diff --git a/Cargo.toml b/Cargo.toml index 43323c94..d44431c1 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -26,7 +26,7 @@ arbitrary = [ "quickcheck" ] serde-serialize = [ "serde", "serde_derive", "num-complex/serde" ] abomonation-serialize = [ "abomonation" ] sparse = [ ] -debug = [ ] +debug = [ "approx/num-complex", "rand/std" ] alloc = [ ] io = [ "pest", "pest_derive" ] @@ -53,3 +53,6 @@ rand_xorshift = "0.1" [workspace] members = [ "nalgebra-lapack", "nalgebra-glm" ] + +[patch.crates-io] +alga = { path = "../alga/alga" } diff --git a/src/base/blas.rs b/src/base/blas.rs index 1b415343..6c0c029d 100644 --- a/src/base/blas.rs +++ b/src/base/blas.rs @@ -13,6 +13,39 @@ use base::dimension::{Dim, Dynamic, U1, U2, U3, U4}; use base::storage::{Storage, StorageMut}; use base::{DefaultAllocator, Matrix, Scalar, SquareMatrix, Vector}; + +// FIXME: find a way to avoid code duplication just for complex number support. +impl> Vector { + /// Computes the index of the vector component with the largest complex or real absolute value. + /// + /// # Examples: + /// + /// ``` + /// # use num_complex::Complex; + /// # use nalgebra::Vector3; + /// let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0)); + /// assert_eq!(vec.icamax(), 2); + /// ``` + #[inline] + pub fn icamax(&self) -> usize { + assert!(!self.is_empty(), "The input vector must not be empty."); + + let mut the_max = unsafe { self.vget_unchecked(0).asum() }; + let mut the_i = 0; + + for i in 1..self.nrows() { + let val = unsafe { self.vget_unchecked(i).asum() }; + + if val > the_max { + the_max = val; + the_i = i; + } + } + + the_i + } +} + impl> Vector { /// Computes the index and value of the vector component with the largest value. /// @@ -157,6 +190,41 @@ impl> Vector { } } +// FIXME: find a way to avoid code duplication just for complex number support. +impl> Matrix { + /// Computes the index of the matrix component with the largest absolute value. + /// + /// # Examples: + /// + /// ``` + /// # use nalgebra::Matrix2x3; + /// let mat = Matrix2x3::new(Complex::new(11.0, 1.0), Complex::new(-12.0, 2.0), Complex::new(13.0, 3.0), + /// Complex::new(21.0, 43.0), Complex::new(22.0, 5.0), Complex::new(-23.0, 0.0); + /// assert_eq!(mat.iamax_full(), (1, 0)); + /// ``` + #[inline] + pub fn icamax_full(&self) -> (usize, usize) { + assert!(!self.is_empty(), "The input matrix must not be empty."); + + let mut the_max = unsafe { self.get_unchecked((0, 0)).asum() }; + let mut the_ij = (0, 0); + + for j in 0..self.ncols() { + for i in 0..self.nrows() { + let val = unsafe { self.get_unchecked((i, j)).asum() }; + + if val > the_max { + the_max = val; + the_ij = (i, j); + } + } + } + + the_ij + } +} + + impl> Matrix { /// Computes the index of the matrix component with the largest absolute value. /// @@ -705,6 +773,56 @@ where } } +// FIXME: duplicate code +impl> Matrix + where N: Complex + Zero + ClosedAdd + ClosedMul +{ + /// Computes `self = alpha * x * y.transpose() + beta * self`. + /// + /// If `beta` is zero, `self` is never read. + /// + /// # Examples: + /// + /// ``` + /// # use nalgebra::{Matrix2x3, Vector2, Vector3}; + /// let mut mat = Matrix2x3::repeat(4.0); + /// let vec1 = Vector2::new(1.0, 2.0); + /// let vec2 = Vector3::new(0.1, 0.2, 0.3); + /// let expected = vec1 * vec2.transpose() * 10.0 + mat * 5.0; + /// + /// mat.ger(10.0, &vec1, &vec2, 5.0); + /// assert_eq!(mat, expected); + /// ``` + #[inline] + pub fn gerc( + &mut self, + alpha: N, + x: &Vector, + y: &Vector, + beta: N, + ) where + N: One, + SB: Storage, + SC: Storage, + ShapeConstraint: DimEq + DimEq, + { + let (nrows1, ncols1) = self.shape(); + let dim2 = x.nrows(); + let dim3 = y.nrows(); + + assert!( + nrows1 == dim2 && ncols1 == dim3, + "ger: dimensions mismatch." + ); + + for j in 0..ncols1 { + // FIXME: avoid bound checks. + let val = unsafe { y.vget_unchecked(j).conjugate() }; + self.column_mut(j).axpy(alpha * val, x, beta); + } + } +} + impl> Matrix where N: Scalar + Zero + ClosedAdd + ClosedMul { diff --git a/src/base/matrix.rs b/src/base/matrix.rs index f0b74dd7..3fa276f0 100644 --- a/src/base/matrix.rs +++ b/src/base/matrix.rs @@ -944,6 +944,47 @@ impl> Matrix { res } } + + /// The conjugate of `self`. + #[inline] + pub fn conjugate(&self) -> MatrixMN + where DefaultAllocator: Allocator { + self.map(|e| e.conjugate()) + } + + /// Divides each component of `self` by the given real. + #[inline] + pub fn unscale(&self, real: N::Real) -> MatrixMN + where DefaultAllocator: Allocator { + self.map(|e| e.unscale(real)) + } + + /// Multiplies each component of `self` by the given real. + #[inline] + pub fn scale(&self, real: N::Real) -> MatrixMN + where DefaultAllocator: Allocator { + self.map(|e| e.scale(real)) + } +} + +impl> Matrix { + /// The conjugate of `self` computed in-place. + #[inline] + pub fn conjugate_mut(&mut self) { + self.apply(|e| e.conjugate()) + } + + /// Divides each component of `self` by the given real. + #[inline] + pub fn unscale_mut(&mut self, real: N::Real) { + self.apply(|e| e.unscale(real)) + } + + /// Multiplies each component of `self` by the given real. + #[inline] + pub fn scale_mut(&mut self, real: N::Real) { + self.apply(|e| e.scale(real)) + } } impl> Matrix { @@ -975,7 +1016,7 @@ impl> SquareMatrix { /// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0. #[inline] pub fn diagonal(&self) -> VectorN - where DefaultAllocator: Allocator { + where DefaultAllocator: Allocator { assert!( self.is_square(), "Unable to get the diagonal of a non-square matrix." @@ -996,7 +1037,7 @@ impl> SquareMatrix { /// Computes a trace of a square matrix, i.e., the sum of its diagonal elements. #[inline] pub fn trace(&self) -> N - where N: Ring { + where N: Ring { assert!( self.is_square(), "Cannot compute the trace of non-square matrix." @@ -1013,6 +1054,34 @@ impl> SquareMatrix { } } +impl> SquareMatrix { + /// The symmetric part of `self`, i.e., `0.5 * (self + self.transpose())`. + #[inline] + pub fn symmetric_part(&self) -> MatrixMN + where DefaultAllocator: Allocator { + assert!(self.is_square(), "Cannot compute the symmetric part of a non-square matrix."); + let mut tr = self.transpose(); + tr += self; + tr *= ::convert::<_, N>(0.5); + tr + } + + /// The hermitian part of `self`, i.e., `0.5 * (self + self.conjugate_transpose())`. + #[inline] + pub fn hermitian_part(&self) -> MatrixMN + where DefaultAllocator: Allocator { + assert!(self.is_square(), "Cannot compute the hermitian part of a non-square matrix."); + let nrows = self.data.shape().0; + + unsafe { + let mut tr = self.conjugate_transpose(); + tr += self; + tr *= ::convert::<_, N>(0.5); + tr + } + } +} + impl + IsNotStaticOne, S: Storage> Matrix { /// Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and diff --git a/src/base/ops.rs b/src/base/ops.rs index 96d4626f..bee584b6 100644 --- a/src/base/ops.rs +++ b/src/base/ops.rs @@ -5,7 +5,7 @@ use std::ops::{ Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign, }; -use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub}; +use alga::general::{Complex, ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub}; use base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR}; use base::constraint::{ @@ -760,6 +760,25 @@ where } } +// XXX: avoid code duplication. +impl> Matrix { + /// Returns the absolute value of the component with the largest absolute value. + #[inline] + pub fn camax(&self) -> N::Real { + let mut max = N::Real::zero(); + + for e in self.iter() { + let ae = e.asum(); + + if ae > max { + max = ae; + } + } + + max + } +} + impl> Matrix { /// Returns the absolute value of the component with the largest absolute value. #[inline] diff --git a/src/base/properties.rs b/src/base/properties.rs index 7e501575..a511c0f8 100644 --- a/src/base/properties.rs +++ b/src/base/properties.rs @@ -2,7 +2,7 @@ use approx::RelativeEq; use num::{One, Zero}; -use alga::general::{ClosedAdd, ClosedMul, Real}; +use alga::general::{ClosedAdd, ClosedMul, Real, Complex}; use base::allocator::Allocator; use base::dimension::{Dim, DimMin}; @@ -82,20 +82,23 @@ impl> Matrix { true } +} +impl> Matrix { /// Checks that `Mᵀ × M = Id`. /// /// In this definition `Id` is approximately equal to the identity matrix with a relative error /// equal to `eps`. #[inline] pub fn is_orthogonal(&self, eps: N::Epsilon) -> bool - where - N: Zero + One + ClosedAdd + ClosedMul + RelativeEq, - S: Storage, - N::Epsilon: Copy, - DefaultAllocator: Allocator, + where + N: Zero + One + ClosedAdd + ClosedMul + RelativeEq, + S: Storage, + N::Epsilon: Copy, + DefaultAllocator: Allocator + Allocator, { - (self.tr_mul(self)).is_identity(eps) + // FIXME: add a conjugate-transpose-mul + (self.conjugate().tr_mul(self)).is_identity(eps) } } diff --git a/src/geometry/reflection.rs b/src/geometry/reflection.rs index 6b668c6f..ac63b7da 100644 --- a/src/geometry/reflection.rs +++ b/src/geometry/reflection.rs @@ -1,4 +1,4 @@ -use alga::general::Real; +use alga::general::Complex; use base::allocator::Allocator; use base::constraint::{AreMultipliable, DimEq, SameNumberOfRows, ShapeConstraint}; use base::{DefaultAllocator, Matrix, Scalar, Unit, Vector}; @@ -13,7 +13,7 @@ pub struct Reflection> { bias: N, } -impl> Reflection { +impl> Reflection { /// Creates a new reflection wrt the plane orthogonal to the given axis and bias. /// /// The bias is the position of the plane on the axis. In particular, a bias equal to zero @@ -21,7 +21,7 @@ impl> Reflection { pub fn new(axis: Unit>, bias: N) -> Self { Self { axis: axis.into_inner(), - bias: bias, + bias, } } @@ -35,7 +35,7 @@ impl> Reflection { D: DimName, DefaultAllocator: Allocator, { - let bias = pt.coords.dot(axis.as_ref()); + let bias = axis.cdot(&pt.coords); Self::new(axis, bias) } @@ -56,7 +56,7 @@ impl> Reflection { // dot product, and then mutably. Somehow, this allows significantly // better optimizations of the dot product from the compiler. let m_two: N = ::convert(-2.0f64); - let factor = (rhs.column(i).dot(&self.axis) - self.bias) * m_two; + let factor = (self.axis.cdot(&rhs.column(i)) - self.bias) * m_two; rhs.column_mut(i).axpy(factor, &self.axis, N::one()); } } @@ -70,8 +70,9 @@ impl> Reflection { S2: StorageMut, S3: StorageMut, ShapeConstraint: DimEq + AreMultipliable, + DefaultAllocator: Allocator { - rhs.mul_to(&self.axis, work); + rhs.mul_to(&self.axis.conjugate(), work); if !self.bias.is_zero() { work.add_scalar_mut(-self.bias); diff --git a/src/linalg/bidiagonal.rs b/src/linalg/bidiagonal.rs index 3e73c40f..a44be398 100644 --- a/src/linalg/bidiagonal.rs +++ b/src/linalg/bidiagonal.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::Real; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN}; use constraint::{DimEq, ShapeConstraint}; @@ -38,7 +38,7 @@ use linalg::householder; )) )] #[derive(Clone, Debug)] -pub struct Bidiagonal, C: Dim> +pub struct Bidiagonal, C: Dim> where DimMinimum: DimSub, DefaultAllocator: Allocator @@ -55,7 +55,7 @@ where upper_diagonal: bool, } -impl, C: Dim> Copy for Bidiagonal +impl, C: Dim> Copy for Bidiagonal where DimMinimum: DimSub, DefaultAllocator: Allocator @@ -66,7 +66,7 @@ where VectorN, U1>>: Copy, {} -impl, C: Dim> Bidiagonal +impl, C: Dim> Bidiagonal where DimMinimum: DimSub, DefaultAllocator: Allocator @@ -273,7 +273,7 @@ where } } -// impl + DimSub> Bidiagonal +// impl + DimSub> Bidiagonal // where DefaultAllocator: Allocator + // Allocator { // /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. @@ -346,7 +346,7 @@ where // // } // } -impl, C: Dim, S: Storage> Matrix +impl, C: Dim, S: Storage> Matrix where DimMinimum: DimSub, DefaultAllocator: Allocator diff --git a/src/linalg/cholesky.rs b/src/linalg/cholesky.rs index c1fd7b85..96f533e4 100644 --- a/src/linalg/cholesky.rs +++ b/src/linalg/cholesky.rs @@ -1,7 +1,8 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::Real; +use num::Zero; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix}; @@ -26,19 +27,19 @@ use storage::{Storage, StorageMut}; )) )] #[derive(Clone, Debug)] -pub struct Cholesky +pub struct Cholesky where DefaultAllocator: Allocator { chol: MatrixN, } -impl Copy for Cholesky +impl Copy for Cholesky where DefaultAllocator: Allocator, MatrixN: Copy, {} -impl> Cholesky +impl> Cholesky where DefaultAllocator: Allocator { /// Attempts to compute the Cholesky decomposition of `matrix`. @@ -62,7 +63,7 @@ where DefaultAllocator: Allocator } let diag = unsafe { *matrix.get_unchecked((j, j)) }; - if diag > N::zero() { + if diag.real() > N::Real::zero() { let denom = diag.sqrt(); unsafe { *matrix.get_unchecked_mut((j, j)) = denom; @@ -144,7 +145,7 @@ where DefaultAllocator: Allocator } } -impl, S: Storage> SquareMatrix +impl, S: Storage> SquareMatrix where DefaultAllocator: Allocator { /// Attempts to compute the Cholesky decomposition of this matrix. diff --git a/src/linalg/determinant.rs b/src/linalg/determinant.rs index 6229da0e..3b0cb73d 100644 --- a/src/linalg/determinant.rs +++ b/src/linalg/determinant.rs @@ -1,4 +1,4 @@ -use alga::general::Real; +use alga::general::Complex; use base::allocator::Allocator; use base::dimension::DimMin; @@ -7,7 +7,7 @@ use base::{DefaultAllocator, SquareMatrix}; use linalg::LU; -impl, S: Storage> SquareMatrix { +impl, S: Storage> SquareMatrix { /// Computes the matrix determinant. /// /// If the matrix has a dimension larger than 3, an LU decomposition is used. diff --git a/src/linalg/eigen.rs b/src/linalg/eigen.rs index c9fe16e6..dd721f81 100644 --- a/src/linalg/eigen.rs +++ b/src/linalg/eigen.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Serialize, Deserialize}; -use alga::general::Real; +use alga::general::Complex; use num_complex::Complex; use std::cmp; use std::fmt::Display; @@ -17,7 +17,7 @@ use geometry::{Reflection, UnitComplex}; use linalg::householder; use linalg::RealSchur; -/// Eigendecomposition of a matrix with real eigenvalues. +/// Eigendecomposition of a real matrix with real eigenvalues (or complex eigen values for complex matrices). #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", @@ -40,7 +40,7 @@ use linalg::RealSchur; ) )] #[derive(Clone, Debug)] -pub struct RealEigen +pub struct Eigen where DefaultAllocator: Allocator + Allocator, { @@ -48,7 +48,7 @@ where pub eigenvalues: VectorN, } -impl Copy for RealEigen +impl Copy for Eigen where DefaultAllocator: Allocator + Allocator, MatrixN: Copy, @@ -56,7 +56,7 @@ where { } -impl RealEigen +impl Eigen where D: DimSub, // For Hessenberg. ShapeConstraint: DimEq>, // For Hessenberg. @@ -68,8 +68,8 @@ where DefaultAllocator: Allocator, MatrixN: Display, { - /// Computes the eigendecomposition of a diagonalizable matrix with real eigenvalues. - pub fn new(m: MatrixN) -> Option> { + /// Computes the eigendecomposition of a diagonalizable matrix with Complex eigenvalues. + pub fn new(m: MatrixN) -> Option> { assert!( m.is_square(), "Unable to compute the eigendecomposition of a non-square matrix." @@ -80,7 +80,7 @@ where println!("Schur eigenvalues: {}", eigenvalues); - // Check that the eigenvalues are all real. + // Check that the eigenvalues are all Complex. for i in 0..dim - 1 { if !eigenvalues[(i + 1, i)].is_zero() { return None; @@ -112,8 +112,8 @@ where let _ = eigenvectors.column_mut(i).normalize_mut(); } - Some(RealEigen { - eigenvectors: eigenvectors, + Some(Eigen { + eigenvectors, eigenvalues: eigenvalues.diagonal(), }) } diff --git a/src/linalg/full_piv_lu.rs b/src/linalg/full_piv_lu.rs index 962d4d8b..353a5d1e 100644 --- a/src/linalg/full_piv_lu.rs +++ b/src/linalg/full_piv_lu.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::Real; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN}; use constraint::{SameNumberOfRows, ShapeConstraint}; @@ -32,7 +32,7 @@ use linalg::PermutationSequence; )) )] #[derive(Clone, Debug)] -pub struct FullPivLU, C: Dim> +pub struct FullPivLU, C: Dim> where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> { lu: MatrixMN, @@ -40,14 +40,14 @@ where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimu q: PermutationSequence>, } -impl, C: Dim> Copy for FullPivLU +impl, C: Dim> Copy for FullPivLU where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum>, MatrixMN: Copy, PermutationSequence>: Copy, {} -impl, C: Dim> FullPivLU +impl, C: Dim> FullPivLU where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> { /// Computes the LU decomposition with full pivoting of `matrix`. @@ -69,7 +69,7 @@ where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimu } for i in 0..min_nrows_ncols.value() { - let piv = matrix.slice_range(i.., i..).iamax_full(); + let piv = matrix.slice_range(i.., i..).icamax_full(); let row_piv = piv.0 + i; let col_piv = piv.1 + i; let diag = matrix[(row_piv, col_piv)]; @@ -156,7 +156,7 @@ where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimu } } -impl> FullPivLU +impl> FullPivLU where DefaultAllocator: Allocator + Allocator<(usize, usize), D> { /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. @@ -261,7 +261,7 @@ where DefaultAllocator: Allocator + Allocator<(usize, usize), D> } } -impl, C: Dim, S: Storage> Matrix +impl, C: Dim, S: Storage> Matrix where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> { /// Computes the LU decomposition with full pivoting of `matrix`. diff --git a/src/linalg/givens.rs b/src/linalg/givens.rs index 9175bff9..7e6a881e 100644 --- a/src/linalg/givens.rs +++ b/src/linalg/givens.rs @@ -1,36 +1,175 @@ //! Construction of givens rotations. -use alga::general::Real; -use num_complex::Complex; +use alga::general::{Complex, Real}; +use