added considerations for 180deg rotations in Rotation::powf
This commit is contained in:
parent
04d6f4f39c
commit
6eab8f5175
|
@ -1065,19 +1065,21 @@ impl<T:RealField, const D: usize> Rotation<T,D>
|
|||
// println!("q:{}d:{:.3}", q, d);
|
||||
|
||||
//go down the diagonal and pow every block
|
||||
for i in 0..(D-1) {
|
||||
let mut i = 0;
|
||||
while i < D-1 {
|
||||
|
||||
//we've found a 2x2 block!
|
||||
//NOTE: the impl of the schur decomposition always sets the inferior diagonal to 0
|
||||
if !d[(i+1,i)].is_zero() {
|
||||
if
|
||||
//For most 2x2 blocks
|
||||
//NOTE: we use strict equality since `nalgebra`'s schur decomp sets the infradiagonal to zero
|
||||
!d[(i+1,i)].is_zero() ||
|
||||
|
||||
// println!("{}", i);
|
||||
//for +-180 deg rotations
|
||||
d[(i,i)]<T::zero() && d[(i+1,i+1)]<T::zero()
|
||||
{
|
||||
|
||||
//convert to a complex num and take the arg()
|
||||
//convert to a complex num and find the arg()
|
||||
let (c, s) = (d[(i,i)].clone(), d[(i+1,i)].clone());
|
||||
let angle = s.atan2(c);
|
||||
|
||||
// println!("{}", angle);
|
||||
let angle = s.atan2(c); //for +-180deg rots, this implicitely takes the +180 branch
|
||||
|
||||
//scale the arg and exponentiate back
|
||||
let angle2 = angle * t.clone();
|
||||
|
@ -1089,6 +1091,12 @@ impl<T:RealField, const D: usize> Rotation<T,D>
|
|||
d[(i+1,i )] = s2;
|
||||
d[(i+1,i+1)] = c2;
|
||||
|
||||
//increase by 2 so we don't accidentally misinterpret the
|
||||
//next line as a 180deg rotation
|
||||
i += 2;
|
||||
|
||||
} else {
|
||||
i += 1;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -39,30 +39,41 @@ mod proptest_tests {
|
|||
use crate::proptest::*;
|
||||
use proptest::{prop_assert, prop_assert_eq, proptest};
|
||||
|
||||
//creates N rotation planes and angles
|
||||
macro_rules! gen_rotation_planes {
|
||||
($($v1:ident, $v2:ident),*) => {
|
||||
{
|
||||
//make an orthonormal basis
|
||||
let mut basis = [$($v1, $v2),*];
|
||||
Vector::orthonormalize(&mut basis);
|
||||
let [$($v1, $v2),*] = basis;
|
||||
|
||||
//"wedge" the vectors to make an arrary 2-blades representing rotation planes.
|
||||
[
|
||||
//Since we start with vector pairs, each bivector is guaranteed to be simple
|
||||
$($v1.transpose().kronecker(&$v2) - $v2.transpose().kronecker(&$v1)),*
|
||||
]
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! gen_powf_rotation_test {
|
||||
($(
|
||||
fn $powf_rot_n:ident($($v1:ident in $vec1:ident(), $v2:ident in $vec2:ident()),*);
|
||||
fn $powf_rot_n:ident($($v:ident in $vec:ident()),*);
|
||||
)*) => {
|
||||
proptest!{$(
|
||||
|
||||
#[test]
|
||||
fn $powf_rot_n(
|
||||
$($v1 in $vec1(), $v2 in $vec2(),)*
|
||||
$($v in $vec(),)*
|
||||
pow in PROPTEST_F64
|
||||
) {
|
||||
|
||||
use nalgebra::*;
|
||||
|
||||
//make an orthonormal basis
|
||||
let mut basis = [$($v1, $v2),*];
|
||||
Vector::orthonormalize(&mut basis);
|
||||
let [$($v1, $v2),*] = basis;
|
||||
|
||||
//"wedge" the vectors to make an arrary 2-blades representing rotation planes.
|
||||
let mut bivectors = [
|
||||
//Since we start with vector pairs, each bivector is guaranteed to be simple
|
||||
$($v1.transpose().kronecker(&$v2) - $v2.transpose().kronecker(&$v1)),*
|
||||
];
|
||||
let mut bivectors = gen_rotation_planes!($($v),*);
|
||||
|
||||
//condition the bivectors
|
||||
for b in &mut bivectors {
|
||||
|
@ -88,7 +99,7 @@ mod proptest_tests {
|
|||
}
|
||||
|
||||
)*}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
gen_powf_rotation_test!(
|
||||
|
@ -101,6 +112,50 @@ mod proptest_tests {
|
|||
);
|
||||
);
|
||||
|
||||
proptest! {
|
||||
|
||||
#[test]
|
||||
fn powf_180deg_rotation_4d(v1 in vector4(), v2 in vector4(), v3 in vector4(), v4 in vector4()) {
|
||||
|
||||
use nalgebra::*;
|
||||
use std::f64::consts::PI;
|
||||
|
||||
let [b1,b2] = gen_rotation_planes!(v1,v2,v3,v4);
|
||||
|
||||
if let (Some((b1,a1)), Some((b2,a2))) = (
|
||||
Unit::try_new_and_get(b1,0.0), Unit::try_new_and_get(b2,0.0)
|
||||
) {
|
||||
|
||||
let (b1, b2) = (b1.into_inner(), b2.into_inner());
|
||||
{
|
||||
let b = a1*b1 + PI*b2;
|
||||
let r1 = Rotation::from_matrix_unchecked(b.exp());
|
||||
let r2 = Rotation::from_matrix_unchecked((b/2.0).exp());
|
||||
prop_assert!(relative_eq!(r1.powf(0.5), r2, epsilon=1e-7));
|
||||
}
|
||||
|
||||
{
|
||||
let b = PI*b1 + a2*b2;
|
||||
let r1 = Rotation::from_matrix_unchecked(b.exp());
|
||||
let r2 = Rotation::from_matrix_unchecked((b/2.0).exp());
|
||||
prop_assert!(relative_eq!(r1.powf(0.5), r2, epsilon=1e-7));
|
||||
}
|
||||
|
||||
{
|
||||
let b = PI*b1 + PI*b2;
|
||||
let r1 = Rotation::from_matrix_unchecked(b.exp());
|
||||
let r2 = Rotation::from_matrix_unchecked((b/2.0).exp());
|
||||
prop_assert!(relative_eq!(r1.powf(0.5), r2, epsilon=1e-7));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
proptest! {
|
||||
/*
|
||||
*
|
||||
|
|
Loading…
Reference in New Issue