clone(),
xaxis.y.clone(), yaxis.y.clone(), zaxis.y.clone(),
xaxis.z , yaxis.z , zaxis.z)
}
}
impl<N: Trigonometric + DivisionRing + Clone> impl<N: Trigonometric + DivisionRing + Clone>
Rotation<Vec1<N>> for Rotmat<Mat2<N>> Rotation<Vec1<N>> for Rotmat<Mat2<N>>
{ {
@ -90,7 +109,7 @@ Rotatable<Vec1<N>, Rotmat<Mat2<N>>> for Rotmat<Mat2<N>>
{ {
#[inline] #[inline]
fn rotated(&self, rot: &Vec1<N>) -> Rotmat<Mat2<N>> fn rotated(&self, rot: &Vec1<N>) -> Rotmat<Mat2<N>>
{ rotmat2(rot.x.clone()) * *self } { Rotmat::from_angle(rot.x.clone()) * *self }
} }
impl<N: Clone + Trigonometric + DivisionRing + Algebraic> impl<N: Clone + Trigonometric + DivisionRing + Algebraic>
@ -115,14 +134,14 @@ Rotatable<Vec3<N>, Rotmat<Mat3<N>>> for Rotmat<Mat3<N>>
{ {
#[inline] #[inline]
fn rotated(&self, axisangle: &Vec3<N>) -> Rotmat<Mat3<N>> fn rotated(&self, axisangle: &Vec3<N>) -> Rotmat<Mat3<N>>
{ rotmat3(axisangle.clone()) * *self } { Rotmat::from_axis_angle(axisangle.clone()) * *self }
} }
impl<N: Clone + Rand + Trigonometric + Neg<N>> Rand for Rotmat<Mat2<N>> impl<N: Clone + Rand + Trigonometric + Neg<N>> Rand for Rotmat<Mat2<N>>
{ {
#[inline] #[inline]
fn rand<R: Rng>(rng: &mut R) -> Rotmat<Mat2<N>> fn rand<R: Rng>(rng: &mut R) -> Rotmat<Mat2<N>>
{ rotmat2(rng.gen()) } { Rotmat::from_angle(rng.gen()) }
} }
impl<M: RMul<V> + LMul<V>, V> Rotate<V> for Rotmat<M> impl<M: RMul<V> + LMul<V>, V> Rotate<V> for Rotmat<M>
@ -152,7 +171,7 @@ Rand for Rotmat<Mat3<N>>
{ {
#[inline] #[inline]
fn rand<R: Rng>(rng: &mut R) -> Rotmat<Mat3<N>> fn rand<R: Rng>(rng: &mut R) -> Rotmat<Mat3<N>>
{ rotmat3(rng.gen()) } { Rotmat::from_axis_angle(rng.gen()) }
} }
impl<M: Dim> Dim for Rotmat<M> impl<M: Dim> Dim for Rotmat<M>

View File

@ -3,6 +3,7 @@ use std::rand::{Rand, Rng, RngUtil};
use std::cmp::ApproxEq; use std::cmp::ApproxEq;
use traits::dim::Dim; use traits::dim::Dim;
use traits::inv::Inv; use traits::inv::Inv;
use traits::division_ring::DivisionRing;
use traits::rotation::{Rotation, Rotate, Rotatable}; use traits::rotation::{Rotation, Rotate, Rotatable};
use traits::translation::{Translation, Translate, Translatable}; use traits::translation::{Translation, Translate, Translatable};
use Ts = traits::transformation::Transform; use Ts = traits::transformation::Transform;
@ -10,6 +11,9 @@ use traits::transformation::{Transformation, Transformable};
use traits::rlmul::{RMul, LMul}; use traits::rlmul::{RMul, LMul};
use traits::homogeneous::{ToHomogeneous, FromHomogeneous}; use traits::homogeneous::{ToHomogeneous, FromHomogeneous};
use traits::column::Column; use traits::column::Column;
use adaptors::rotmat::Rotmat;
use vec::Vec3;
use mat::Mat3;
#[deriving(Eq, ToStr, Clone)] #[deriving(Eq, ToStr, Clone)]
pub struct Transform<M, V> pub struct Transform<M, V>
@ -36,7 +40,16 @@ impl<M: Clone, V: Clone> Transform<M, V>
{ self.subtrans.clone() } { self.subtrans.clone() }
} }
impl<M:Dim, V> Dim for Transform<M, V> impl<N: Clone + DivisionRing + Algebraic> Transform<Rotmat<Mat3<N>>, Vec3<N>>
{
pub fn look_at(&mut self, eye: &Vec3<N>, at: &Vec3<N>, up: &Vec3<N>)
{
self.submat.look_at(&(*at - *eye), up);
self.subtrans = self.submat.rotate(&-eye);
}
}
impl<M: Dim, V> Dim for Transform<M, V>
{ {
#[inline] #[inline]
fn dim() -> uint fn dim() -> uint