Partial top-level documentation
This commit is contained in:
parent
1fa0de92ae
commit
74cd0283eb
|
@ -1,75 +1,133 @@
|
||||||
//! Sparse matrices and algorithms for nalgebra.
|
//! Sparse matrices and algorithms for [nalgebra](https://www.nalgebra.org).
|
||||||
//!
|
//!
|
||||||
//! TODO: Docs
|
//! This crate extends `nalgebra` with sparse matrix formats and operations on sparse matrices.
|
||||||
//!
|
//!
|
||||||
|
//! ## Goals
|
||||||
|
//! The long-term goals for this crate are listed below.
|
||||||
//!
|
//!
|
||||||
//! ### Planned functionality
|
//! - Provide proven sparse matrix formats in an easy-to-use and idiomatic Rust API that
|
||||||
|
//! naturally integrates with `nalgebra`.
|
||||||
|
//! - Provide additional expert-level APIs for fine-grained control over operations.
|
||||||
|
//! - Integrate well with external sparse matrix libraries.
|
||||||
|
//! - Provide native Rust high-performance routines, including parallel matrix operations.
|
||||||
//!
|
//!
|
||||||
//! Below we list desired functionality. This further needs to be refined into what is needed
|
//! ## Highlighted current features
|
||||||
//! for an initial contribution, and what can be added in future contributions.
|
|
||||||
//!
|
//!
|
||||||
//! - Sparsity pattern type. Functionality:
|
//! - [CSR](csr::CsrMatrix), [CSC](csc::CscMatrix) and [COO](coo::CooMatrix) formats, and
|
||||||
//! - [x] Access to offsets, indices as slices.
|
//! [conversions](`convert`) between them.
|
||||||
//! - [x] Return number of nnz
|
//! - Common arithmetic operations are implemented. See the [`ops`] module.
|
||||||
//! - [x] Access a given lane as a slice of minor indices
|
//! - Sparsity patterns in CSR and CSC matrices are explicitly represented by the
|
||||||
//! - [x] Construct from valid offset + index data
|
//! [SparsityPattern](pattern::SparsityPattern) type, which encodes the invariants of the
|
||||||
//! - [ ] Construct from unsorted (but otherwise valid) offset + index data
|
//! associated index data structures.
|
||||||
//! - [x] Iterate over entries (i, j) in the pattern
|
//! - [proptest strategies](`proptest`) for sparse matrices when the feature
|
||||||
//! - [x] "Disassemble" the sparsity pattern into the raw index data arrays.
|
//! `proptest-support` is enabled.
|
||||||
//! - CSR matrix type. Functionality:
|
//! - [matrixcompare support](https://crates.io/crates/matrixcompare) for effortless
|
||||||
//! - [x] Access to CSR data as slices.
|
//! (approximate) comparison of matrices in test code (requires the `compare` feature).
|
||||||
//! - [x] Return number of nnz
|
|
||||||
//! - [x] Access a given row, which gives convenient access to the data associated
|
|
||||||
//! with a particular row
|
|
||||||
//! - [x] Construct from valid CSR data
|
|
||||||
//! - [ ] Construct from unsorted CSR data
|
|
||||||
//! - [x] Iterate over entries (i, j, v) in the matrix (+mutable).
|
|
||||||
//! - [x] Iterate over rows in the matrix (+ mutable).
|
|
||||||
//! - [x] "Disassemble" the CSR matrix into the raw CSR data arrays.
|
|
||||||
//!
|
//!
|
||||||
//! - CSC matrix type. Functionality:
|
//! ## Current state
|
||||||
//! - [x] Access to CSC data as slices.
|
|
||||||
//! - [x] Return number of nnz
|
|
||||||
//! - [x] Access a given column, which gives convenient access to the data associated
|
|
||||||
//! with a particular column
|
|
||||||
//! - [x] Construct from valid CSC data
|
|
||||||
//! - [ ] Construct from unsorted CSC data
|
|
||||||
//! - [x] Iterate over entries (i, j, v) in the matrix (+mutable).
|
|
||||||
//! - [x] Iterate over rows in the matrix (+ mutable).
|
|
||||||
//! - [x] "Disassemble" the CSC matrix into the raw CSC data arrays.
|
|
||||||
//! - COO matrix type. Functionality:
|
|
||||||
//! - [x] Construct new "empty" COO matrix
|
|
||||||
//! - [x] Construct from triplet arrays.
|
|
||||||
//! - [x] Push new triplets to the matrix.
|
|
||||||
//! - [x] Iterate over triplets.
|
|
||||||
//! - [x] "Disassemble" the COO matrix into its underlying triplet arrays.
|
|
||||||
//! - Format conversion:
|
|
||||||
//! - [x] COO -> Dense
|
|
||||||
//! - [x] CSR -> Dense
|
|
||||||
//! - [x] CSC -> Dense
|
|
||||||
//! - [x] COO -> CSR
|
|
||||||
//! - [x] COO -> CSC
|
|
||||||
//! - [x] CSR -> CSC
|
|
||||||
//! - [x] CSC -> CSR
|
|
||||||
//! - [x] CSR -> COO
|
|
||||||
//! - [x] CSC -> COO
|
|
||||||
//! - [x] Dense -> COO
|
|
||||||
//! - [x] Dense -> CSR
|
|
||||||
//! - [x] Dense -> CSC
|
|
||||||
//! - Arithmetic. In general arithmetic is only implemented between instances of the same format,
|
|
||||||
//! or between dense and instances of a given format. For example, we do not implement
|
|
||||||
//! CSR * CSC, only CSR * CSR and CSC * CSC.
|
|
||||||
//! - CSR:
|
|
||||||
//! - [ ] Dense = CSR * Dense (the other way around is not particularly useful)
|
|
||||||
//! - [ ] CSR = CSR * CSR
|
|
||||||
//! - [ ] CSR = CSR +- CSR
|
|
||||||
//! - [ ] CSR +=/-= CSR
|
|
||||||
//! - COO:
|
|
||||||
//! - [ ] Dense = COO * Dense (sometimes useful for very sparse matrices)
|
|
||||||
//! - CSC:
|
|
||||||
//! - Same as CSR
|
|
||||||
//! - Cholesky factorization (port existing factorization from nalgebra's sparse module)
|
|
||||||
//!
|
//!
|
||||||
|
//! The library is in an early, but usable state. The API has been designed to be extensible,
|
||||||
|
//! but breaking changes will be necessary to implement several planned features. While it is
|
||||||
|
//! backed by an extensive test suite, it has yet to be thoroughly battle-tested in real
|
||||||
|
//! applications. Moreover, the focus so far has been on correctness and API design, with little
|
||||||
|
//! focus on performance. Future improvements will include incremental performance enhancements.
|
||||||
|
//!
|
||||||
|
//! Current limitations:
|
||||||
|
//!
|
||||||
|
//! - Limited or no availability of sparse system solvers.
|
||||||
|
//! - Limited support for complex numbers. Currently only arithmetic operations that do not
|
||||||
|
//! rely on particular properties of complex numbers, such as e.g. conjugation, are
|
||||||
|
//! supported.
|
||||||
|
//! - No integration with external libraries.
|
||||||
|
//!
|
||||||
|
//! # Usage
|
||||||
|
//!
|
||||||
|
//! Add the following to your `Cargo.toml` file:
|
||||||
|
//!
|
||||||
|
//! ```toml
|
||||||
|
//! [dependencies]
|
||||||
|
//! nalgebra_sparse = "0.1"
|
||||||
|
//! ```
|
||||||
|
//!
|
||||||
|
//! # Supported matrix formats
|
||||||
|
//!
|
||||||
|
//! | Format | Notes |
|
||||||
|
//! | ------------------------|--------------------------------------------- |
|
||||||
|
//! | [COO](`coo::CooMatrix`) | Well-suited for matrix construction. <br /> Ill-suited for algebraic operations. |
|
||||||
|
//! | [CSR](`csr::CsrMatrix`) | Immutable sparsity pattern, suitable for algebraic operations. <br /> Fast row access. |
|
||||||
|
//! | [CSC](`csr::CscMatrix`) | Immutable sparsity pattern, suitable for algebraic operations. <br /> Fast column access. |
|
||||||
|
//!
|
||||||
|
//! What format is best to use depends on the application. The most common use case for sparse
|
||||||
|
//! matrices in science is the solution of sparse linear systems. Here we can differentiate between
|
||||||
|
//! two common cases:
|
||||||
|
//!
|
||||||
|
//! - Direct solvers. Typically, direct solvers take their input in CSR or CSC format.
|
||||||
|
//! - Iterative solvers. Many iterative solvers require only matrix-vector products,
|
||||||
|
//! for which the CSR or CSC formats are suitable.
|
||||||
|
//!
|
||||||
|
//! The [COO](coo::CooMatrix) format is primarily intended for matrix construction.
|
||||||
|
//! A common pattern is to use COO for construction, before converting to CSR or CSC for use
|
||||||
|
//! in a direct solver or for computing matrix-vector products in an iterative solver.
|
||||||
|
//! Some high-performance applications might also directly manipulate the CSR and/or CSC
|
||||||
|
//! formats.
|
||||||
|
//!
|
||||||
|
//! # Example: COO -> CSR -> matrix-vector product
|
||||||
|
//!
|
||||||
|
//! ```rust
|
||||||
|
//! use nalgebra_sparse::{coo::CooMatrix, csr::CsrMatrix};
|
||||||
|
//! use nalgebra::{DMatrix, DVector};
|
||||||
|
//! use matrixcompare::assert_matrix_eq;
|
||||||
|
//!
|
||||||
|
//! // The dense representation of the matrix
|
||||||
|
//! let dense = DMatrix::from_row_slice(3, 3,
|
||||||
|
//! &[1.0, 0.0, 3.0,
|
||||||
|
//! 2.0, 0.0, 1.3,
|
||||||
|
//! 0.0, 0.0, 4.1]);
|
||||||
|
//!
|
||||||
|
//! // Build the equivalent COO representation. We only add the non-zero values
|
||||||
|
//! let mut coo = CooMatrix::new(3, 3);
|
||||||
|
//! // We can add elements in any order. For clarity, we do so in row-major order here.
|
||||||
|
//! coo.push(0, 0, 1.0);
|
||||||
|
//! coo.push(0, 2, 3.0);
|
||||||
|
//! coo.push(1, 0, 2.0);
|
||||||
|
//! coo.push(1, 2, 1.3);
|
||||||
|
//! coo.push(2, 2, 4.1);
|
||||||
|
//!
|
||||||
|
//! // The simplest way to construct a CSR matrix is to first construct a COO matrix, and
|
||||||
|
//! // then convert it to CSR. The `From` trait is implemented for conversions between different
|
||||||
|
//! // sparse matrix types.
|
||||||
|
//! // Alternatively, we can construct a matrix directly from the CSR data.
|
||||||
|
//! // See the docs for CsrMatrix for how to do that.
|
||||||
|
//! let csr = CsrMatrix::from(&coo);
|
||||||
|
//!
|
||||||
|
//! // Let's check that the CSR matrix and the dense matrix represent the same matrix.
|
||||||
|
//! // We can use macros from the `matrixcompare` crate to easily do this, despite the fact that
|
||||||
|
//! // we're comparing across two different matrix formats. Note that these macros are only really
|
||||||
|
//! // appropriate for writing tests, however.
|
||||||
|
//! assert_matrix_eq!(csr, dense);
|
||||||
|
//!
|
||||||
|
//! let x = DVector::from_column_slice(&[1.3, -4.0, 3.5]);
|
||||||
|
//!
|
||||||
|
//! // Compute the matrix-vector product y = A * x. We don't need to specify the type here,
|
||||||
|
//! // but let's just do it to make sure we get what we expect
|
||||||
|
//! let y: DVector<_> = &csr * &x;
|
||||||
|
//!
|
||||||
|
//! // Verify the result with a small element-wise absolute tolerance
|
||||||
|
//! let y_expected = DVector::from_column_slice(&[11.8, 7.15, 14.35]);
|
||||||
|
//! assert_matrix_eq!(y, y_expected, comp = abs, tol = 1e-9);
|
||||||
|
//!
|
||||||
|
//! // The above expression is simple, and gives easy to read code, but if we're doing this in a
|
||||||
|
//! // loop, we'll have to keep allocating new vectors. If we determine that this is a bottleneck,
|
||||||
|
//! // then we can resort to the lower level APIs for more control over the operations
|
||||||
|
//! {
|
||||||
|
//! use nalgebra_sparse::ops::{Op, serial::spmm_csr_dense};
|
||||||
|
//! let mut y = y;
|
||||||
|
//! // Compute y <- 0.0 * y + 1.0 * csr * dense. We store the result directly in `y`, without
|
||||||
|
//! // any immediate allocations
|
||||||
|
//! spmm_csr_dense(0.0, &mut y, 1.0, Op::NoOp(&csr), Op::NoOp(&x));
|
||||||
|
//! assert_matrix_eq!(y, y_expected, comp = abs, tol = 1e-9);
|
||||||
|
//! }
|
||||||
|
//! ```
|
||||||
//!
|
//!
|
||||||
//! TODO: Write docs on the following:
|
//! TODO: Write docs on the following:
|
||||||
//!
|
//!
|
||||||
|
|
Loading…
Reference in New Issue