num_complex::Complex as NumComplex; -use base::dimension::U2; -use base::storage::Storage; -use base::Vector; +use base::dimension::{Dim, U2}; +use base::constraint::{ShapeConstraint, DimEq}; +use base::storage::{Storage, StorageMut}; +use base::{Vector, Matrix}; use geometry::UnitComplex; +/// A Givens rotation. +pub struct GivensRotation { + c: N, + s: N +} + +// XXX: remove this /// Computes the rotation `R` required such that the `y` component of `R * v` is zero. /// /// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm /// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`. pub fn cancel_y>(v: &Vector) -> Option<(UnitComplex, N)> { if !v[1].is_zero() { - let c = Complex::new(v[0], -v[1]); + let c = NumComplex::new(v[0], -v[1]); Some(UnitComplex::from_complex_and_get(c)) } else { None } } +// XXX: remove this /// Computes the rotation `R` required such that the `x` component of `R * v` is zero. /// /// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm /// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`. pub fn cancel_x>(v: &Vector) -> Option<(UnitComplex, N)> { if !v[0].is_zero() { - let c = Complex::new(v[1], v[0]); + let c = NumComplex::new(v[1], v[0]); Some(UnitComplex::from_complex_and_get(c)) } else { None } } + + +// Matrix = UnitComplex * Matrix +impl GivensRotation { + /// Initializes a Givens rotation form its non-normalized cosine an sine components. + pub fn new(c: N, s: N) -> Self { + let denom = (c.modulus_squared() + s.modulus_squared()).sqrt(); + Self { + c: c.unscale(denom), + s: s.unscale(denom) + } + } + + /// Initializes a Givens rotation form its non-normalized cosine an sine components. + pub fn try_new(c: N, s: N, eps: N::Real) -> Option { + let denom = (c.modulus_squared() + s.modulus_squared()).sqrt(); + + if denom > eps { + Some(Self { + c: c.unscale(denom), + s: s.unscale(denom) + }) + } else { + None + } + } + + /// Computes the rotation `R` required such that the `y` component of `R * v` is zero. + /// + /// Returns `None` if no rotation is needed (i.e. if `v.y == 0`). Otherwise, this returns the norm + /// of `v` and the rotation `r` such that `R * v = [ |v|, 0.0 ]^t` where `|v|` is the norm of `v`. + pub fn cancel_y>(v: &Vector) -> Option<(Self, N)> { + if !v[1].is_zero() { + let (mod0, sign0) = v[0].to_exp(); + let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt(); + let c = N::from_real(mod0 / denom); + let s = (sign0 * v[1].conjugate()).unscale(-denom); + let r = sign0.scale(denom); + Some((Self { c, s }, r)) + } else { + None + } + } + + /// Computes the rotation `R` required such that the `x` component of `R * v` is zero. + /// + /// Returns `None` if no rotation is needed (i.e. if `v.x == 0`). Otherwise, this returns the norm + /// of `v` and the rotation `r` such that `R * v = [ 0.0, |v| ]^t` where `|v|` is the norm of `v`. + pub fn cancel_x>(v: &Vector) -> Option<(Self, N)> { + if !v[0].is_zero() { + let (mod0, sign0) = v[0].to_exp(); + let denom = (mod0 * mod0 + v[1].modulus_squared()).sqrt(); + let c = N::from_real(mod0 / denom); + let s = (sign0 * v[1].conjugate()).unscale(denom); + let r = sign0.scale(denom); + Some((Self { c, s }, r)) + } else { + None + } + } + + /// The cos part of this roration. + pub fn c(&self) -> N { + self.c + } + + /// The sin part of this roration. + pub fn s(&self) -> N { + self.s + } + + /// The inverse of this givens rotation. + pub fn inverse(&self) -> Self { + Self { c: self.c, s: -self.s.conjugate() } + } + + /// Performs the multiplication `rhs = self * rhs` in-place. + pub fn rotate>( + &self, + rhs: &mut Matrix, + ) where + ShapeConstraint: DimEq, + { + assert_eq!( + rhs.nrows(), + 2, + "Unit complex rotation: the input matrix must have exactly two rows." + ); + let s = self.s; + let c = self.c; + + for j in 0..rhs.ncols() { + unsafe { + let a = *rhs.get_unchecked((0, j)); + let b = *rhs.get_unchecked((1, j)); + + *rhs.get_unchecked_mut((0, j)) = c * a - s.conjugate() * b; + *rhs.get_unchecked_mut((1, j)) = s * a + c.conjugate() * b; + } + } + } + + /// Performs the multiplication `lhs = lhs * self` in-place. + pub fn rotate_rows>( + &self, + lhs: &mut Matrix, + ) where + ShapeConstraint: DimEq, + { + assert_eq!( + lhs.ncols(), + 2, + "Unit complex rotation: the input matrix must have exactly two columns." + ); + let s = self.s; + let c = self.c; + + // FIXME: can we optimize that to iterate on one column at a time ? + for j in 0..lhs.nrows() { + unsafe { + let a = *lhs.get_unchecked((j, 0)); + let b = *lhs.get_unchecked((j, 1)); + + *lhs.get_unchecked_mut((j, 0)) = c * a + s * b; + *lhs.get_unchecked_mut((j, 1)) = -s.conjugate() * a + c.conjugate() * b; + } + } + } +} + diff --git a/src/linalg/hessenberg.rs b/src/linalg/hessenberg.rs index 783055a3..25ab445b 100644 --- a/src/linalg/hessenberg.rs +++ b/src/linalg/hessenberg.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::Real; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN}; use constraint::{DimEq, ShapeConstraint}; @@ -31,21 +31,21 @@ use linalg::householder; )) )] #[derive(Clone, Debug)] -pub struct Hessenberg> +pub struct Hessenberg> where DefaultAllocator: Allocator + Allocator> { hess: MatrixN, subdiag: VectorN>, } -impl> Copy for Hessenberg +impl> Copy for Hessenberg where DefaultAllocator: Allocator + Allocator>, MatrixN: Copy, VectorN>: Copy, {} -impl> Hessenberg +impl> Hessenberg where DefaultAllocator: Allocator + Allocator + Allocator> { /// Computes the Hessenberg decomposition using householder reflections. @@ -137,7 +137,7 @@ where DefaultAllocator: Allocator + Allocator + Allocator, S: Storage> SquareMatrix +impl, S: Storage> SquareMatrix where DefaultAllocator: Allocator + Allocator + Allocator> { /// Computes the Hessenberg decomposition of this matrix using householder reflections. diff --git a/src/linalg/householder.rs b/src/linalg/householder.rs index 09c23091..0fe46499 100644 --- a/src/linalg/householder.rs +++ b/src/linalg/householder.rs @@ -1,6 +1,7 @@ //! Construction of householder elementary reflections. -use alga::general::Real; +use num::Zero; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, MatrixMN, MatrixN, Unit, Vector, VectorN}; use dimension::Dim; @@ -15,35 +16,34 @@ use geometry::Reflection; /// `column` after reflection and `false` if no reflection was necessary. #[doc(hidden)] #[inline(always)] -pub fn reflection_axis_mut>( +pub fn reflection_axis_mut>( column: &mut Vector, ) -> (N, bool) { let reflection_sq_norm = column.norm_squared(); - let mut reflection_norm = reflection_sq_norm.sqrt(); + let reflection_norm = reflection_sq_norm.sqrt(); let factor; - unsafe { - if *column.vget_unchecked(0) > N::zero() { - reflection_norm = -reflection_norm; - } + let scaled_norm; - factor = - (reflection_sq_norm - *column.vget_unchecked(0) * reflection_norm) * ::convert(2.0); - *column.vget_unchecked_mut(0) -= reflection_norm; - } + unsafe { + let (modulus, exp) = column.vget_unchecked(0).to_exp(); + scaled_norm = exp.scale(reflection_norm); + factor = (reflection_sq_norm + modulus * reflection_norm) * ::convert(2.0); + *column.vget_unchecked_mut(0) += scaled_norm; + }; if !factor.is_zero() { - *column /= factor.sqrt(); - (reflection_norm, true) + column.unscale_mut(factor.sqrt()); + (-scaled_norm, true) } else { - (reflection_norm, false) + (-scaled_norm, false) } } /// Uses an householder reflection to zero out the `icol`-th column, starting with the `shift + 1`-th /// subdiagonal element. #[doc(hidden)] -pub fn clear_column_unchecked( +pub fn clear_column_unchecked( matrix: &mut MatrixMN, diag_elt: &mut N, icol: usize, @@ -70,7 +70,7 @@ pub fn clear_column_unchecked( /// Uses an hoseholder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th /// superdiagonal element. #[doc(hidden)] -pub fn clear_row_unchecked( +pub fn clear_row_unchecked( matrix: &mut MatrixMN, diag_elt: &mut N, axis_packed: &mut VectorN, @@ -94,7 +94,7 @@ pub fn clear_row_unchecked( &mut work.rows_range_mut(irow + 1..), ); top.columns_range_mut(irow + shift..) - .tr_copy_from(refl.axis()); + .tr_copy_from(&refl.axis()); } else { top.columns_range_mut(irow + shift..).tr_copy_from(&axis); } @@ -104,7 +104,7 @@ pub fn clear_row_unchecked( /// the lower-diagonal element of the given matrix. /// matrices. #[doc(hidden)] -pub fn assemble_q(m: &MatrixN) -> MatrixN +pub fn assemble_q(m: &MatrixN) -> MatrixN where DefaultAllocator: Allocator { assert!