added generalized rotational slerp
This commit is contained in:
parent
6a553f1ee2
commit
7b92e114f9
|
@ -1,4 +1,6 @@
|
||||||
use crate::{RealField, Rotation2, Rotation3, SimdRealField, UnitComplex, UnitQuaternion};
|
use crate::{RealField, Rotation, Rotation2, Rotation3, SimdRealField, UnitComplex, UnitQuaternion};
|
||||||
|
use crate::{Const, U1, DimSub, DimDiff, Storage, ArrayStorage, Allocator, DefaultAllocator};
|
||||||
|
use crate::SMatrix;
|
||||||
|
|
||||||
/// # Interpolation
|
/// # Interpolation
|
||||||
impl<T: SimdRealField> Rotation2<T> {
|
impl<T: SimdRealField> Rotation2<T> {
|
||||||
|
@ -79,3 +81,131 @@ impl<T: SimdRealField> Rotation3<T> {
|
||||||
q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
|
q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl<T:SimdRealField, const D: usize> Rotation<T,D> {
|
||||||
|
|
||||||
|
#[warn(missing_docs)]
|
||||||
|
pub fn basis_rot(i:usize, j:usize, angle:T) -> Self {
|
||||||
|
|
||||||
|
let mut m = SMatrix::identity();
|
||||||
|
if i==j { return Self::from_matrix_unchecked(m); }
|
||||||
|
|
||||||
|
let (s,c) = angle.simd_sin_cos();
|
||||||
|
m[(i,i)] = c.clone();
|
||||||
|
m[(i,j)] = -s.clone();
|
||||||
|
m[(j,i)] = s;
|
||||||
|
m[(j,j)] = c;
|
||||||
|
|
||||||
|
Self::from_matrix_unchecked(m)
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T:RealField, const D: usize> Rotation<T,D> where
|
||||||
|
Const<D>: DimSub<U1>,
|
||||||
|
ArrayStorage<T,D,D>: Storage<T,Const<D>,Const<D>>,
|
||||||
|
DefaultAllocator: Allocator<T,Const<D>,Const<D>,Buffer=ArrayStorage<T,D,D>> + Allocator<T,Const<D>> +
|
||||||
|
Allocator<T,Const<D>,DimDiff<Const<D>,U1>> +
|
||||||
|
Allocator<T,DimDiff<Const<D>,U1>>
|
||||||
|
{
|
||||||
|
|
||||||
|
#[warn(missing_docs)]
|
||||||
|
pub fn general_slerp(&self, other: &Self, t:T) -> Self {
|
||||||
|
self * (self/other).general_pow(t)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[warn(missing_docs)]
|
||||||
|
pub fn general_pow(self, t:T) -> Self {
|
||||||
|
if D<=1 { return self; }
|
||||||
|
|
||||||
|
//taking the (real) schur form is guaranteed to produce a block-diagonal matrix
|
||||||
|
//where each block is either a 1 (if there's no rotation in that axis) or a 2x2
|
||||||
|
//rotation matrix in a particular plane
|
||||||
|
let schur = self.into_inner().schur();
|
||||||
|
let (q, mut d) = schur.unpack();
|
||||||
|
|
||||||
|
//go down the diagonal and pow every block
|
||||||
|
for i in 0..(D-1) {
|
||||||
|
|
||||||
|
//we've found a 2x2 block!
|
||||||
|
//NOTE: the impl of the schur decomposition always sets the inferior diagonal to 0
|
||||||
|
if !d[(i+1,i)].is_zero() {
|
||||||
|
|
||||||
|
//convert to a complex num and take the arg()
|
||||||
|
let (c, s) = (d[(i,i)].clone(), d[(i+1,i)].clone());
|
||||||
|
let angle = s.atan2(c);
|
||||||
|
|
||||||
|
//scale the arg and exponentiate back
|
||||||
|
let angle2 = angle * t.clone();
|
||||||
|
let (s2, c2) = angle2.sin_cos();
|
||||||
|
|
||||||
|
//convert back into a rot block
|
||||||
|
d[(i, i )] = c2.clone();
|
||||||
|
d[(i, i+1)] = -s2.clone();
|
||||||
|
d[(i+1,i )] = s2;
|
||||||
|
d[(i+1,i+1)] = c2;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
let qt = q.transpose(); //avoids an extra clone
|
||||||
|
|
||||||
|
Self::from_matrix_unchecked(q * d * qt)
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
use std::f64::consts::PI;
|
||||||
|
|
||||||
|
const EPS: f64 = 2E-10;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn rot_pow() {
|
||||||
|
|
||||||
|
let r1 = Rotation2::new(0.0);
|
||||||
|
let r2 = Rotation2::new(PI/4.0);
|
||||||
|
let r3 = Rotation2::new(PI/2.0);
|
||||||
|
|
||||||
|
assert_relative_eq!(r1.general_pow(0.5), r1, epsilon=EPS);
|
||||||
|
assert_relative_eq!(r3.general_pow(0.5), r2, epsilon=EPS);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn basis_rot() {
|
||||||
|
|
||||||
|
const D:usize = 4;
|
||||||
|
|
||||||
|
let basis_blades = |n| (0..n).flat_map(
|
||||||
|
move |i| (i..n).map(move |j| (i,j))
|
||||||
|
).filter(|(i,j)| i!=j);
|
||||||
|
|
||||||
|
for (i1,j1) in basis_blades(D) {
|
||||||
|
|
||||||
|
for (i2,j2) in basis_blades(D) {
|
||||||
|
|
||||||
|
if i1==i2 || j1==j2 || i1==j2 || j1==i2 { continue; }
|
||||||
|
|
||||||
|
let r1 = Rotation::<_,D>::basis_rot(i1,j1,PI/4.0) *
|
||||||
|
Rotation::<_,D>::basis_rot(i2,j2,PI/4.0);
|
||||||
|
let r2 = Rotation::<_,D>::basis_rot(i1,j1,PI/2.0) *
|
||||||
|
Rotation::<_,D>::basis_rot(i2,j2,PI/2.0);
|
||||||
|
|
||||||
|
println!("{}{}",r1,r2);
|
||||||
|
|
||||||
|
assert_relative_eq!(r2.general_pow(0.5), r1, epsilon=EPS);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue