Add elimination tree computation.
This commit is contained in:
parent
34b20dc291
commit
7ecbacacda
|
@ -14,7 +14,9 @@ use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1}
|
||||||
// cannot be used for trait method return types.
|
// cannot be used for trait method return types.
|
||||||
pub trait CsStorageIter<'a, N, R, C = U1> {
|
pub trait CsStorageIter<'a, N, R, C = U1> {
|
||||||
type ColumnEntries: Iterator<Item = (usize, N)>;
|
type ColumnEntries: Iterator<Item = (usize, N)>;
|
||||||
|
type ColumnRowIndices: Iterator<Item = usize>;
|
||||||
|
|
||||||
|
fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices;
|
||||||
fn column_entries(&'a self, j: usize) -> Self::ColumnEntries;
|
fn column_entries(&'a self, j: usize) -> Self::ColumnEntries;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -44,10 +46,10 @@ pub struct CsVecStorage<N: Scalar, R: Dim, C: Dim>
|
||||||
where
|
where
|
||||||
DefaultAllocator: Allocator<usize, C>,
|
DefaultAllocator: Allocator<usize, C>,
|
||||||
{
|
{
|
||||||
shape: (R, C),
|
pub(crate) shape: (R, C),
|
||||||
p: VectorN<usize, C>,
|
pub(crate) p: VectorN<usize, C>,
|
||||||
i: Vec<usize>,
|
pub(crate) i: Vec<usize>,
|
||||||
vals: Vec<N>,
|
pub(crate) vals: Vec<N>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C> {}
|
impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C> {}
|
||||||
|
@ -58,6 +60,7 @@ where
|
||||||
{
|
{
|
||||||
type ColumnEntries =
|
type ColumnEntries =
|
||||||
iter::Zip<iter::Cloned<slice::Iter<'a, usize>>, iter::Cloned<slice::Iter<'a, N>>>;
|
iter::Zip<iter::Cloned<slice::Iter<'a, usize>>, iter::Cloned<slice::Iter<'a, N>>>;
|
||||||
|
type ColumnRowIndices = iter::Cloned<slice::Iter<'a, usize>>;
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
fn column_entries(&'a self, j: usize) -> Self::ColumnEntries {
|
fn column_entries(&'a self, j: usize) -> Self::ColumnEntries {
|
||||||
|
@ -67,6 +70,12 @@ where
|
||||||
.cloned()
|
.cloned()
|
||||||
.zip(self.vals[rng].iter().cloned())
|
.zip(self.vals[rng].iter().cloned())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn column_row_indices(&'a self, j: usize) -> Self::ColumnRowIndices {
|
||||||
|
let rng = self.column_range(j);
|
||||||
|
self.i[rng.clone()].iter().cloned()
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<N: Scalar, R: Dim, C: Dim> CsStorage<N, R, C> for CsVecStorage<N, R, C>
|
impl<N: Scalar, R: Dim, C: Dim> CsStorage<N, R, C> for CsVecStorage<N, R, C>
|
||||||
|
@ -213,514 +222,4 @@ impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||||||
|
|
||||||
res
|
res
|
||||||
}
|
}
|
||||||
|
|
||||||
fn scatter<R2: Dim, C2: Dim>(
|
|
||||||
&self,
|
|
||||||
j: usize,
|
|
||||||
beta: N,
|
|
||||||
timestamps: &mut [usize],
|
|
||||||
timestamp: usize,
|
|
||||||
workspace: &mut [N],
|
|
||||||
mut nz: usize,
|
|
||||||
res: &mut CsMatrix<N, R2, C2>,
|
|
||||||
) -> usize
|
|
||||||
where
|
|
||||||
N: ClosedAdd + ClosedMul,
|
|
||||||
DefaultAllocator: Allocator<usize, C2>,
|
|
||||||
{
|
|
||||||
for (i, val) in self.data.column_entries(j) {
|
|
||||||
if timestamps[i] < timestamp {
|
|
||||||
timestamps[i] = timestamp;
|
|
||||||
res.data.i[nz] = i;
|
|
||||||
nz += 1;
|
|
||||||
workspace[i] = val * beta;
|
|
||||||
} else {
|
|
||||||
workspace[i] += val * beta;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
nz
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
|
||||||
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
|
||||||
&self,
|
|
||||||
b: &Matrix<N, R2, C2, S2>,
|
|
||||||
) -> Option<MatrixMN<N, R2, C2>>
|
|
||||||
where
|
|
||||||
S2: Storage<N, R2, C2>,
|
|
||||||
DefaultAllocator: Allocator<N, R2, C2>,
|
|
||||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
|
||||||
{
|
|
||||||
let mut b = b.clone_owned();
|
|
||||||
if self.solve_lower_triangular_mut(&mut b) {
|
|
||||||
Some(b)
|
|
||||||
} else {
|
|
||||||
None
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
|
||||||
&self,
|
|
||||||
b: &Matrix<N, R2, C2, S2>,
|
|
||||||
) -> Option<MatrixMN<N, R2, C2>>
|
|
||||||
where
|
|
||||||
S2: Storage<N, R2, C2>,
|
|
||||||
DefaultAllocator: Allocator<N, R2, C2>,
|
|
||||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
|
||||||
{
|
|
||||||
let mut b = b.clone_owned();
|
|
||||||
if self.tr_solve_lower_triangular_mut(&mut b) {
|
|
||||||
Some(b)
|
|
||||||
} else {
|
|
||||||
None
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
||||||
&self,
|
|
||||||
b: &mut Matrix<N, R2, C2, S2>,
|
|
||||||
) -> bool
|
|
||||||
where
|
|
||||||
S2: StorageMut<N, R2, C2>,
|
|
||||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
|
||||||
{
|
|
||||||
let (nrows, ncols) = self.data.shape();
|
|
||||||
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
|
||||||
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
|
||||||
|
|
||||||
for j2 in 0..b.ncols() {
|
|
||||||
let mut b = b.column_mut(j2);
|
|
||||||
|
|
||||||
for j in 0..ncols.value() {
|
|
||||||
let mut column = self.data.column_entries(j);
|
|
||||||
let mut diag_found = false;
|
|
||||||
|
|
||||||
while let Some((i, val)) = column.next() {
|
|
||||||
if i == j {
|
|
||||||
if val.is_zero() {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
b[j] /= val;
|
|
||||||
diag_found = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if !diag_found {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (i, val) in column {
|
|
||||||
b[i] -= b[j] * val;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
true
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
||||||
&self,
|
|
||||||
b: &mut Matrix<N, R2, C2, S2>,
|
|
||||||
) -> bool
|
|
||||||
where
|
|
||||||
S2: StorageMut<N, R2, C2>,
|
|
||||||
ShapeConstraint: SameNumberOfRows<D, R2>,
|
|
||||||
{
|
|
||||||
let (nrows, ncols) = self.data.shape();
|
|
||||||
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
|
||||||
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
|
||||||
|
|
||||||
for j2 in 0..b.ncols() {
|
|
||||||
let mut b = b.column_mut(j2);
|
|
||||||
|
|
||||||
for j in (0..ncols.value()).rev() {
|
|
||||||
let mut column = self.data.column_entries(j);
|
|
||||||
let mut diag = None;
|
|
||||||
|
|
||||||
while let Some((i, val)) = column.next() {
|
|
||||||
if i == j {
|
|
||||||
if val.is_zero() {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
diag = Some(val);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if let Some(diag) = diag {
|
|
||||||
for (i, val) in column {
|
|
||||||
b[j] -= val * b[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
b[j] /= diag;
|
|
||||||
} else {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
true
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn solve_lower_triangular_cs<D2: Dim, S2>(
|
|
||||||
&self,
|
|
||||||
b: &CsVector<N, D2, S2>,
|
|
||||||
) -> Option<CsVector<N, D2>>
|
|
||||||
where
|
|
||||||
S2: CsStorage<N, D2>,
|
|
||||||
DefaultAllocator: Allocator<bool, D> + Allocator<N, D2> + Allocator<usize, D2>,
|
|
||||||
ShapeConstraint: SameNumberOfRows<D, D2>,
|
|
||||||
{
|
|
||||||
let mut reach = Vec::new();
|
|
||||||
self.lower_triangular_reach(b, &mut reach);
|
|
||||||
let mut workspace = unsafe { VectorN::new_uninitialized_generic(b.data.shape().0, U1) };
|
|
||||||
|
|
||||||
for i in reach.iter().cloned() {
|
|
||||||
workspace[i] = N::zero();
|
|
||||||
}
|
|
||||||
|
|
||||||
for (i, val) in b.data.column_entries(0) {
|
|
||||||
workspace[i] = val;
|
|
||||||
}
|
|
||||||
|
|
||||||
for j in reach.iter().cloned().rev() {
|
|
||||||
let mut column = self.data.column_entries(j);
|
|
||||||
let mut diag_found = false;
|
|
||||||
|
|
||||||
while let Some((i, val)) = column.next() {
|
|
||||||
if i == j {
|
|
||||||
if val.is_zero() {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
workspace[j] /= val;
|
|
||||||
diag_found = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if !diag_found {
|
|
||||||
return None;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (i, val) in column {
|
|
||||||
workspace[i] -= workspace[j] * val;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Copy the result into a sparse vector.
|
|
||||||
let mut result = CsVector::new_uninitialized_generic(b.data.shape().0, U1, reach.len());
|
|
||||||
|
|
||||||
for (i, val) in reach.iter().zip(result.data.vals.iter_mut()) {
|
|
||||||
*val = workspace[*i];
|
|
||||||
}
|
|
||||||
|
|
||||||
result.data.i = reach;
|
|
||||||
Some(result)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn lower_triangular_reach<D2: Dim, S2>(&self, b: &CsVector<N, D2, S2>, xi: &mut Vec<usize>)
|
|
||||||
where
|
|
||||||
S2: CsStorage<N, D2>,
|
|
||||||
DefaultAllocator: Allocator<bool, D>,
|
|
||||||
{
|
|
||||||
let mut visited = VectorN::repeat_generic(self.data.shape().1, U1, false);
|
|
||||||
let mut stack = Vec::new();
|
|
||||||
|
|
||||||
for i in b.data.column_range(0) {
|
|
||||||
let row_index = b.data.row_index(i);
|
|
||||||
|
|
||||||
if !visited[row_index] {
|
|
||||||
let rng = self.data.column_range(row_index);
|
|
||||||
stack.push((row_index, rng));
|
|
||||||
self.lower_triangular_dfs(visited.as_mut_slice(), &mut stack, xi);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn lower_triangular_dfs(
|
|
||||||
&self,
|
|
||||||
visited: &mut [bool],
|
|
||||||
stack: &mut Vec<(usize, Range<usize>)>,
|
|
||||||
xi: &mut Vec<usize>,
|
|
||||||
) {
|
|
||||||
'recursion: while let Some((j, rng)) = stack.pop() {
|
|
||||||
visited[j] = true;
|
|
||||||
|
|
||||||
for i in rng.clone() {
|
|
||||||
let row_id = self.data.row_index(i);
|
|
||||||
if row_id > j && !visited[row_id] {
|
|
||||||
stack.push((j, (i + 1)..rng.end));
|
|
||||||
|
|
||||||
let row_id = self.data.row_index(i);
|
|
||||||
stack.push((row_id, self.data.column_range(row_id)));
|
|
||||||
continue 'recursion;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
xi.push(j)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
impl<N: Scalar, R, S> CsVector<N, R, S> {
|
|
||||||
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
|
|
||||||
// First, compute the number of non-zero entries.
|
|
||||||
let mut nnzero = 0;
|
|
||||||
|
|
||||||
// Allocate a size large enough.
|
|
||||||
self.data.set_column_len(0, nnzero);
|
|
||||||
|
|
||||||
// Fill with the axpy.
|
|
||||||
let mut i = self.len();
|
|
||||||
let mut j = x.len();
|
|
||||||
let mut k = nnzero - 1;
|
|
||||||
let mut rid1 = self.data.row_index(0, i - 1);
|
|
||||||
let mut rid2 = x.data.row_index(0, j - 1);
|
|
||||||
|
|
||||||
while k > 0 {
|
|
||||||
if rid1 == rid2 {
|
|
||||||
self.data.set_row_index(0, k, rid1);
|
|
||||||
self[k] = alpha * x[j] + beta * self[k];
|
|
||||||
i -= 1;
|
|
||||||
j -= 1;
|
|
||||||
} else if rid1 < rid2 {
|
|
||||||
self.data.set_row_index(0, k, rid1);
|
|
||||||
self[k] = beta * self[i];
|
|
||||||
i -= 1;
|
|
||||||
} else {
|
|
||||||
self.data.set_row_index(0, k, rid2);
|
|
||||||
self[k] = alpha * x[j];
|
|
||||||
j -= 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
k -= 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
impl<N: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
|
|
||||||
pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N)
|
|
||||||
where
|
|
||||||
S2: CsStorage<N, D2>,
|
|
||||||
ShapeConstraint: DimEq<D, D2>,
|
|
||||||
{
|
|
||||||
if beta.is_zero() {
|
|
||||||
for i in 0..x.len() {
|
|
||||||
unsafe {
|
|
||||||
let k = x.data.row_index_unchecked(i);
|
|
||||||
let y = self.vget_unchecked_mut(k);
|
|
||||||
*y = alpha * *x.data.get_value_unchecked(i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// Needed to be sure even components not present on `x` are multiplied.
|
|
||||||
*self *= beta;
|
|
||||||
|
|
||||||
for i in 0..x.len() {
|
|
||||||
unsafe {
|
|
||||||
let k = x.data.row_index_unchecked(i);
|
|
||||||
let y = self.vget_unchecked_mut(k);
|
|
||||||
*y += alpha * *x.data.get_value_unchecked(i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
pub fn gemv_sparse<R2: Dim, C2: Dim, S2>(&mut self, alpha: N, a: &CsMatrix<N, R2, C2, S2>, x: &DVector<N>, beta: N)
|
|
||||||
where
|
|
||||||
S2: CsStorage<N, R2, C2> {
|
|
||||||
let col2 = a.column(0);
|
|
||||||
let val = unsafe { *x.vget_unchecked(0) };
|
|
||||||
self.axpy_sparse(alpha * val, &col2, beta);
|
|
||||||
|
|
||||||
for j in 1..ncols2 {
|
|
||||||
let col2 = a.column(j);
|
|
||||||
let val = unsafe { *x.vget_unchecked(j) };
|
|
||||||
|
|
||||||
self.axpy_sparse(alpha * val, &col2, N::one());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<N, R2, C2, S2>>
|
|
||||||
for &'a CsMatrix<N, R1, C1, S1>
|
|
||||||
where
|
|
||||||
N: Scalar + ClosedAdd + ClosedMul + Zero,
|
|
||||||
R1: Dim,
|
|
||||||
C1: Dim,
|
|
||||||
R2: Dim,
|
|
||||||
C2: Dim,
|
|
||||||
S1: CsStorage<N, R1, C1>,
|
|
||||||
S2: CsStorage<N, R2, C2>,
|
|
||||||
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
|
|
||||||
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
|
||||||
{
|
|
||||||
type Output = CsMatrix<N, R1, C2>;
|
|
||||||
|
|
||||||
fn mul(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
|
|
||||||
let (nrows1, ncols1) = self.data.shape();
|
|
||||||
let (nrows2, ncols2) = rhs.data.shape();
|
|
||||||
assert_eq!(
|
|
||||||
ncols1.value(),
|
|
||||||
nrows2.value(),
|
|
||||||
"Mismatched dimensions for matrix multiplication."
|
|
||||||
);
|
|
||||||
|
|
||||||
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
|
||||||
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
|
||||||
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
|
||||||
let mut nz = 0;
|
|
||||||
|
|
||||||
for j in 0..ncols2.value() {
|
|
||||||
res.data.p[j] = nz;
|
|
||||||
let new_size_bound = nz + nrows1.value();
|
|
||||||
res.data.i.resize(new_size_bound, 0);
|
|
||||||
res.data.vals.resize(new_size_bound, N::zero());
|
|
||||||
|
|
||||||
for (i, val) in rhs.data.column_entries(j) {
|
|
||||||
nz = self.scatter(
|
|
||||||
i,
|
|
||||||
val,
|
|
||||||
timestamps.as_mut_slice(),
|
|
||||||
j + 1,
|
|
||||||
workspace.as_mut_slice(),
|
|
||||||
nz,
|
|
||||||
&mut res,
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
for p in res.data.p[j]..nz {
|
|
||||||
res.data.vals[p] = workspace[res.data.i[p]]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
res.data.i.truncate(nz);
|
|
||||||
res.data.i.shrink_to_fit();
|
|
||||||
res.data.vals.truncate(nz);
|
|
||||||
res.data.vals.shrink_to_fit();
|
|
||||||
res
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<N, R2, C2, S2>>
|
|
||||||
for &'a CsMatrix<N, R1, C1, S1>
|
|
||||||
where
|
|
||||||
N: Scalar + ClosedAdd + ClosedMul + One,
|
|
||||||
R1: Dim,
|
|
||||||
C1: Dim,
|
|
||||||
R2: Dim,
|
|
||||||
C2: Dim,
|
|
||||||
S1: CsStorage<N, R1, C1>,
|
|
||||||
S2: CsStorage<N, R2, C2>,
|
|
||||||
ShapeConstraint: DimEq<R1, R2> + DimEq<C1, C2>,
|
|
||||||
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
|
||||||
{
|
|
||||||
type Output = CsMatrix<N, R1, C2>;
|
|
||||||
|
|
||||||
fn add(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
|
|
||||||
let (nrows1, ncols1) = self.data.shape();
|
|
||||||
let (nrows2, ncols2) = rhs.data.shape();
|
|
||||||
assert_eq!(
|
|
||||||
(nrows1.value(), ncols1.value()),
|
|
||||||
(nrows2.value(), ncols2.value()),
|
|
||||||
"Mismatched dimensions for matrix sum."
|
|
||||||
);
|
|
||||||
|
|
||||||
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
|
||||||
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
|
||||||
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
|
||||||
let mut nz = 0;
|
|
||||||
|
|
||||||
for j in 0..ncols2.value() {
|
|
||||||
res.data.p[j] = nz;
|
|
||||||
|
|
||||||
nz = self.scatter(
|
|
||||||
j,
|
|
||||||
N::one(),
|
|
||||||
timestamps.as_mut_slice(),
|
|
||||||
j + 1,
|
|
||||||
workspace.as_mut_slice(),
|
|
||||||
nz,
|
|
||||||
&mut res,
|
|
||||||
);
|
|
||||||
|
|
||||||
nz = rhs.scatter(
|
|
||||||
j,
|
|
||||||
N::one(),
|
|
||||||
timestamps.as_mut_slice(),
|
|
||||||
j + 1,
|
|
||||||
workspace.as_mut_slice(),
|
|
||||||
nz,
|
|
||||||
&mut res,
|
|
||||||
);
|
|
||||||
|
|
||||||
for p in res.data.p[j]..nz {
|
|
||||||
res.data.vals[p] = workspace[res.data.i[p]]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
res.data.i.truncate(nz);
|
|
||||||
res.data.i.shrink_to_fit();
|
|
||||||
res.data.vals.truncate(nz);
|
|
||||||
res.data.vals.shrink_to_fit();
|
|
||||||
res
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
use std::fmt::Debug;
|
|
||||||
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<CsMatrix<N, R, C, S>> for MatrixMN<N, R, C>
|
|
||||||
where
|
|
||||||
S: CsStorage<N, R, C> + Debug,
|
|
||||||
DefaultAllocator: Allocator<N, R, C>,
|
|
||||||
{
|
|
||||||
fn from(m: CsMatrix<N, R, C, S>) -> Self {
|
|
||||||
let (nrows, ncols) = m.data.shape();
|
|
||||||
let mut res = MatrixMN::zeros_generic(nrows, ncols);
|
|
||||||
|
|
||||||
for j in 0..ncols.value() {
|
|
||||||
for (i, val) in m.data.column_entries(j) {
|
|
||||||
res[(i, j)] = val;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
res
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<Matrix<N, R, C, S>> for CsMatrix<N, R, C>
|
|
||||||
where
|
|
||||||
S: Storage<N, R, C>,
|
|
||||||
DefaultAllocator: Allocator<N, R, C> + Allocator<usize, C>,
|
|
||||||
{
|
|
||||||
fn from(m: Matrix<N, R, C, S>) -> Self {
|
|
||||||
let (nrows, ncols) = m.data.shape();
|
|
||||||
let len = m.iter().filter(|e| !e.is_zero()).count();
|
|
||||||
let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, len);
|
|
||||||
let mut nz = 0;
|
|
||||||
|
|
||||||
for j in 0..ncols.value() {
|
|
||||||
let column = m.column(j);
|
|
||||||
res.data.p[j] = nz;
|
|
||||||
|
|
||||||
for i in 0..nrows.value() {
|
|
||||||
if !column[i].is_zero() {
|
|
||||||
res.data.i[nz] = i;
|
|
||||||
res.data.vals[nz] = column[i];
|
|
||||||
nz += 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
res
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,184 @@
|
||||||
|
use alga::general::{ClosedAdd, ClosedMul};
|
||||||
|
use num::{One, Zero};
|
||||||
|
use std::iter;
|
||||||
|
use std::marker::PhantomData;
|
||||||
|
use std::ops::{Add, Mul, Range};
|
||||||
|
use std::slice;
|
||||||
|
|
||||||
|
use allocator::Allocator;
|
||||||
|
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||||
|
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||||
|
use storage::{Storage, StorageMut};
|
||||||
|
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||||
|
|
||||||
|
pub struct SymbolicAnalysis {
|
||||||
|
pinv: Vec<usize>,
|
||||||
|
q: Vec<usize>,
|
||||||
|
elimination_tree: Vec<usize>,
|
||||||
|
cp: Vec<usize>,
|
||||||
|
leftmost: Vec<usize>,
|
||||||
|
m2: usize,
|
||||||
|
lnz: usize,
|
||||||
|
unz: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Copy, Clone, Debug)]
|
||||||
|
pub struct EliminationTreeNode {
|
||||||
|
parent: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl EliminationTreeNode {
|
||||||
|
pub fn root() -> Self {
|
||||||
|
EliminationTreeNode {
|
||||||
|
parent: usize::max_value(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn with_parent(parent: usize) -> Self {
|
||||||
|
EliminationTreeNode { parent }
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn is_root(&self) -> bool {
|
||||||
|
self.parent == usize::max_value()
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn parent(&self) -> usize {
|
||||||
|
self.parent
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
||||||
|
fn elimination_tree(&self) -> Vec<EliminationTreeNode> {
|
||||||
|
let (nrows, ncols) = self.data.shape();
|
||||||
|
assert_eq!(
|
||||||
|
nrows.value(),
|
||||||
|
ncols.value(),
|
||||||
|
"The matrix `self` must be square to compute its elimination tree."
|
||||||
|
);
|
||||||
|
|
||||||
|
let mut forest: Vec<_> = iter::repeat(EliminationTreeNode::root())
|
||||||
|
.take(nrows.value())
|
||||||
|
.collect();
|
||||||
|
let mut ancestor: Vec<_> = iter::repeat(usize::max_value())
|
||||||
|
.take(nrows.value())
|
||||||
|
.collect();
|
||||||
|
|
||||||
|
for k in 0..nrows.value() {
|
||||||
|
for irow in self.data.column_row_indices(k) {
|
||||||
|
let mut i = irow;
|
||||||
|
|
||||||
|
while i < k {
|
||||||
|
let i_ancestor = ancestor[i];
|
||||||
|
ancestor[i] = k;
|
||||||
|
|
||||||
|
if i_ancestor == usize::max_value() {
|
||||||
|
forest[i] = EliminationTreeNode::with_parent(k);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
i = i_ancestor;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
forest
|
||||||
|
}
|
||||||
|
|
||||||
|
fn reach(
|
||||||
|
&self,
|
||||||
|
j: usize,
|
||||||
|
max_j: usize,
|
||||||
|
tree: &[EliminationTreeNode],
|
||||||
|
marks: &mut Vec<bool>,
|
||||||
|
out: &mut Vec<usize>,
|
||||||
|
) {
|
||||||
|
marks.clear();
|
||||||
|
marks.resize(tree.len(), false);
|
||||||
|
|
||||||
|
for irow in self.data.column_row_indices(j) {
|
||||||
|
let mut curr = irow;
|
||||||
|
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
|
||||||
|
marks[curr] = true;
|
||||||
|
out.push(curr);
|
||||||
|
curr = tree[curr].parent;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn column_counts(&self, tree: &[EliminationTreeNode]) -> Vec<usize> {
|
||||||
|
let len = self.data.shape().0.value();
|
||||||
|
let mut counts: Vec<_> = iter::repeat(0).take(len).collect();
|
||||||
|
let mut reach = Vec::new();
|
||||||
|
let mut marks = Vec::new();
|
||||||
|
|
||||||
|
for i in 0..len {
|
||||||
|
self.reach(i, i, tree, &mut marks, &mut reach);
|
||||||
|
|
||||||
|
for j in reach.drain(..) {
|
||||||
|
counts[j] += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
counts
|
||||||
|
}
|
||||||
|
|
||||||
|
fn tree_postorder(tree: &[EliminationTreeNode]) -> Vec<usize> {
|
||||||
|
// FIXME: avoid all those allocations?
|
||||||
|
let mut first_child: Vec<_> = iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||||
|
let mut other_children: Vec<_> =
|
||||||
|
iter::repeat(usize::max_value()).take(tree.len()).collect();
|
||||||
|
|
||||||
|
// Build the children list from the parent list.
|
||||||
|
// The set of children of the node `i` is given by the linked list
|
||||||
|
// starting at `first_child[i]`. The nodes of this list are then:
|
||||||
|
// { first_child[i], other_children[first_child[i]], other_children[other_children[first_child[i]], ... }
|
||||||
|
for (i, node) in tree.iter().enumerate() {
|
||||||
|
if !node.is_root() {
|
||||||
|
let brother = first_child[node.parent];
|
||||||
|
first_child[node.parent] = i;
|
||||||
|
other_children[i] = brother;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut stack = Vec::with_capacity(tree.len());
|
||||||
|
let mut postorder = Vec::with_capacity(tree.len());
|
||||||
|
|
||||||
|
for (i, node) in tree.iter().enumerate() {
|
||||||
|
if node.is_root() {
|
||||||
|
Self::dfs(
|
||||||
|
i,
|
||||||
|
&mut first_child,
|
||||||
|
&other_children,
|
||||||
|
&mut stack,
|
||||||
|
&mut postorder,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
postorder
|
||||||
|
}
|
||||||
|
|
||||||
|
fn dfs(
|
||||||
|
i: usize,
|
||||||
|
first_child: &mut [usize],
|
||||||
|
other_children: &[usize],
|
||||||
|
stack: &mut Vec<usize>,
|
||||||
|
result: &mut Vec<usize>,
|
||||||
|
) {
|
||||||
|
stack.clear();
|
||||||
|
stack.push(i);
|
||||||
|
|
||||||
|
while let Some(n) = stack.pop() {
|
||||||
|
let child = first_child[n];
|
||||||
|
|
||||||
|
if child == usize::max_value() {
|
||||||
|
// No children left.
|
||||||
|
result.push(n);
|
||||||
|
} else {
|
||||||
|
stack.push(n);
|
||||||
|
stack.push(child);
|
||||||
|
first_child[n] = other_children[child];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1 @@
|
||||||
|
|
|
@ -0,0 +1,59 @@
|
||||||
|
use alga::general::{ClosedAdd, ClosedMul};
|
||||||
|
use num::{One, Zero};
|
||||||
|
use std::iter;
|
||||||
|
use std::marker::PhantomData;
|
||||||
|
use std::ops::{Add, Mul, Range};
|
||||||
|
use std::slice;
|
||||||
|
|
||||||
|
use allocator::Allocator;
|
||||||
|
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||||
|
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||||
|
use storage::{Storage, StorageMut};
|
||||||
|
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||||
|
|
||||||
|
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<CsMatrix<N, R, C, S>> for MatrixMN<N, R, C>
|
||||||
|
where
|
||||||
|
S: CsStorage<N, R, C>,
|
||||||
|
DefaultAllocator: Allocator<N, R, C>,
|
||||||
|
{
|
||||||
|
fn from(m: CsMatrix<N, R, C, S>) -> Self {
|
||||||
|
let (nrows, ncols) = m.data.shape();
|
||||||
|
let mut res = MatrixMN::zeros_generic(nrows, ncols);
|
||||||
|
|
||||||
|
for j in 0..ncols.value() {
|
||||||
|
for (i, val) in m.data.column_entries(j) {
|
||||||
|
res[(i, j)] = val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<Matrix<N, R, C, S>> for CsMatrix<N, R, C>
|
||||||
|
where
|
||||||
|
S: Storage<N, R, C>,
|
||||||
|
DefaultAllocator: Allocator<N, R, C> + Allocator<usize, C>,
|
||||||
|
{
|
||||||
|
fn from(m: Matrix<N, R, C, S>) -> Self {
|
||||||
|
let (nrows, ncols) = m.data.shape();
|
||||||