(m.is_square()); let dim = m.data.shape().0; diff --git a/src/linalg/inverse.rs b/src/linalg/inverse.rs index 5748900f..f2ccd3e6 100644 --- a/src/linalg/inverse.rs +++ b/src/linalg/inverse.rs @@ -1,4 +1,4 @@ -use alga::general::Real; +use alga::general::Complex; use base::allocator::Allocator; use base::dimension::Dim; @@ -7,7 +7,7 @@ use base::{DefaultAllocator, MatrixN, SquareMatrix}; use linalg::lu; -impl> SquareMatrix { +impl> SquareMatrix { /// Attempts to invert this matrix. #[inline] pub fn try_inverse(self) -> Option> @@ -21,7 +21,7 @@ impl> SquareMatrix { } } -impl> SquareMatrix { +impl> SquareMatrix { /// Attempts to invert this matrix in-place. Returns `false` and leaves `self` untouched if /// inversion fails. #[inline] @@ -115,7 +115,7 @@ impl> SquareMatrix { } // NOTE: this is an extremely efficient, loop-unrolled matrix inverse from MESA (MIT licensed). -fn do_inverse4>( +fn do_inverse4>( m: &MatrixN, out: &mut SquareMatrix, ) -> bool diff --git a/src/linalg/lu.rs b/src/linalg/lu.rs index 67fae23f..7e279227 100644 --- a/src/linalg/lu.rs +++ b/src/linalg/lu.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::{Field, Real}; +use alga::general::{Field, Complex}; use allocator::{Allocator, Reallocator}; use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar}; use constraint::{SameNumberOfRows, ShapeConstraint}; @@ -32,14 +32,14 @@ use linalg::PermutationSequence; )) )] #[derive(Clone, Debug)] -pub struct LU, C: Dim> +pub struct LU, C: Dim> where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> { lu: MatrixMN, p: PermutationSequence>, } -impl, C: Dim> Copy for LU +impl, C: Dim> Copy for LU where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum>, MatrixMN: Copy, @@ -49,7 +49,7 @@ where /// Performs a LU decomposition to overwrite `out` with the inverse of `matrix`. /// /// If `matrix` is not invertible, `false` is returned and `out` may contain invalid data. -pub fn try_invert_to( +pub fn try_invert_to( mut matrix: MatrixN, out: &mut Matrix, ) -> bool @@ -66,7 +66,7 @@ where out.fill_with_identity(); for i in 0..dim { - let piv = matrix.slice_range(i.., i).iamax() + i; + let piv = matrix.slice_range(i.., i).icamax() + i; let diag = matrix[(piv, i)]; if diag.is_zero() { @@ -86,7 +86,7 @@ where matrix.solve_upper_triangular_mut(out) } -impl, C: Dim> LU +impl, C: Dim> LU where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> { /// Computes the LU decomposition with partial (row) pivoting of `matrix`. @@ -101,7 +101,7 @@ where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimu } for i in 0..min_nrows_ncols.value() { - let piv = matrix.slice_range(i.., i).iamax() + i; + let piv = matrix.slice_range(i.., i).icamax() + i; let diag = matrix[(piv, i)]; if diag.is_zero() { @@ -197,7 +197,7 @@ where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimu } } -impl> LU +impl> LU where DefaultAllocator: Allocator + Allocator<(usize, usize), D> { /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. @@ -368,7 +368,7 @@ pub fn gauss_step_swap( } } -impl, C: Dim, S: Storage> Matrix +impl, C: Dim, S: Storage> Matrix where DefaultAllocator: Allocator + Allocator<(usize, usize), DimMinimum> { /// Computes the LU decomposition with partial (row) pivoting of `matrix`. diff --git a/src/linalg/qr.rs b/src/linalg/qr.rs index 81f72269..023a5042 100644 --- a/src/linalg/qr.rs +++ b/src/linalg/qr.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::Real; +use alga::general::Complex; use allocator::{Allocator, Reallocator}; use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Unit, VectorN}; use constraint::{SameNumberOfRows, ShapeConstraint}; @@ -32,21 +32,21 @@ use linalg::householder; )) )] #[derive(Clone, Debug)] -pub struct QR, C: Dim> +pub struct QR, C: Dim> where DefaultAllocator: Allocator + Allocator> { qr: MatrixMN, diag: VectorN>, } -impl, C: Dim> Copy for QR +impl, C: Dim> Copy for QR where DefaultAllocator: Allocator + Allocator>, MatrixMN: Copy, VectorN>: Copy, {} -impl, C: Dim> QR +impl, C: Dim> QR where DefaultAllocator: Allocator + Allocator + Allocator> { /// Computes the QR decomposition using householder reflections. @@ -162,7 +162,7 @@ where DefaultAllocator: Allocator + Allocator + Allocator> QR +impl> QR where DefaultAllocator: Allocator + Allocator { /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined. @@ -294,7 +294,7 @@ where DefaultAllocator: Allocator + Allocator // } } -impl, C: Dim, S: Storage> Matrix +impl, C: Dim, S: Storage> Matrix where DefaultAllocator: Allocator + Allocator + Allocator> { /// Computes the QR decomposition of this matrix. diff --git a/src/linalg/schur.rs b/src/linalg/schur.rs index 0d425087..fa7e1736 100644 --- a/src/linalg/schur.rs +++ b/src/linalg/schur.rs @@ -1,8 +1,9 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::Real; -use num_complex::Complex; +use approx::AbsDiffEq; +use alga::general::{Complex, Real}; +use num_complex::Complex as NumComplex; use std::cmp; use allocator::Allocator; @@ -14,6 +15,7 @@ use constraint::{DimEq, ShapeConstraint}; use geometry::{Reflection, UnitComplex}; use linalg::householder; use linalg::Hessenberg; +use linalg::givens::GivensRotation; /// Real Schur decomposition of a square matrix. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] @@ -32,20 +34,20 @@ use linalg::Hessenberg; )) )] #[derive(Clone, Debug)] -pub struct RealSchur +pub struct RealSchur where DefaultAllocator: Allocator { q: MatrixN, t: MatrixN, } -impl Copy for RealSchur +impl Copy for RealSchur where DefaultAllocator: Allocator, MatrixN: Copy, {} -impl RealSchur +impl RealSchur where D: DimSub, // For Hessenberg. ShapeConstraint: DimEq>, // For Hessenberg. @@ -56,7 +58,7 @@ where { /// Computes the Schur decomposition of a square matrix. pub fn new(m: MatrixN) -> Self { - Self::try_new(m, N::default_epsilon(), 0).unwrap() + Self::try_new(m, N::Real::default_epsilon(), 0).unwrap() } /// Attempts to compute the Schur decomposition of a square matrix. @@ -70,7 +72,7 @@ where /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// continues indefinitely until convergence. - pub fn try_new(m: MatrixN, eps: N, max_niter: usize) -> Option { + pub fn try_new(m: MatrixN, eps: N::Real, max_niter: usize) -> Option { let mut work = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) }; Self::do_decompose(m, &mut work, eps, max_niter, true).map(|(q, t)| RealSchur { @@ -82,7 +84,7 @@ where fn do_decompose( mut m: MatrixN, work: &mut VectorN, - eps: N, + eps: N::Real, max_niter: usize, compute_q: bool, ) -> Option<(Option>, MatrixN)> @@ -111,8 +113,8 @@ where return decompose_2x2(m, compute_q); } - let amax_m = m.amax(); - m /= amax_m; + let amax_m = m.camax(); + m.unscale_mut(amax_m); let hess = Hessenberg::new_with_workspace(m, work); let mut q; @@ -259,7 +261,7 @@ where } } - t *= amax_m; + t.scale_mut(amax_m); Some((q, t)) } @@ -289,8 +291,9 @@ where } /// Computes the complex eigenvalues of the decomposed matrix. - fn do_complex_eigenvalues(t: &MatrixN, out: &mut VectorN, D>) - where DefaultAllocator: Allocator, D> { + fn do_complex_eigenvalues(t: &MatrixN, out: &mut VectorN, D>) + where N: Real, + DefaultAllocator: Allocator, D> { let dim = t.nrows(); let mut m = 0; @@ -298,7 +301,7 @@ where let n = m + 1; if t[(n, m)].is_zero() { - out[m] = Complex::new(t[(m, m)], N::zero()); + out[m] = NumComplex::new(t[(m, m)], N::zero()); m += 1; } else { // Solve the 2x2 eigenvalue subproblem. @@ -313,21 +316,21 @@ where // All 2x2 blocks have negative discriminant because we already decoupled those // with positive eigenvalues.. - let sqrt_discr = Complex::new(N::zero(), (-discr).sqrt()); + let sqrt_discr = NumComplex::new(N::zero(), (-discr).sqrt()); - out[m] = Complex::new(tra * ::convert(0.5), N::zero()) + sqrt_discr; - out[m + 1] = Complex::new(tra * ::convert(0.5), N::zero()) - sqrt_discr; + out[m] = NumComplex::new(tra * ::convert(0.5), N::zero()) + sqrt_discr; + out[m + 1] = NumComplex::new(tra * ::convert(0.5), N::zero()) - sqrt_discr; m += 2; } } if m == dim - 1 { - out[m] = Complex::new(t[(m, m)], N::zero()); + out[m] = NumComplex::new(t[(m, m)], N::zero()); } } - fn delimit_subproblem(t: &mut MatrixN, eps: N, end: usize) -> (usize, usize) + fn delimit_subproblem(t: &mut MatrixN, eps: N::Real, end: usize) -> (usize, usize) where D: DimSub, DefaultAllocator: Allocator>, @@ -337,7 +340,7 @@ where while n > 0 { let m = n - 1; - if t[(n, m)].abs() <= eps * (t[(n, n)].abs() + t[(m, m)].abs()) { + if t[(n, m)].modulus() <= eps * (t[(n, n)].modulus() + t[(m, m)].modulus()) { t[(n, m)] = N::zero(); } else { break; @@ -356,7 +359,7 @@ where let off_diag = t[(new_start, m)]; if off_diag.is_zero() - || off_diag.abs() <= eps * (t[(new_start, new_start)].abs() + t[(m, m)].abs()) + || off_diag.modulus() <= eps * (t[(new_start, new_start)].modulus() + t[(m, m)].modulus()) { t[(new_start, m)] = N::zero(); break; @@ -387,15 +390,16 @@ where } /// Computes the complex eigenvalues of the decomposed matrix. - pub fn complex_eigenvalues(&self) -> VectorN, D> - where DefaultAllocator: Allocator, D> { + pub fn complex_eigenvalues(&self) -> VectorN, D> + where N: Real, + DefaultAllocator: Allocator, D> { let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) }; Self::do_complex_eigenvalues(&self.t, &mut out); out } } -fn decompose_2x2( +fn decompose_2x2( mut m: MatrixN, compute_q: bool, ) -> Option<(Option>, MatrixN)> @@ -412,13 +416,12 @@ where rot.rotate_rows(&mut m); if compute_q { - let c = rot.into_inner(); // XXX: we have to build the matrix manually because // rot.to_rotation_matrix().unwrap() causes an ICE. q = Some(MatrixN::from_column_slice_generic( dim, dim, - &[c.re, c.im, -c.im, c.re], + &[rot.c(), rot.s(), -rot.s().conjugate(), rot.c().conjugate()], )); } } @@ -432,7 +435,7 @@ where Some((q, m)) } -fn compute_2x2_eigvals>( +fn compute_2x2_eigvals>( m: &SquareMatrix, ) -> Option<(N, N)> { // Solve the 2x2 eigenvalue subproblem. @@ -447,13 +450,10 @@ fn compute_2x2_eigvals>( let val = (h00 - h11) * ::convert(0.5); let discr = h10 * h01 + val * val; - if discr >= N::zero() { - let sqrt_discr = discr.sqrt(); + discr.try_sqrt().map(|sqrt_discr| { let half_tra = (h00 + h11) * ::convert(0.5); - Some((half_tra + sqrt_discr, half_tra - sqrt_discr)) - } else { - None - } + (half_tra + sqrt_discr, half_tra - sqrt_discr) + }) } // Computes the 2x2 transformation that upper-triangulates a 2x2 matrix with real eigenvalues. @@ -461,9 +461,9 @@ fn compute_2x2_eigvals>( /// /// Returns `None` if the matrix has complex eigenvalues, or is upper-triangular. In both case, /// the basis is the identity. -fn compute_2x2_basis>( +fn compute_2x2_basis>( m: &SquareMatrix, -) -> Option> { +) -> Option> { let h10 = m[(1, 0)]; if h10.is_zero() { @@ -477,19 +477,17 @@ fn compute_2x2_basis>( // NOTE: Choose the one that yields a larger x component. // This is necessary for numerical stability of the normalization of the complex // number. - let basis = if x1.abs() > x2.abs() { - Complex::new(x1, -h10) + if x1.modulus() > x2.modulus() { + Some(GivensRotation::new(x1, -h10)) } else { - Complex::new(x2, -h10) - }; - - Some(UnitComplex::from_complex(basis)) + Some(GivensRotation::new(x2, -h10)) + } } else { None } } -impl> SquareMatrix +impl> SquareMatrix where D: DimSub, // For Hessenberg. ShapeConstraint: DimEq>, // For Hessenberg. @@ -514,7 +512,7 @@ where /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// continues indefinitely until convergence. - pub fn try_real_schur(self, eps: N, max_niter: usize) -> Option> { + pub fn try_real_schur(self, eps: N::Real, max_niter: usize) -> Option> { RealSchur::try_new(self.into_owned(), eps, max_niter) } @@ -546,7 +544,7 @@ where let schur = RealSchur::do_decompose( self.clone_owned(), &mut work, - N::default_epsilon(), + N::Real::default_epsilon(), 0, false, ) @@ -559,9 +557,10 @@ where } /// Computes the eigenvalues of this matrix. - pub fn complex_eigenvalues(&self) -> VectorN, D> + pub fn complex_eigenvalues(&self) -> VectorN, D> // FIXME: add balancing? - where DefaultAllocator: Allocator, D> { + where N: Real, + DefaultAllocator: Allocator, D> { let dim = self.data.shape().0; let mut work = unsafe { VectorN::new_uninitialized_generic(dim, U1) }; diff --git a/src/linalg/solve.rs b/src/linalg/solve.rs index 4d2d103f..b43b44df 100644 --- a/src/linalg/solve.rs +++ b/src/linalg/solve.rs @@ -1,4 +1,4 @@ -use alga::general::Real; +use alga::general::Complex; use base::allocator::Allocator; use base::constraint::{SameNumberOfRows, ShapeConstraint}; @@ -6,7 +6,7 @@ use base::dimension::{Dim, U1}; use base::storage::{Storage, StorageMut}; use base::{DefaultAllocator, Matrix, MatrixMN, SquareMatrix, Vector}; -impl> SquareMatrix { +impl> SquareMatrix { /// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only /// the lower-triangular part of `self` (including the diagonal) is considered not-zero. #[inline] diff --git a/src/linalg/symmetric_eigen.rs b/src/linalg/symmetric_eigen.rs index cd455b7c..8d16232f 100644 --- a/src/linalg/symmetric_eigen.rs +++ b/src/linalg/symmetric_eigen.rs @@ -1,17 +1,19 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use num_complex::Complex; +use num::Zero; +use num_complex::Complex as NumComplex; +use approx::AbsDiffEq; use std::ops::MulAssign; -use alga::general::Real; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, Matrix2, MatrixN, SquareMatrix, Vector2, VectorN}; use dimension::{Dim, DimDiff, DimSub, U1, U2}; use storage::Storage; use geometry::UnitComplex; -use linalg::givens; +use linalg::givens::GivensRotation; use linalg::SymmetricTridiagonal; /// Eigendecomposition of a symmetric matrix. @@ -35,7 +37,7 @@ use linalg::SymmetricTridiagonal; )) )] #[derive(Clone, Debug)] -pub struct SymmetricEigen +pub struct SymmetricEigen where DefaultAllocator: Allocator + Allocator { /// The eigenvectors of the decomposed matrix. @@ -45,14 +47,14 @@ where DefaultAllocator: Allocator + Allocator pub eigenvalues: VectorN, } -impl Copy for SymmetricEigen +impl Copy for SymmetricEigen where DefaultAllocator: Allocator + Allocator, MatrixN: Copy, VectorN: Copy, {} -impl SymmetricEigen +impl SymmetricEigen where DefaultAllocator: Allocator + Allocator { /// Computes the eigendecomposition of the given symmetric matrix. @@ -63,7 +65,7 @@ where DefaultAllocator: Allocator + Allocator D: DimSub, DefaultAllocator: Allocator>, { - Self::try_new(m, N::default_epsilon(), 0).unwrap() + Self::try_new(m, N::Real::default_epsilon(), 0).unwrap() } /// Computes the eigendecomposition of the given symmetric matrix with user-specified @@ -77,7 +79,7 @@ where DefaultAllocator: Allocator + Allocator /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// continues indefinitely until convergence. - pub fn try_new(m: MatrixN, eps: N, max_niter: usize) -> Option + pub fn try_new(m: MatrixN, eps: N::Real, max_niter: usize) -> Option where D: DimSub, DefaultAllocator: Allocator>, @@ -91,7 +93,7 @@ where DefaultAllocator: Allocator + Allocator fn do_decompose( mut m: MatrixN, eigenvectors: bool, - eps: N, + eps: N::Real, max_niter: usize, ) -> Option<(VectorN, Option>)> where @@ -103,11 +105,10 @@ where DefaultAllocator: Allocator + Allocator "Unable to compute the eigendecomposition of a non-square matrix." ); let dim = m.nrows(); - - let m_amax = m.amax(); + let m_amax = m.camax(); if !m_amax.is_zero() { - m /= m_amax; + m.unscale_mut(m_amax); } let (mut q, mut diag, mut off_diag); @@ -125,7 +126,7 @@ where DefaultAllocator: Allocator + Allocator } if dim == 1 { - diag *= m_amax; + diag.scale_mut(m_amax); return Some((diag, q)); } @@ -147,7 +148,7 @@ where DefaultAllocator: Allocator + Allocator for i in start..n { let j = i + 1; - if let Some((rot, norm)) = givens::cancel_y(&v) { + if let Some((rot, norm)) = GivensRotation::cancel_y(&v) { if i > start { // Not the first iteration. off_diag[i - 1] = norm; @@ -157,9 +158,9 @@ where DefaultAllocator: Allocator + Allocator let mjj = diag[j]; let mij = off_diag[i]; - let cc = rot.cos_angle() * rot.cos_angle(); - let ss = rot.sin_angle() * rot.sin_angle(); - let cs = rot.cos_angle() * rot.sin_angle(); + let cc = rot.c() * rot.c(); + let ss = rot.s() * rot.s(); + let cs = rot.c() * rot.s(); let b = cs * ::convert(2.0) * mij; @@ -169,8 +170,8 @@ where DefaultAllocator: Allocator + Allocator if i != n - 1 { v.x = off_diag[i]; - v.y = -rot.sin_angle() * off_diag[i + 1]; - off_diag[i + 1] *= rot.cos_angle(); + v.y = -rot.s() * off_diag[i + 1]; + off_diag[i + 1] *= rot.c(); } if let Some(ref mut q) = q { @@ -181,7 +182,7 @@ where DefaultAllocator: Allocator + Allocator } } - if off_diag[m].abs() <= eps * (diag[m].abs() + diag[n].abs()) { + if off_diag[m].modulus() <= eps * (diag[m].modulus() + diag[n].modulus()) { end -= 1; } } else if subdim == 2 { @@ -198,8 +199,7 @@ where DefaultAllocator: Allocator + Allocator diag[start + 1] = eigvals[1]; if let Some(ref mut q) = q { - if let Some(basis) = basis.try_normalize(eps) { - let rot = UnitComplex::new_unchecked(Complex::new(basis.x, basis.y)); + if let Some(rot) = GivensRotation::try_new(basis.x, basis.y, eps) { rot.rotate_rows(&mut q.fixed_columns_mut::(start)); } } @@ -219,7 +219,7 @@ where DefaultAllocator: Allocator + Allocator } } - diag *= m_amax; + diag.scale_mut(m_amax); Some((diag, q)) } @@ -228,7 +228,7 @@ where DefaultAllocator: Allocator + Allocator diag: &VectorN, off_diag: &mut VectorN>, end: usize, - eps: N, + eps: N::Real, ) -> (usize, usize) where D: DimSub, @@ -239,7 +239,7 @@ where DefaultAllocator: Allocator + Allocator while n > 0 { let m = n - 1; - if off_diag[m].abs() > eps * (diag[n].abs() + diag[m].abs()) { + if off_diag[m].modulus() > eps * (diag[n].modulus() + diag[m].modulus()) { break; } @@ -255,7 +255,7 @@ where DefaultAllocator: Allocator + Allocator let m = new_start - 1; if off_diag[m].is_zero() - || off_diag[m].abs() <= eps * (diag[new_start].abs() + diag[m].abs()) + || off_diag[m].modulus() <= eps * (diag[new_start].modulus() + diag[m].modulus()) { off_diag[m] = N::zero(); break; @@ -276,7 +276,7 @@ where DefaultAllocator: Allocator + Allocator let val = self.eigenvalues[i]; u_t.column_mut(i).mul_assign(val); } - u_t.transpose_mut(); + u_t.conjugate_transpose_mut(); &self.eigenvectors * u_t } } @@ -287,7 +287,7 @@ where DefaultAllocator: Allocator + Allocator /// The inputs are interpreted as the 2x2 matrix: /// tmm tmn /// tmn tnn -pub fn wilkinson_shift(tmm: N, tnn: N, tmn: N) -> N { +pub fn wilkinson_shift(tmm: N, tnn: N, tmn: N) -> N { let sq_tmn = tmn * tmn; if !sq_tmn.is_zero() { // We have the guarantee that the denominator won't be zero. @@ -303,7 +303,7 @@ pub fn wilkinson_shift(tmm: N, tnn: N, tmn: N) -> N { * Computations of eigenvalues for symmetric matrices. * */ -impl, S: Storage> SquareMatrix +impl, S: Storage> SquareMatrix where DefaultAllocator: Allocator + Allocator + Allocator> { /// Computes the eigendecomposition of this symmetric matrix. @@ -324,7 +324,7 @@ where DefaultAllocator: Allocator + Allocator + Allocator Option> { + pub fn try_symmetric_eigen(self, eps: N::Real, max_niter: usize) -> Option> { SymmetricEigen::try_new(self.into_owned(), eps, max_niter) } @@ -332,7 +332,7 @@ where DefaultAllocator: Allocator + Allocator + Allocator VectorN { - SymmetricEigen::do_decompose(self.clone_owned(), false, N::default_epsilon(), 0) + SymmetricEigen::do_decompose(self.clone_owned(), false, N::Real::default_epsilon(), 0) .unwrap() .0 } diff --git a/src/linalg/symmetric_tridiagonal.rs b/src/linalg/symmetric_tridiagonal.rs index 2e4108ae..276dc6fb 100644 --- a/src/linalg/symmetric_tridiagonal.rs +++ b/src/linalg/symmetric_tridiagonal.rs @@ -1,7 +1,7 @@ #[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; -use alga::general::Real; +use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, MatrixMN, MatrixN, SquareMatrix, VectorN}; use dimension::{DimDiff, DimSub, U1}; @@ -30,21 +30,21 @@ use linalg::householder; )) )] #[derive(Clone, Debug)] -pub struct SymmetricTridiagonal> +pub struct SymmetricTridiagonal> where DefaultAllocator: Allocator + Allocator> { tri: MatrixN, off_diagonal: VectorN>, } -impl> Copy for SymmetricTridiagonal +impl> Copy for SymmetricTridiagonal where DefaultAllocator: Allocator + Allocator>, MatrixN: Copy, VectorN>: Copy, {} -impl> SymmetricTridiagonal +impl> SymmetricTridiagonal where DefaultAllocator: Allocator + Allocator> { /// Computes the tridiagonalization of the symmetric matrix `m`. @@ -75,17 +75,18 @@ where DefaultAllocator: Allocator + Allocator> if not_zero { let mut p = p.rows_range_mut(i..); - p.gemv_symm(::convert(2.0), &m, &axis, N::zero()); + p.gemv_symm(::convert(2.0), &m, &axis.conjugate(), N::zero()); let dot = axis.dot(&p); - p.axpy(-dot, &axis, N::one()); - m.ger_symm(-N::one(), &p, &axis, N::one()); +// p.axpy(-dot, &axis.conjugate(), N::one()); + m.ger_symm(-N::one(), &p, &axis.conjugate(), N::one()); m.ger_symm(-N::one(), &axis, &p, N::one()); + m.ger_symm(dot * ::convert(2.0), &axis, &axis.conjugate(), N::one()); } } Self { tri: m, - off_diagonal: off_diagonal, + off_diagonal, } } @@ -138,14 +139,14 @@ where DefaultAllocator: Allocator + Allocator> for i in 0..self.off_diagonal.len() { self.tri[(i + 1, i)] = self.off_diagonal[i]; - self.tri[(i, i + 1)] = self.off_diagonal[i]; + self.tri[(i, i + 1)] = self.off_diagonal[i].conjugate(); } - &q * self.tri * q.transpose() + &q * self.tri * q.conjugate_transpose() } } -impl, S: Storage> SquareMatrix +impl, S: Storage> SquareMatrix where DefaultAllocator: Allocator + Allocator> { /// Computes the tridiagonalization of this symmetric matrix. diff --git a/tests/core/helper.rs b/tests/core/helper.rs new file mode 100644 index 00000000..9b9dfa75 --- /dev/null +++ b/tests/core/helper.rs @@ -0,0 +1,54 @@ +// This module implement several methods to fill some +// missing features of num-complex when it comes to randomness. + +use quickcheck::{Arbitrary, Gen}; +use rand::distributions::{Standard, Distribution}; +use rand::Rng; +use num_complex::Complex; +use na::Real; + +#[derive(Copy, Clone, Debug, PartialEq, Eq)] +pub struct RandComplex(pub Complex); + +impl Arbitrary for RandComplex { + #[inline] + fn arbitrary(rng: &mut G) -> Self { + let im = Arbitrary::arbitrary(rng); + let re = Arbitrary::arbitrary(rng); + RandComplex(Complex::new(re, im)) + } +} + +impl Distribution> for Standard + where + Standard: Distribution, +{ + #[inline] + fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> RandComplex { + let re = rng.gen(); + let im = rng.gen(); + RandComplex(Complex::new(re, im)) + } +} + +// This is a wrapper similar to RandComplex, but for non-complex. +// This exists only to make generic tests easier to write. +#[derive(Copy, Clone, Debug, PartialEq, Eq)] +pub struct RandScalar(pub N); + +impl Arbitrary for RandScalar { + #[inline] + fn arbitrary(rng: &mut G) -> Self { + RandScalar(Arbitrary::arbitrary(rng)) + } +} + +impl Distribution> for Standard + where + Standard: Distribution, +{ + #[inline] + fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> RandScalar { + RandScalar(self.sample(rng)) + } +} \ No newline at end of file diff --git a/tests/core/matrix.rs b/tests/core/matrix.rs index 9c6d468a..5ba06f5b 100644 --- a/tests/core/matrix.rs +++ b/tests/core/matrix.rs @@ -1022,7 +1022,7 @@ mod finite_dim_inner_space_tests { * */ #[cfg(feature = "arbitrary")] - fn is_subspace_basis + Display>(vs: &[T]) -> bool { + fn is_subspace_basis + Display>(vs: &[T]) -> bool { for i in 0..vs.len() { // Basis elements must be normalized. if !relative_eq!(vs[i].norm(), 1.0, epsilon = 1.0e-7) { diff --git a/tests/core/mod.rs b/tests/core/mod.rs index 7e1f8591..c53493bd 100644 --- a/tests/core/mod.rs +++ b/tests/core/mod.rs @@ -8,3 +8,7 @@ mod matrix_slice; #[cfg(feature = "mint")] mod mint; mod serde; + + +#[cfg(feature = "arbitrary")] +pub mod helper; \ No newline at end of file diff --git a/tests/geometry/isometry.rs b/tests/geometry/isometry.rs index a0e00272..cf3a4dfa 100644 --- a/tests/geometry/isometry.rs +++ b/tests/geometry/isometry.rs @@ -82,7 +82,7 @@ quickcheck!( r: Rotation2, t: Translation2, v: Vector2, - p: Point2, + p: Point2 ) -> bool { // (rotation × translation) * point = rotation × (translation * point) @@ -120,7 +120,7 @@ quickcheck!( r: Rotation3, t: Translation3, v: Vector3, - p: Point3, + p: Point3 ) -> bool { // (rotation × translation) * point = rotation × (translation * point) @@ -158,7 +158,7 @@ quickcheck!( t: Translation3, v: Vector3, p: Point3, - r: Rotation3, + r: Rotation3 ) -> bool { let iMi = i * i; diff --git a/tests/geometry/similarity.rs b/tests/geometry/similarity.rs index 68b86943..475af976 100644 --- a/tests/geometry/similarity.rs +++ b/tests/geometry/similarity.rs @@ -19,7 +19,7 @@ quickcheck!( fn inverse_is_parts_inversion( t: Translation3, r: UnitQuaternion, - scaling: f64, + scaling: f64 ) -> bool { if relative_eq!(scaling, 0.0) { @@ -33,7 +33,7 @@ quickcheck!( fn multiply_equals_alga_transform( s: Similarity3, v: Vector3, - p: Point3, + p: Point3 ) -> bool { s * v == s.transform_vector(&v) @@ -56,7 +56,7 @@ quickcheck!( t: Translation3, v: Vector3, p: Point3, - scaling: f64, + scaling: f64 ) -> bool { if relative_eq!(scaling, 0.0) { @@ -152,7 +152,7 @@ quickcheck!( uq: UnitQuaternion, t: Translation3, v: Vector3, - p: Point3, + p: Point3 ) -> bool { let sMs = s * s; diff --git a/tests/geometry/unit_complex.rs b/tests/geometry/unit_complex.rs index 88988aa8..46998036 100644 --- a/tests/geometry/unit_complex.rs +++ b/tests/geometry/unit_complex.rs @@ -72,7 +72,7 @@ quickcheck!( uc: UnitComplex, v: Vector2, p: Point2, - r: Rotation2, + r: Rotation2 ) -> bool { let uv = Unit::new_normalize(v); diff --git a/tests/lib.rs b/tests/lib.rs index c32f4066..f6634d0f 100644 --- a/tests/lib.rs +++ b/tests/lib.rs @@ -12,9 +12,10 @@ extern crate num_traits as num; extern crate quickcheck; extern crate rand; extern crate serde_json; +extern crate num_complex; mod core; mod geometry; mod linalg; -#[cfg(feature = "sparse")] -mod sparse; +//#[cfg(feature = "sparse")] +//mod sparse; diff --git a/tests/linalg/bidiagonal.rs b/tests/linalg/bidiagonal.rs index a7d5952f..28b1e3a9 100644 --- a/tests/linalg/bidiagonal.rs +++ b/tests/linalg/bidiagonal.rs @@ -1,9 +1,11 @@ #![cfg(feature = "arbitrary")] use na::{DMatrix, Matrix2, Matrix3x5, Matrix4, Matrix5x3}; +use core::helper::{RandScalar, RandComplex}; quickcheck! { - fn bidiagonal(m: DMatrix) -> bool { + fn bidiagonal(m: DMatrix>) -> bool { + let m = m.map(|e| e.0); if m.len() == 0 { return true; } @@ -17,7 +19,8 @@ quickcheck! { relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } - fn bidiagonal_static_5_3(m: Matrix5x3) -> bool { + fn bidiagonal_static_5_3(m: Matrix5x3>) -> bool { + let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); @@ -27,7 +30,8 @@ quickcheck! { relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } - fn bidiagonal_static_3_5(m: Matrix3x5) -> bool { + fn bidiagonal_static_3_5(m: Matrix3x5>) -> bool { + let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); @@ -37,7 +41,8 @@ quickcheck! { relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } - fn bidiagonal_static_square(m: Matrix4) -> bool { + fn bidiagonal_static_square(m: Matrix4>) -> bool { + let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); @@ -47,7 +52,8 @@ quickcheck! { relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } - fn bidiagonal_static_square_2x2(m: Matrix2) -> bool { + fn bidiagonal_static_square_2x2(m: Matrix2>) -> bool { + let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); diff --git a/tests/linalg/eigen.rs b/tests/linalg/eigen.rs index 36855acf..c44bb098 100644 --- a/tests/linalg/eigen.rs +++ b/tests/linalg/eigen.rs @@ -5,12 +5,13 @@ use na::DMatrix; #[cfg(feature = "arbitrary")] mod quickcheck_tests { use na::{DMatrix, Matrix2, Matrix3, Matrix4}; + use core::helper::{RandScalar, RandComplex}; use std::cmp; quickcheck! { fn symmetric_eigen(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 10)); - let m = DMatrix::::new_random(n, n); + let m = DMatrix::>::new_random(n, n).map(|e| e.0); let eig = m.clone().symmetric_eigen(); let recomp = eig.recompose(); @@ -21,9 +22,9 @@ mod quickcheck_tests { fn symmetric_eigen_singular(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 10)); - let mut m = DMatrix::::new_random(n, n); - m.row_mut(n / 2).fill(0.0); - m.column_mut(n / 2).fill(0.0); + let mut m = DMatrix::>::new_random(n, n).map(|e| e.0); + m.row_mut(n / 2).fill(na::zero()); + m.column_mut(n / 2).fill(na::zero()); let eig = m.clone().symmetric_eigen(); let recomp = eig.recompose(); @@ -32,7 +33,8 @@ mod quickcheck_tests { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) } - fn symmetric_eigen_static_square_4x4(m: Matrix4) -> bool { + fn symmetric_eigen_static_square_4x4(m: Matrix4>) -> bool { + let m = m.map(|e| e.0); let eig = m.symmetric_eigen(); let recomp = eig.recompose(); @@ -41,7 +43,8 @@ mod quickcheck_tests { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) } - fn symmetric_eigen_static_square_3x3(m: Matrix3) -> bool { + fn symmetric_eigen_static_square_3x3(m: Matrix3>) -> bool { + let m = m.map(|e| e.0); let eig = m.symmetric_eigen(); let recomp = eig.recompose(); @@ -50,7 +53,8 @@ mod quickcheck_tests { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5) } - fn symmetric_eigen_static_square_2x2(m: Matrix2) -> bool { + fn symmetric_eigen_static_square_2x2(m: Matrix2>) -> bool { + let m = m.map(|e| e.0); let eig = m.symmetric_eigen(); let recomp = eig.recompose(); diff --git a/tests/linalg/hessenberg.rs b/tests/linalg/hessenberg.rs index 22d62fbf..d9245110 100644 --- a/tests/linalg/hessenberg.rs +++ b/tests/linalg/hessenberg.rs @@ -1,6 +1,7 @@ #![cfg(feature = "arbitrary")] use na::{DMatrix, Matrix2, Matrix4}; +use core::helper::{RandScalar, RandComplex}; use std::cmp; #[test] @@ -14,20 +15,22 @@ fn hessenberg_simple() { quickcheck! { fn hessenberg(n: usize) -> bool { let n = cmp::max(1, cmp::min(n, 50)); - let m = DMatrix::::new_random(n, n); + let m = DMatrix::>::new_random(n, n).map(|e| e.0); let hess = m.clone().hessenberg(); let (p, h) = hess.unpack(); relative_eq!(m, &p * h * p.transpose(), epsilon = 1.0e-7) } - fn hessenberg_static_mat2(m: Matrix2) -> bool { + fn hessenberg_static_mat2(m: Matrix2>) -> bool { + let m = m.map(|e| e.0); let hess = m.hessenberg(); let (p, h) = hess.unpack(); relative_eq!(m, p * h * p.transpose(), epsilon = 1.0e-7) } - fn hessenberg_static(m: Matrix4) -> bool { + fn hessenberg_static(m: Matrix4>) -> bool { + let m = m.map(|e| e.0); let hess = m.hessenberg(); let (p, h) = hess.unpack(); relative_eq!(m, p * h * p.transpose(), epsilon = 1.0e-7) diff --git a/tests/linalg/lu.rs b/tests/linalg/lu.rs index 5069f7e5..cb82731e 100644 --- a/tests/linalg/lu.rs +++ b/tests/linalg/lu.rs @@ -40,114 +40,134 @@ fn lu_simple_with_pivot() { #[cfg(feature = "arbitrary")] mod quickcheck_tests { - use std::cmp; - use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4}; + use core::helper::{RandScalar, RandComplex}; - quickcheck! { - fn lu(m: DMatrix) -> bool { - let mut m = m; - if m.len() == 0 { - m = DMatrix::new_random(1, 1); - } + macro_rules! gen_tests( + ($module: ident, $scalar: ty) => { + mod $module { + use std::cmp; + use na::{DMatrix, Matrix4, Matrix4x3, Matrix5x3, Matrix3x5, DVector, Vector4}; + #[allow(unused_imports)] + use core::helper::{RandScalar, RandComplex}; - let lu = m.clone().lu(); - let (p, l, u) = lu.unpack(); - let mut lu = l * u; - p.inv_permute_rows(&mut lu); + quickcheck! { + fn lu(m: DMatrix<$scalar>) -> bool { + let mut m = m; + if m.len() == 0 { + m = DMatrix::<$scalar>::new_random(1, 1); + } - relative_eq!(m, lu, epsilon = 1.0e-7) - } + let m = m.map(|e| e.0); - fn lu_static_3_5(m: Matrix3x5) -> bool { - let lu = m.lu(); - let (p, l, u) = lu.unpack(); - let mut lu = l * u; - p.inv_permute_rows(&mut lu); + let lu = m.clone().lu(); + let (p, l, u) = lu.unpack(); + let mut lu = l * u; + p.inv_permute_rows(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) - } + relative_eq!(m, lu, epsilon = 1.0e-7) + } - fn lu_static_5_3(m: Matrix5x3) -> bool { - let lu = m.lu(); - let (p, l, u) = lu.unpack(); - let mut lu = l * u; - p.inv_permute_rows(&mut lu); + fn lu_static_3_5(m: Matrix3x5<$scalar>) -> bool { + let m = m.map(|e| e.0); + let lu = m.lu(); + let (p, l, u) = lu.unpack(); + let mut lu = l * u; + p.inv_permute_rows(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) - } + relative_eq!(m, lu, epsilon = 1.0e-7) + } - fn lu_static_square(m: Matrix4) -> bool { - let lu = m.lu(); - let (p, l, u) = lu.unpack(); - let mut lu = l * u; - p.inv_permute_rows(&mut lu); + fn lu_static_5_3(m: Matrix5x3<$scalar>) -> bool { + let m = m.map(|e| e.0); + let lu = m.lu(); + let (p, l, u) = lu.unpack(); + let mut lu = l * u; + p.inv_permute_rows(&mut lu); - relative_eq!(m, lu, epsilon = 1.0e-7) - } + relative_eq!(m, lu, epsilon = 1.0e-7) + } - fn lu_solve(n: usize, nb: usize) -> bool { - if n != 0 && nb != 0 { - let n = cmp::min(n, 50); // To avoid slowing down the test too much. - let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. - let m = DMatrix::::new_random(n, n); + fn lu_static_square(m: Matrix4<$scalar>) -> bool { + let m = m.map(|e| e.0); + let lu = m.lu(); + let (p, l, u) = lu.unpack(); + let mut lu = l * u; + p.inv_permute_rows(&mut lu); - let lu = m.clone().lu(); - let b1 = DVector::new_random(n); - let b2 = DMatrix::new_random(n, nb); + relative_eq!(m, lu, epsilon = 1.0e-7) + } - let sol1 = lu.solve(&b1); - let sol2 = lu.solve(&b2); + fn lu_solve(n: usize, nb: usize) -> bool { + if n != 0 && nb != 0 { + let n = cmp::min(n, 50); // To avoid slowing down the test too much. + let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. + let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); - return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && - (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) - } + let lu = m.clone().lu(); + let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); + let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); - return true; - } + let sol1 = lu.solve(&b1); + let sol2 = lu.solve(&b2); - fn lu_solve_static(m: Matrix4) -> bool { - let lu = m.lu(); - let b1 = Vector4::new_random(); - let b2 = Matrix4x3::new_random(); + return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && + (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) + } - let sol1 = lu.solve(&b1); - let sol2 = lu.solve(&b2); + return true; + } - return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && - (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) - } + fn lu_solve_static(m: Matrix4<$scalar>) -> bool { + let m = m.map(|e| e.0); + let lu = m.lu(); + let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); + let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); - fn lu_inverse(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. - let m = DMatrix::::new_random(n, n); + let sol1 = lu.solve(&b1); + let sol2 = lu.solve(&b2); - let mut l = m.lower_triangle(); - let mut u = m.upper_triangle(); + return (sol1.is_none() || relative_eq!(&m * sol1.unwrap(), b1, epsilon = 1.0e-6)) && + (sol2.is_none() || relative_eq!(&m * sol2.unwrap(), b2, epsilon = 1.0e-6)) + } - // Ensure the matrix is well conditioned for inversion. - l.fill_diagonal(1.0); - u.fill_diagonal(1.0); - let m = l * u; + fn lu_inverse(n: usize) -> bool { + let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. + let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); - let m1 = m.clone().lu().try_inverse().unwrap(); - let id1 = &m * &m1; - let id2 = &m1 * &m; + let mut l = m.lower_triangle(); + let mut u = m.upper_triangle(); - return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5); - } + // Ensure the matrix is well conditioned for inversion. + l.fill_diagonal(na::one()); + u.fill_diagonal(na::one()); + let m = l * u; - fn lu_inverse_static(m: Matrix4) -> bool { - let lu = m.lu(); + let m1 = m.clone().lu().try_inverse().unwrap(); + let id1 = &m * &m1; + let id2 = &m1 * &m; - if let Some(m1) = lu.try_inverse() { - let id1 = &m * &m1; - let id2 = &m1 * &m; + return id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5); + } - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true + fn lu_inverse_static(m: Matrix4<$scalar>) -> bool { + let m = m.map(|e| e.0); + let lu = m.lu(); + + if let Some(m1) = lu.try_inverse() { + let id1 = &m * &m1; + let id2 = &m1 * &m; + + id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) + } + else { + true + } + } + } } } - } + ); + + gen_tests!(complex, RandComplex); + gen_tests!(f64, RandScalar); } diff --git a/tests/linalg/qr.rs b/tests/linalg/qr.rs index d7211623..48b0a8f7 100644 --- a/tests/linalg/qr.rs +++ b/tests/linalg/qr.rs @@ -1,112 +1,133 @@ #![cfg(feature = "arbitrary")] -use na::{DMatrix, DVector, Matrix3x5, Matrix4, Matrix4x3, Matrix5x3, Vector4}; -use std::cmp; +use core::helper::{RandScalar, RandComplex}; -quickcheck! { - fn qr(m: DMatrix) -> bool { - let qr = m.clone().qr(); - let q = qr.q(); - let r = qr.r(); +macro_rules! gen_tests( + ($module: ident, $scalar: ty) => { + mod $module { + use na::{DMatrix, DVector, Matrix3x5, Matrix4, Matrix4x3, Matrix5x3, Vector4}; + use std::cmp; + use core::helper::{RandScalar, RandComplex}; - relative_eq!(m, &q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) - } + quickcheck! { + fn qr(m: DMatrix<$scalar>) -> bool { + let m = m.map(|e| e.0); + let qr = m.clone().qr(); + let q = qr.q(); + let r = qr.r(); - fn qr_static_5_3(m: Matrix5x3) -> bool { - let qr = m.qr(); - let q = qr.q(); - let r = qr.r(); + println!("m: {}", m); + println!("qr: {}", &q * &r); - relative_eq!(m, q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) - } + relative_eq!(m, &q * r, epsilon = 1.0e-7) && + q.is_orthogonal(1.0e-7) + } - fn qr_static_3_5(m: Matrix3x5) -> bool { - let qr = m.qr(); - let q = qr.q(); - let r = qr.r(); + fn qr_static_5_3(m: Matrix5x3<$scalar>) -> bool { + let m = m.map(|e| e.0); + let qr = m.qr(); + let q = qr.q(); + let r = qr.r(); - relative_eq!(m, q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) - } + relative_eq!(m, q * r, epsilon = 1.0e-7) && + q.is_orthogonal(1.0e-7) + } - fn qr_static_square(m: Matrix4) -> bool { - let qr = m.qr(); - let q = qr.q(); - let r = qr.r(); + fn qr_static_3_5(m: Matrix3x5<$scalar>) -> bool { + let m = m.map(|e| e.0); + let qr = m.qr(); + let q = qr.q(); + let r = qr.r(); - println!("{}{}{}{}", q, r, q * r, m); + relative_eq!(m, q * r, epsilon = 1.0e-7) && + q.is_orthogonal(1.0e-7) + } - relative_eq!(m, q * r, epsilon = 1.0e-7) && - q.is_orthogonal(1.0e-7) - } + fn qr_static_square(m: Matrix4<$scalar>) -> bool { + let m = m.map(|e| e.0); + let qr = m.qr(); + let q = qr.q(); + let r = qr.r(); - fn qr_solve(n: usize, nb: usize) -> bool { - if n != 0 && nb != 0 { - let n = cmp::min(n, 50); // To avoid slowing down the test too much. - let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. - let m = DMatrix::::new_random(n, n); + println!("{}{}{}{}", q, r, q * r, m); - let qr = m.clone().qr(); - let b1 = DVector::new_random(n); - let b2 = DMatrix::new_random(n, nb); + relative_eq!(m, q * r, epsilon = 1.0e-7) && + q.is_orthogonal(1.0e-7) + } - if qr.is_invertible() { - let sol1 = qr.solve(&b1).unwrap(); - let sol2 = qr.solve(&b2).unwrap(); + fn qr_solve(n: usize, nb: usize) -> bool { + if n != 0 && nb != 0 { + let n = cmp::min(n, 50); // To avoid slowing down the test too much. + let nb = cmp::min(nb, 50); // To avoid slowing down the test too much. + let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); - return relative_eq!(&m * sol1, b1, epsilon = 1.0e-6) && - relative_eq!(&m * sol2, b2, epsilon = 1.0e-6) + let qr = m.clone().qr(); + let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0); + let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0); + + if qr.is_invertible() { + let sol1 = qr.solve(&b1).unwrap(); + let sol2 = qr.solve(&b2).unwrap(); + + return relative_eq!(&m * sol1, b1, epsilon = 1.0e-6) && + relative_eq!(&m * sol2, b2, epsilon = 1.0e-6) + } + } + + return true; + } + + fn qr_solve_static(m: Matrix4<$scalar>) -> bool { + let m = m.map(|e| e.0); + let qr = m.qr(); + let b1 = Vector4::<$scalar>::new_random().map(|e| e.0); + let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0); + + if qr.is_invertible() { + let sol1 = qr.solve(&b1).unwrap(); + let sol2 = qr.solve(&b2).unwrap(); + + relative_eq!(m * sol1, b1, epsilon = 1.0e-6) && + relative_eq!(m * sol2, b2, epsilon = 1.0e-6) + } + else { + false + } + } + + fn qr_inverse(n: usize) -> bool { + let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. + let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0); + + if let Some(m1) = m.clone().qr().try_inverse() { + let id1 = &m * &m1; + let id2 = &m1 * &m; + + id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) + } + else { + true + } + } + + fn qr_inverse_static(m: Matrix4<$scalar>) -> bool { + let m = m.map(|e| e.0); + let qr = m.qr(); + + if let Some(m1) = qr.try_inverse() { + let id1 = &m * &m1; + let id2 = &m1 * &m; + + id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) + } + else { + true + } + } } } - - return true; } +); - fn qr_solve_static(m: Matrix4) -> bool { - let qr = m.qr(); - let b1 = Vector4::new_random(); - let b2 = Matrix4x3::new_random(); - - if qr.is_invertible() { - let sol1 = qr.solve(&b1).unwrap(); - let sol2 = qr.solve(&b2).unwrap(); - - relative_eq!(m * sol1, b1, epsilon = 1.0e-6) && - relative_eq!(m * sol2, b2, epsilon = 1.0e-6) - } - else { - false - } - } - - fn qr_inverse(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much. - let m = DMatrix::::new_random(n, n); - - if let Some(m1) = m.clone().qr().try_inverse() { - let id1 = &m * &m1; - let id2 = &m1 * &m; - - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true - } - } - - fn qr_inverse_static(m: Matrix4) -> bool { - let qr = m.qr(); - - if let Some(m1) = qr.try_inverse() { - let id1 = &m * &m1; - let id2 = &m1 * &m; - - id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5) - } - else { - true - } - } -} +gen_tests!(complex, RandComplex); +gen_tests!(f64, RandScalar); diff --git a/tests/linalg/tridiagonal.rs b/tests/linalg/tridiagonal.rs index 6db86aef..132edba5 100644 --- a/tests/linalg/tridiagonal.rs +++ b/tests/linalg/tridiagonal.rs @@ -3,12 +3,24 @@ use std::cmp; use na::{DMatrix, Matrix2, Matrix4}; +use core::helper::{RandScalar, RandComplex}; quickcheck! { - fn symm_tridiagonal(n: usize) -> bool { - let n = cmp::max(1, cmp::min(n, 50)); - let m = DMatrix::::new_random(n, n); - let tri = m.clone().symmetric_tridiagonalize(); +// fn symm_tridiagonal(n: usize) -> bool { +// let n = cmp::max(1, cmp::min(n, 50)); +// let m = DMatrix::>::new_random(n, n).map(|e| e.0).hermitian_part(); +// let tri = m.clone().symmetric_tridiagonalize(); +// let recomp = tri.recompose(); +// +// println!("{}{}", m.lower_triangle(), recomp.lower_triangle()); +// +// relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) +// } + + fn symm_tridiagonal_static_square(m: Matrix4>) -> bool { + let m = m.map(|e| e.0).hermitian_part(); + let tri = m.symmetric_tridiagonalize(); + println!("Internal tri: {}{}", tri.internal_tri(), tri.off_diagonal()); let recomp = tri.recompose(); println!("{}{}", m.lower_triangle(), recomp.lower_triangle()); @@ -16,20 +28,11 @@ quickcheck! { relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) } - fn symm_tridiagonal_static_square(m: Matrix4) -> bool { - let tri = m.symmetric_tridiagonalize(); - println!("{}{}", tri.internal_tri(), tri.off_diagonal()); - let recomp = tri.recompose(); - - println!("{}{}", m.lower_triangle(), recomp.lower_triangle()); - - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) - } - - fn symm_tridiagonal_static_square_2x2(m: Matrix2) -> bool { - let tri = m.symmetric_tridiagonalize(); - let recomp = tri.recompose(); - - relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) - } +// fn symm_tridiagonal_static_square_2x2(m: Matrix2>) -> bool { +// let m = m.map(|e| e.0).hermitian_part(); +// let tri = m.symmetric_tridiagonalize(); +// let recomp = tri.recompose(); +// +// relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-7) +// } }