New wrapper for generalized eigenvalues and associated eigenvectors via LAPACK routines sggev/dggev

This commit is contained in:
metric-space 2022-01-24 23:56:44 -05:00
parent 7e9345d91e
commit 7d8fb3d384
4 changed files with 401 additions and 0 deletions

View File

@ -0,0 +1,339 @@
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use simba::scalar:: RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Const, Dim};
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
use lapack;
/// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Serialize")
)
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Deserialize<'de>")
)
)]
#[derive(Clone, Debug)]
pub struct GE<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
alphar: OVector<T, D>,
alphai: OVector<T, D>,
beta: OVector<T, D>,
vsl: OMatrix<T, D, D>,
vsr: OMatrix<T, D, D>,
}
impl<T: Scalar + Copy, D: Dim> Copy for GE<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OMatrix<T, D, D>: Copy,
OVector<T, D>: Copy,
{
}
impl<T: GEScalar + RealField + Copy, D: Dim> GE<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
{
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
/// dggev and sggev routines
///
/// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right)
/// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r
///
/// Panics if the method did not converge.
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.")
}
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
/// dggev and sggev routines
///
/// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right)
/// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r
///
/// Returns `None` if the method did not converge.
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
assert!(
a.is_square() && b.is_square(),
"Unable to compute the generalized eigenvalues of non-square matrices."
);
assert!(
a.shape_generic() == b.shape_generic(),
"Unable to compute the generalized eigenvalues of two square matrices of different dimensions."
);
let (nrows, ncols) = a.shape_generic();
let n = nrows.value();
let mut info = 0;
let mut alphar = Matrix::zeros_generic(nrows, Const::<1>);
let mut alphai = Matrix::zeros_generic(nrows, Const::<1>);
let mut beta = Matrix::zeros_generic(nrows, Const::<1>);
let mut vsl = Matrix::zeros_generic(nrows, ncols);
let mut vsr = Matrix::zeros_generic(nrows, ncols);
let lwork = T::xggev_work_size(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut info,
);
lapack_check!(info);
let mut work = vec![T::zero(); lwork as usize];
T::xggev(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut work,
lwork,
&mut info,
);
lapack_check!(info);
Some(GE {
alphar,
alphai,
beta,
vsl,
vsr,
})
}
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
where
DefaultAllocator: Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D>,
{
let n = self.vsl.shape().0;
let mut l = self
.vsl
.clone()
.map(|x| Complex::new(x, T::RealField::zero()));
let mut r = self
.vsr
.clone()
.map(|x| Complex::new(x, T::RealField::zero()));
let eigenvalues = &self.eigenvalues();
let mut ll;
let mut c = 0;
while c < n {
if eigenvalues[c].im.abs() > T::RealField::default_epsilon() && c + 1 < n && {
let e_conj = eigenvalues[c].conj();
let e = eigenvalues[c + 1];
((e_conj.re - e.re).abs() < T::RealField::default_epsilon())
&& ((e_conj.im - e.im).abs() < T::RealField::default_epsilon())
} {
ll = l.column(c + 1).into_owned();
l.column_mut(c).zip_apply(&ll, |r, i| {
*r = Complex::new(r.re.clone(), i.re);
});
ll.copy_from(&l.column(c));
l.column_mut(c + 1).zip_apply(&ll, |r, i| {
*r = i.conj();
});
ll.copy_from(&r.column(c + 1));
r.column_mut(c).zip_apply(&ll, |r, i| {
*r = Complex::new(r.re, i.re);
});
ll.copy_from(&r.column(c));
r.column_mut(c + 1).zip_apply(&ll, |r, i| {
*r = i.conj();
});
c += 2;
} else {
c += 1;
}
}
(l, r)
}
/// computes the generalized eigenvalues
#[must_use]
pub fn eigenvalues(&self) -> OVector<Complex<T>, D>
where
DefaultAllocator: Allocator<Complex<T>, D>,
{
let mut out = Matrix::zeros_generic(self.vsl.shape_generic().0, Const::<1>);
for i in 0..out.len() {
out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() {
Complex::zero()
} else {
let mut cr = self.alphar[i].clone();
let mut ci = self.alphai[i].clone();
let b = self.beta[i].clone();
if cr.clone().abs() < T::RealField::default_epsilon() {
cr = T::RealField::zero()
} else {
cr = cr / b.clone()
};
if ci.clone().abs() < T::RealField::default_epsilon() {
ci = T::RealField::zero()
} else {
ci = ci / b
};
Complex::new(cr, ci)
}
}
out
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by scalars for which Lapack implements the RealField GE decomposition.
pub trait GEScalar: Scalar {
#[allow(missing_docs)]
fn xggev(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
work: &mut [Self],
lwork: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xggev_work_size(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
info: &mut i32,
) -> i32;
}
macro_rules! real_eigensystem_scalar_impl (
($N: ty, $xggev: path) => (
impl GEScalar for $N {
#[inline]
fn xggev(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
work: &mut [$N],
lwork: i32,
info: &mut i32) {
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info); }
}
#[inline]
fn xggev_work_size(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
info: &mut i32)
-> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, info); }
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
real_eigensystem_scalar_impl!(f32, lapack::sggev);
real_eigensystem_scalar_impl!(f64, lapack::dggev);

View File

@ -87,6 +87,7 @@ mod hessenberg;
mod lu;
mod qr;
mod qz;
mod generalized_eigenvalues;
mod schur;
mod svd;
mod symmetric_eigen;
@ -99,6 +100,7 @@ pub use self::hessenberg::Hessenberg;
pub use self::lu::{LUScalar, LU};
pub use self::qr::QR;
pub use self::qz::QZ;
pub use self::generalized_eigenvalues::GE;
pub use self::schur::Schur;
pub use self::svd::SVD;
pub use self::symmetric_eigen::SymmetricEigen;

View File

@ -0,0 +1,59 @@
use na::dimension::{Const, Dynamic};
use na::{DMatrix, EuclideanNorm, Norm, OMatrix};
use nl::GE;
use num_complex::Complex;
use simba::scalar::ComplexField;
use std::cmp;
use crate::proptest::*;
use proptest::{prop_assert, proptest};
proptest! {
#[test]
fn ge(n in PROPTEST_MATRIX_DIM) {
let n = cmp::max(1, cmp::min(n, 10));
let a = DMatrix::<f64>::new_random(n, n);
let b = DMatrix::<f64>::new_random(n, n);
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0 {
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
let ge = GE::new(a.clone(), b.clone());
let (vsl,vsr) = ge.clone().eigenvectors();
let eigenvalues = ge.clone().eigenvalues();
for i in 0..n {
let left_eigenvector = &vsl.column(i);
prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Dynamic::new(n)) ,epsilon = 1.0e-7));
let right_eigenvector = &vsr.column(i);
prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Dynamic::new(n), Const::<1>) ,epsilon = 1.0e-7));
};
};
}
#[test]
fn ge_static(a in matrix4(), b in matrix4()) {
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0{
let ge = GE::new(a.clone(), b.clone());
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
let (vsl,vsr) = ge.eigenvectors();
let eigenvalues = ge.eigenvalues();
for i in 0..4 {
let left_eigenvector = &vsl.column(i);
prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Const::<4>) ,epsilon = 1.0e-7));
let right_eigenvector = &vsr.column(i);
prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<4>, Const::<1>) ,epsilon = 1.0e-7));
};
};
}
}

View File

@ -2,6 +2,7 @@ mod cholesky;
mod lu;
mod qr;
mod qz;
mod generalized_eigenvalues;
mod real_eigensystem;
mod schur;
mod svd;