nalgebra-lapack: add Symmetric eigensystems.
This commit is contained in:
parent
b94eb66362
commit
6eb0d8a786
|
@ -16,6 +16,7 @@ extern crate nalgebra as na;
|
|||
mod lapack_check;
|
||||
mod svd;
|
||||
mod eigen;
|
||||
mod symmetric_eigen;
|
||||
mod cholesky;
|
||||
mod lu;
|
||||
mod qr;
|
||||
|
@ -27,6 +28,7 @@ pub use self::svd::SVD;
|
|||
pub use self::cholesky::{Cholesky, CholeskyScalar};
|
||||
pub use self::lu::{LU, LUScalar};
|
||||
pub use self::eigen::RealEigensystem;
|
||||
pub use self::symmetric_eigen::SymmetricEigen;
|
||||
pub use self::qr::QR;
|
||||
pub use self::hessenberg::Hessenberg;
|
||||
|
||||
|
|
|
@ -0,0 +1,146 @@
|
|||
use num::Zero;
|
||||
use std::ops::MulAssign;
|
||||
|
||||
use alga::general::Real;
|
||||
|
||||
use ::ComplexHelper;
|
||||
use na::{Scalar, DefaultAllocator, Matrix, VectorN, MatrixN};
|
||||
use na::dimension::{Dim, U1};
|
||||
use na::storage::Storage;
|
||||
use na::allocator::Allocator;
|
||||
|
||||
use lapack::fortran as interface;
|
||||
|
||||
/// Eigendecomposition of a real square matrix with real eigenvalues.
|
||||
pub struct SymmetricEigen<N: Scalar, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D> +
|
||||
Allocator<N, D, D> {
|
||||
pub eigenvalues: VectorN<N, D>,
|
||||
pub eigenvectors: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
|
||||
impl<N: RealEigensystemScalar + Real, D: Dim> SymmetricEigen<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D> +
|
||||
Allocator<N, D> {
|
||||
|
||||
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
|
||||
///
|
||||
/// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the
|
||||
/// eigenvectors are not computed explicitly. Panics if the method did not converge.
|
||||
pub fn new(m: MatrixN<N, D>) -> Self {
|
||||
let (vals, vecs) = Self::do_decompose(m, true).expect("SymmetricEigen: convergence failure.");
|
||||
SymmetricEigen { eigenvalues: vals, eigenvectors: vecs.unwrap() }
|
||||
}
|
||||
|
||||
/// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`.
|
||||
///
|
||||
/// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the
|
||||
/// eigenvectors are not computed explicitly. Returns `None` if the method did not converge.
|
||||
pub fn try_new(m: MatrixN<N, D>) -> Option<Self> {
|
||||
Self::do_decompose(m, true).map(|(vals, vecs)| {
|
||||
SymmetricEigen { eigenvalues: vals, eigenvectors: vecs.unwrap() }
|
||||
})
|
||||
}
|
||||
|
||||
fn do_decompose(mut m: MatrixN<N, D>, eigenvectors: bool) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)> {
|
||||
assert!(m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix.");
|
||||
|
||||
let jobz = if eigenvectors { b'V' } else { b'N' };
|
||||
|
||||
let (nrows, ncols) = m.data.shape();
|
||||
let n = nrows.value();
|
||||
|
||||
let lda = n as i32;
|
||||
|
||||
let mut values = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
|
||||
let mut info = 0;
|
||||
|
||||
let lwork = N::xsyev_work_size(jobz, b'L', n as i32, m.as_mut_slice(), lda, &mut info);
|
||||
lapack_check!(info);
|
||||
|
||||
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
|
||||
|
||||
N::xsyev(jobz, b'L', n as i32, m.as_mut_slice(), lda, values.as_mut_slice(), &mut work, lwork, &mut info);
|
||||
lapack_check!(info);
|
||||
|
||||
let vectors = if eigenvectors { Some(m) } else { None };
|
||||
Some((values, vectors))
|
||||
}
|
||||
|
||||
/// Computes only the eigenvalues of the input matrix.