|
let len = m.iter().filter(|e| !e.is_zero()).count();
|
||||||
|
let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, len);
|
||||||
|
let mut nz = 0;
|
||||||
|
|
||||||
|
for j in 0..ncols.value() {
|
||||||
|
let column = m.column(j);
|
||||||
|
res.data.p[j] = nz;
|
||||||
|
|
||||||
|
for i in 0..nrows.value() {
|
||||||
|
if !column[i].is_zero() {
|
||||||
|
res.data.i[nz] = i;
|
||||||
|
res.data.vals[nz] = column[i];
|
||||||
|
nz += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
res
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,251 @@
|
||||||
|
use alga::general::{ClosedAdd, ClosedMul};
|
||||||
|
use num::{One, Zero};
|
||||||
|
use std::iter;
|
||||||
|
use std::marker::PhantomData;
|
||||||
|
use std::ops::{Add, Mul, Range};
|
||||||
|
use std::slice;
|
||||||
|
|
||||||
|
use allocator::Allocator;
|
||||||
|
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||||
|
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||||
|
use storage::{Storage, StorageMut};
|
||||||
|
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||||
|
|
||||||
|
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||||||
|
fn scatter<R2: Dim, C2: Dim>(
|
||||||
|
&self,
|
||||||
|
j: usize,
|
||||||
|
beta: N,
|
||||||
|
timestamps: &mut [usize],
|
||||||
|
timestamp: usize,
|
||||||
|
workspace: &mut [N],
|
||||||
|
mut nz: usize,
|
||||||
|
res: &mut CsMatrix<N, R2, C2>,
|
||||||
|
) -> usize
|
||||||
|
where
|
||||||
|
N: ClosedAdd + ClosedMul,
|
||||||
|
DefaultAllocator: Allocator<usize, C2>,
|
||||||
|
{
|
||||||
|
for (i, val) in self.data.column_entries(j) {
|
||||||
|
if timestamps[i] < timestamp {
|
||||||
|
timestamps[i] = timestamp;
|
||||||
|
res.data.i[nz] = i;
|
||||||
|
nz += 1;
|
||||||
|
workspace[i] = val * beta;
|
||||||
|
} else {
|
||||||
|
workspace[i] += val * beta;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
nz
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
impl<N: Scalar, R, S> CsVector<N, R, S> {
|
||||||
|
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
|
||||||
|
// First, compute the number of non-zero entries.
|
||||||
|
let mut nnzero = 0;
|
||||||
|
|
||||||
|
// Allocate a size large enough.
|
||||||
|
self.data.set_column_len(0, nnzero);
|
||||||
|
|
||||||
|
// Fill with the axpy.
|
||||||
|
let mut i = self.len();
|
||||||
|
let mut j = x.len();
|
||||||
|
let mut k = nnzero - 1;
|
||||||
|
let mut rid1 = self.data.row_index(0, i - 1);
|
||||||
|
let mut rid2 = x.data.row_index(0, j - 1);
|
||||||
|
|
||||||
|
while k > 0 {
|
||||||
|
if rid1 == rid2 {
|
||||||
|
self.data.set_row_index(0, k, rid1);
|
||||||
|
self[k] = alpha * x[j] + beta * self[k];
|
||||||
|
i -= 1;
|
||||||
|
j -= 1;
|
||||||
|
} else if rid1 < rid2 {
|
||||||
|
self.data.set_row_index(0, k, rid1);
|
||||||
|
self[k] = beta * self[i];
|
||||||
|
i -= 1;
|
||||||
|
} else {
|
||||||
|
self.data.set_row_index(0, k, rid2);
|
||||||
|
self[k] = alpha * x[j];
|
||||||
|
j -= 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
k -= 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
impl<N: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
|
||||||
|
pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N)
|
||||||
|
where
|
||||||
|
S2: CsStorage<N, D2>,
|
||||||
|
ShapeConstraint: DimEq<D, D2>,
|
||||||
|
{
|
||||||
|
if beta.is_zero() {
|
||||||
|
for i in 0..x.len() {
|
||||||
|
unsafe {
|
||||||
|
let k = x.data.row_index_unchecked(i);
|
||||||
|
let y = self.vget_unchecked_mut(k);
|
||||||
|
*y = alpha * *x.data.get_value_unchecked(i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// Needed to be sure even components not present on `x` are multiplied.
|
||||||
|
*self *= beta;
|
||||||
|
|
||||||
|
for i in 0..x.len() {
|
||||||
|
unsafe {
|
||||||
|
let k = x.data.row_index_unchecked(i);
|
||||||
|
let y = self.vget_unchecked_mut(k);
|
||||||
|
*y += alpha * *x.data.get_value_unchecked(i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
pub fn gemv_sparse<R2: Dim, C2: Dim, S2>(&mut self, alpha: N, a: &CsMatrix<N, R2, C2, S2>, x: &DVector<N>, beta: N)
|
||||||
|
where
|
||||||
|
S2: CsStorage<N, R2, C2> {
|
||||||
|
let col2 = a.column(0);
|
||||||
|
let val = unsafe { *x.vget_unchecked(0) };
|
||||||
|
self.axpy_sparse(alpha * val, &col2, beta);
|
||||||
|
|
||||||
|
for j in 1..ncols2 {
|
||||||
|
let col2 = a.column(j);
|
||||||
|
let val = unsafe { *x.vget_unchecked(j) };
|
||||||
|
|
||||||
|
self.axpy_sparse(alpha * val, &col2, N::one());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<N, R2, C2, S2>>
|
||||||
|
for &'a CsMatrix<N, R1, C1, S1>
|
||||||
|
where
|
||||||
|
N: Scalar + ClosedAdd + ClosedMul + Zero,
|
||||||
|
R1: Dim,
|
||||||
|
C1: Dim,
|
||||||
|
R2: Dim,
|
||||||
|
C2: Dim,
|
||||||
|
S1: CsStorage<N, R1, C1>,
|
||||||
|
S2: CsStorage<N, R2, C2>,
|
||||||
|
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
|
||||||
|
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
||||||
|
{
|
||||||
|
type Output = CsMatrix<N, R1, C2>;
|
||||||
|
|
||||||
|
fn mul(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
|
||||||
|
let (nrows1, ncols1) = self.data.shape();
|
||||||
|
let (nrows2, ncols2) = rhs.data.shape();
|
||||||
|
assert_eq!(
|
||||||
|
ncols1.value(),
|
||||||
|
nrows2.value(),
|
||||||
|
"Mismatched dimensions for matrix multiplication."
|
||||||
|
);
|
||||||
|
|
||||||
|
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||||||
|
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
||||||
|
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
||||||
|
let mut nz = 0;
|
||||||
|
|
||||||
|
for j in 0..ncols2.value() {
|
||||||
|
res.data.p[j] = nz;
|
||||||
|
let new_size_bound = nz + nrows1.value();
|
||||||
|
res.data.i.resize(new_size_bound, 0);
|
||||||
|
res.data.vals.resize(new_size_bound, N::zero());
|
||||||
|
|
||||||
|
for (i, val) in rhs.data.column_entries(j) {
|
||||||
|
nz = self.scatter(
|
||||||
|
i,
|
||||||
|
val,
|
||||||
|
timestamps.as_mut_slice(),
|
||||||
|
j + 1,
|
||||||
|
workspace.as_mut_slice(),
|
||||||
|
nz,
|
||||||
|
&mut res,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
for p in res.data.p[j]..nz {
|
||||||
|
res.data.vals[p] = workspace[res.data.i[p]]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
res.data.i.truncate(nz);
|
||||||
|
res.data.i.shrink_to_fit();
|
||||||
|
res.data.vals.truncate(nz);
|
||||||
|
res.data.vals.shrink_to_fit();
|
||||||
|
res
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<N, R2, C2, S2>>
|
||||||
|
for &'a CsMatrix<N, R1, C1, S1>
|
||||||
|
where
|
||||||
|
N: Scalar + ClosedAdd + ClosedMul + One,
|
||||||
|
R1: Dim,
|
||||||
|
C1: Dim,
|
||||||
|
R2: Dim,
|
||||||
|
C2: Dim,
|
||||||
|
S1: CsStorage<N, R1, C1>,
|
||||||
|
S2: CsStorage<N, R2, C2>,
|
||||||
|
ShapeConstraint: DimEq<R1, R2> + DimEq<C1, C2>,
|
||||||
|
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
||||||
|
{
|
||||||
|
type Output = CsMatrix<N, R1, C2>;
|
||||||
|
|
||||||
|
fn add(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
|
||||||
|
let (nrows1, ncols1) = self.data.shape();
|
||||||
|
let (nrows2, ncols2) = rhs.data.shape();
|
||||||
|
assert_eq!(
|
||||||
|
(nrows1.value(), ncols1.value()),
|
||||||
|
(nrows2.value(), ncols2.value()),
|
||||||
|
"Mismatched dimensions for matrix sum."
|
||||||
|
);
|
||||||
|
|
||||||
|
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||||||
|
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
||||||
|
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
||||||
|
let mut nz = 0;
|
||||||
|
|
||||||
|
for j in 0..ncols2.value() {
|
||||||
|
res.data.p[j] = nz;
|
||||||
|
|
||||||
|
nz = self.scatter(
|
||||||
|
j,
|
||||||
|
N::one(),
|
||||||
|
timestamps.as_mut_slice(),
|
||||||
|
j + 1,
|
||||||
|
workspace.as_mut_slice(),
|
||||||
|
nz,
|
||||||
|
&mut res,
|
||||||
|
);
|
||||||
|
|
||||||
|
nz = rhs.scatter(
|
||||||
|
j,
|
||||||
|
N::one(),
|
||||||
|
timestamps.as_mut_slice(),
|
||||||
|
j + 1,
|
||||||
|
workspace.as_mut_slice(),
|
||||||
|
nz,
|
||||||
|
&mut res,
|
||||||
|
);
|
||||||
|
|
||||||
|
for p in res.data.p[j]..nz {
|
||||||
|
res.data.vals[p] = workspace[res.data.i[p]]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
res.data.i.truncate(nz);
|
||||||
|
res.data.i.shrink_to_fit();
|
||||||
|
res.data.vals.truncate(nz);
|
||||||
|
res.data.vals.shrink_to_fit();
|
||||||
|
res
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,235 @@
|
||||||
|
use alga::general::{ClosedAdd, ClosedMul};
|
||||||
|
use num::{One, Zero};
|
||||||
|
use std::iter;
|
||||||
|
use std::marker::PhantomData;
|
||||||
|
use std::ops::{Add, Mul, Range};
|
||||||
|
use std::slice;
|
||||||
|
|
||||||
|
use allocator::Allocator;
|
||||||
|
use constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint};
|
||||||
|
use sparse::{CsMatrix, CsStorage, CsVector};
|
||||||
|
use storage::{Storage, StorageMut};
|
||||||
|
use {DefaultAllocator, Dim, Matrix, MatrixMN, Real, Scalar, Vector, VectorN, U1};
|
||||||
|
|
||||||
|
impl<N: Real, D: Dim, S: CsStorage<N, D, D>> CsMatrix<N, D, D, S> {
|
||||||
|
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &Matrix<N, R2, C2, S2>,
|
||||||
|
) -> Option<MatrixMN<N, R2, C2>>
|
||||||
|
where
|
||||||
|
S2: Storage<N, R2, C2>,
|
||||||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let mut b = b.clone_owned();
|
||||||
|
if self.solve_lower_triangular_mut(&mut b) {
|
||||||
|
Some(b)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &Matrix<N, R2, C2, S2>,
|
||||||
|
) -> Option<MatrixMN<N, R2, C2>>
|
||||||
|
where
|
||||||
|
S2: Storage<N, R2, C2>,
|
||||||
|
DefaultAllocator: Allocator<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let mut b = b.clone_owned();
|
||||||
|
if self.tr_solve_lower_triangular_mut(&mut b) {
|
||||||
|
Some(b)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &mut Matrix<N, R2, C2, S2>,
|
||||||
|
) -> bool
|
||||||
|
where
|
||||||
|
S2: StorageMut<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let (nrows, ncols) = self.data.shape();
|
||||||
|
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
||||||
|
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
||||||
|
|
||||||
|
for j2 in 0..b.ncols() {
|
||||||
|
let mut b = b.column_mut(j2);
|
||||||
|
|
||||||
|
for j in 0..ncols.value() {
|
||||||
|
let mut column = self.data.column_entries(j);
|
||||||
|
let mut diag_found = false;
|
||||||
|
|
||||||
|
while let Some((i, val)) = column.next() {
|
||||||
|
if i == j {
|
||||||
|
if val.is_zero() {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
b[j] /= val;
|
||||||
|
diag_found = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if !diag_found {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i, val) in column {
|
||||||
|
b[i] -= b[j] * val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
true
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &mut Matrix<N, R2, C2, S2>,
|
||||||
|
) -> bool
|
||||||
|
where
|
||||||
|
S2: StorageMut<N, R2, C2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, R2>,
|
||||||
|
{
|
||||||
|
let (nrows, ncols) = self.data.shape();
|
||||||
|
assert_eq!(nrows.value(), ncols.value(), "The matrix must be square.");
|
||||||
|
assert_eq!(nrows.value(), b.len(), "Mismatched matrix dimensions.");
|
||||||
|
|
||||||
|
for j2 in 0..b.ncols() {
|
||||||
|
let mut b = b.column_mut(j2);
|
||||||
|
|
||||||
|
for j in (0..ncols.value()).rev() {
|
||||||
|
let mut column = self.data.column_entries(j);
|
||||||
|
let mut diag = None;
|
||||||
|
|
||||||
|
while let Some((i, val)) = column.next() {
|
||||||
|
if i == j {
|
||||||
|
if val.is_zero() {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
diag = Some(val);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if let Some(diag) = diag {
|
||||||
|
for (i, val) in column {
|
||||||
|
b[j] -= val * b[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
b[j] /= diag;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
true
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn solve_lower_triangular_cs<D2: Dim, S2>(
|
||||||
|
&self,
|
||||||
|
b: &CsVector<N, D2, S2>,
|
||||||
|
) -> Option<CsVector<N, D2>>
|
||||||
|
where
|
||||||
|
S2: CsStorage<N, D2>,
|
||||||
|
DefaultAllocator: Allocator<bool, D> + Allocator<N, D2> + Allocator<usize, D2>,
|
||||||
|
ShapeConstraint: SameNumberOfRows<D, D2>,
|
||||||
|
{
|
||||||
|
let mut reach = Vec::new();
|
||||||
|
self.lower_triangular_reach(b, &mut reach);
|
||||||
|
let mut workspace = unsafe { VectorN::new_uninitialized_generic(b.data.shape().0, U1) };
|
||||||
|
|
||||||
|
for i in reach.iter().cloned() {
|
||||||
|
workspace[i] = N::zero();
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i, val) in b.data.column_entries(0) {
|
||||||
|
workspace[i] = val;
|
||||||
|
}
|
||||||
|
|
||||||
|
for j in reach.iter().cloned().rev() {
|
||||||
|
let mut column = self.data.column_entries(j);
|
||||||
|
let mut diag_found = false;
|
||||||
|
|
||||||
|
while let Some((i, val)) = column.next() {
|
||||||
|
if i == j {
|
||||||
|
if val.is_zero() {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
workspace[j] /= val;
|
||||||
|
diag_found = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if !diag_found {
|
||||||
|
return None;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i, val) in column {
|
||||||
|
workspace[i] -= workspace[j] * val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Copy the result into a sparse vector.
|
||||||
|
let mut result = CsVector::new_uninitialized_generic(b.data.shape().0, U1, reach.len());
|
||||||
|
|
||||||
|
for (i, val) in reach.iter().zip(result.data.vals.iter_mut()) {
|
||||||
|
*val = workspace[*i];
|
||||||
|
}
|
||||||
|
|
||||||
|
result.data.i = reach;
|
||||||
|
Some(result)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn lower_triangular_reach<D2: Dim, S2>(&self, b: &CsVector<N, D2, S2>, xi: &mut Vec<usize>)
|
||||||
|
where
|
||||||
|
S2: CsStorage<N, D2>,
|
||||||
|
DefaultAllocator: Allocator<bool, D>,
|
||||||
|
{
|
||||||
|
let mut visited = VectorN::repeat_generic(self.data.shape().1, U1, false);
|
||||||
|
let mut stack = Vec::new();
|
||||||
|
|
||||||
|
for i in b.data.column_range(0) {
|
||||||
|
let row_index = b.data.row_index(i);
|
||||||
|
|
||||||
|
if !visited[row_index] {
|
||||||
|
let rng = self.data.column_range(row_index);
|
||||||
|
stack.push((row_index, rng));
|
||||||
|
self.lower_triangular_dfs(visited.as_mut_slice(), &mut stack, xi);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn lower_triangular_dfs(
|
||||||
|
&self,
|
||||||
|
visited: &mut [bool],
|
||||||
|
stack: &mut Vec<(usize, Range<usize>)>,
|
||||||
|
xi: &mut Vec<usize>,
|
||||||
|
) {
|
||||||
|
'recursion: while let Some((j, rng)) = stack.pop() {
|
||||||
|
visited[j] = true;
|
||||||
|
|
||||||
|
for i in rng.clone() {
|
||||||
|
let row_id = self.data.row_index(i);
|
||||||
|
if row_id > j && !visited[row_id] {
|
||||||
|
stack.push((j, (i + 1)..rng.end));
|
||||||
|
stack.push((row_id, self.data.column_range(row_id)));
|
||||||
|
continue 'recursion;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
xi.push(j)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -1,3 +1,8 @@
|
||||||
pub use self::cs_matrix::{CsMatrix, CsVector};
|
pub use self::cs_matrix::{CsMatrix, CsStorage, CsStorageMut, CsVector};
|
||||||
|
|
||||||
mod cs_matrix;
|
mod cs_matrix;
|
||||||
|
mod cs_matrix_analysis;
|
||||||
|
mod cs_matrix_cholesky;
|
||||||
|
mod cs_matrix_conversion;
|
||||||
|
mod cs_matrix_ops;
|
||||||
|
mod cs_matrix_solve;
|
||||||
|
|
Loading…
Reference in New Issue