|
||||
///
|
||||
/// Panics if the method does not converge.
|
||||
pub fn eigenvalues(mut m: MatrixN<N, D>) -> VectorN<N, D> {
|
||||
Self::do_decompose(m, false).expect("SymmetricEigen eigenvalues: convergence failure.").0
|
||||
}
|
||||
|
||||
/// Computes only the eigenvalues of the input matrix.
|
||||
///
|
||||
/// Returns `None` if the method does not converge.
|
||||
pub fn try_eigenvalues(mut m: MatrixN<N, D>) -> Option<VectorN<N, D>> {
|
||||
Self::do_decompose(m, false).map(|res| res.0)
|
||||
}
|
||||
|
||||
/// The determinant of the decomposed matrix.
|
||||
#[inline]
|
||||
pub fn determinant(&self) -> N {
|
||||
let mut det = N::one();
|
||||
for e in self.eigenvalues.iter() {
|
||||
det *= *e;
|
||||
}
|
||||
|
||||
det
|
||||
}
|
||||
|
||||
/// Rebuild the original matrix.
|
||||
///
|
||||
/// This is useful if some of the eigenvalues have been manually modified.
|
||||
pub fn recompose(&self) -> MatrixN<N, D> {
|
||||
let mut u_t = self.eigenvectors.clone();
|
||||
for i in 0 .. self.eigenvalues.len() {
|
||||
let val = self.eigenvalues[i];
|
||||
u_t.column_mut(i).mul_assign(val);
|
||||
}
|
||||
u_t.transpose_mut();
|
||||
&self.eigenvectors * u_t
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* Lapack functions dispatch.
|
||||
*
|
||||
*/
|
||||
pub trait RealEigensystemScalar: Scalar {
|
||||
fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self],
|
||||
lwork: i32, info: &mut i32);
|
||||
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32;
|
||||
}
|
||||
|
||||
macro_rules! real_eigensystem_scalar_impl (
|
||||
($N: ty, $xsyev: path) => (
|
||||
impl RealEigensystemScalar for $N {
|
||||
#[inline]
|
||||
fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self],
|
||||
lwork: i32, info: &mut i32) {
|
||||
$xsyev(jobz, uplo, n, a, lda, w, work, lwork, info)
|
||||
}
|
||||
|
||||
|
||||
#[inline]
|
||||
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32 {
|
||||
let mut work = [ Zero::zero() ];
|
||||
let mut w = [ Zero::zero() ];
|
||||
let lwork = -1 as i32;
|
||||
|
||||
$xsyev(jobz, uplo, n, a, lda, &mut w, &mut work, lwork, info);
|
||||
ComplexHelper::real_part(work[0]) as i32
|
||||
}
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
real_eigensystem_scalar_impl!(f32, interface::ssyev);
|
||||
real_eigensystem_scalar_impl!(f64, interface::dsyev);
|
|
@ -1,4 +1,5 @@
|
|||
mod real_eigensystem;
|
||||
mod symmetric_eigen;
|
||||
mod cholesky;
|
||||
mod lu;
|
||||
mod qr;
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
use std::cmp;
|
||||
|
||||
use nl::SymmetricEigen;
|
||||
use na::{DMatrix, Matrix4};
|
||||
|
||||
quickcheck!{
|
||||
fn symmetric_eigen(n: usize) -> bool {
|
||||
let n = cmp::max(1, cmp::min(n, 10));
|
||||
let m = DMatrix::<f64>::new_random(n, n);
|
||||
let eig = SymmetricEigen::new(m.clone());
|
||||
let recomp = eig.recompose();
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
|
||||
fn symmetric_eigen_static(m: Matrix4<f64>) -> bool {
|
||||
let eig = SymmetricEigen::new(m);
|
||||
let recomp = eig.recompose();
|
||||
relative_eq!(m.lower_triangle(), recomp.lower_triangle(), epsilon = 1.0e-5)
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue