Refactored tests using macros.
This commit is contained in:
parent
3fa933d13f
commit
65b175b4a7
|
@ -19,47 +19,33 @@ use dim3::mat3::Mat3;
|
|||
#[test]
|
||||
use adaptors::rotmat::Rotmat;
|
||||
|
||||
// FIXME: this one fails with an ICE: node_id_to_type: no type for node [...]
|
||||
// #[test]
|
||||
// fn test_inv_nmat()
|
||||
// {
|
||||
// let randmat : NMat<d7, f64> = random();
|
||||
//
|
||||
// assert!((randmat.inverse() * randmat).approx_eq(&One::one()));
|
||||
// }
|
||||
macro_rules! test_inv_mat_impl(
|
||||
($t:ty) => (
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let randmat : $t = random();
|
||||
|
||||
assert!((randmat.inverse() * randmat).approx_eq(&One::one()));
|
||||
}
|
||||
);
|
||||
)
|
||||
|
||||
#[test]
|
||||
fn test_inv_mat1()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let randmat : Mat1<f64> = random();
|
||||
|
||||
assert!((randmat.inverse() * randmat).approx_eq(&One::one()));
|
||||
}
|
||||
}
|
||||
{ test_inv_mat_impl!(Mat1<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_inv_mat2()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let randmat : Mat2<f64> = random();
|
||||
|
||||
assert!((randmat.inverse() * randmat).approx_eq(&One::one()));
|
||||
}
|
||||
}
|
||||
{ test_inv_mat_impl!(Mat2<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_inv_mat3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let randmat : Mat3<f64> = random();
|
||||
{ test_inv_mat_impl!(Mat3<f64>); }
|
||||
|
||||
assert!((randmat.inverse() * randmat).approx_eq(&One::one()));
|
||||
}
|
||||
}
|
||||
// FIXME: this one fails with an ICE: node_id_to_type: no type for node [...]
|
||||
// #[test]
|
||||
// fn test_inv_nmat()
|
||||
// { test_inv_mat_impl!(NMat<d7, f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_rotation2()
|
||||
|
|
191
src/tests/vec.rs
191
src/tests/vec.rs
|
@ -25,6 +25,49 @@ use traits::dot::Dot;
|
|||
#[test]
|
||||
use traits::norm::Norm;
|
||||
|
||||
macro_rules! test_commut_dot_impl(
|
||||
($t:ty) => (
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : $t = random();
|
||||
let v2 : $t = random();
|
||||
|
||||
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
|
||||
}
|
||||
);
|
||||
)
|
||||
|
||||
macro_rules! test_basis_impl(
|
||||
($t:ty) => (
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let basis = Basis::canonical_basis::<$t>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
);
|
||||
)
|
||||
|
||||
macro_rules! test_subspace_basis_impl(
|
||||
($t:ty) => (
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v : Vec3<f64> = random();
|
||||
let v1 = v.normalized();
|
||||
let subbasis = v1.orthogonal_subspace_basis();
|
||||
|
||||
// check vectors are orthogonal to v1
|
||||
assert!(all(subbasis, |e| v1.dot(e).approx_eq(&Zero::zero())));
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(subbasis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
);
|
||||
)
|
||||
|
||||
#[test]
|
||||
fn test_cross_vec3()
|
||||
|
@ -41,167 +84,49 @@ fn test_cross_vec3()
|
|||
}
|
||||
|
||||
#[test]
|
||||
fn test_dot_nvec()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : NVec<d7, f64> = random();
|
||||
let v2 : NVec<d7, f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
fn test_commut_dot_nvec()
|
||||
{ test_commut_dot_impl!(NVec<d7, f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_commut_dot_vec3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : Vec3<f64> = random();
|
||||
let v2 : Vec3<f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
{ test_commut_dot_impl!(Vec3<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_commut_dot_vec2()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : Vec2<f64> = random();
|
||||
let v2 : Vec2<f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
{ test_commut_dot_impl!(Vec2<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_commut_dot_vec1()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v1 : Vec1<f64> = random();
|
||||
let v2 : Vec1<f64> = random();
|
||||
|
||||
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
|
||||
}
|
||||
}
|
||||
{ test_commut_dot_impl!(Vec1<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_basis_vec1()
|
||||
{
|
||||
let basis = Basis::canonical_basis::<Vec1<f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
{ test_basis_impl!(Vec1<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_basis_vec2()
|
||||
{
|
||||
let basis = Basis::canonical_basis::<Vec2<f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
{ test_basis_impl!(Vec2<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_basis_vec3()
|
||||
{
|
||||
let basis = Basis::canonical_basis::<Vec3<f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
{ test_basis_impl!(Vec3<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_basis_nvec()
|
||||
{
|
||||
let basis = Basis::canonical_basis::<NVec<d7, f64>>();
|
||||
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(basis, basis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(basis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
{ test_basis_impl!(NVec<d7, f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_subspace_basis_vec1()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v : Vec1<f64> = random();
|
||||
let v1 = v.normalized();
|
||||
let subbasis = v1.orthogonal_subspace_basis();
|
||||
|
||||
// check vectors are orthogonal to v1
|
||||
assert!(all(subbasis, |e| v1.dot(e).approx_eq(&Zero::zero())));
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(subbasis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
{ test_subspace_basis_impl!(Vec1<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_subspace_basis_vec2()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v : Vec2<f64> = random();
|
||||
let v1 = v.normalized();
|
||||
let subbasis = v1.orthogonal_subspace_basis();
|
||||
|
||||
// check vectors are orthogonal to v1
|
||||
assert!(all(subbasis, |e| v1.dot(e).approx_eq(&Zero::zero())));
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(subbasis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
{ test_subspace_basis_impl!(Vec2<f64>); }
|
||||
|
||||
#[test]
|
||||
fn test_subspace_basis_vec3()
|
||||
{
|
||||
for uint::range(0u, 10000u) |_|
|
||||
{
|
||||
let v : Vec3<f64> = random();
|
||||
let v1 = v.normalized();
|
||||
let subbasis = v1.orthogonal_subspace_basis();
|
||||
{ test_subspace_basis_impl!(Vec3<f64>); }
|
||||
|
||||
// check vectors are orthogonal to v1
|
||||
assert!(all(subbasis, |e| v1.dot(e).approx_eq(&Zero::zero())));
|
||||
// check vectors form an ortogonal basis
|
||||
assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// check vectors form an orthonormal basis
|
||||
assert!(all(subbasis, |e| e.norm().approx_eq(&One::one())));
|
||||
}
|
||||
}
|
||||
|
||||
// ICE
|
||||
//
|
||||
// #[test]
|
||||
// fn test_subspace_basis_vecn()
|
||||
// {
|
||||
// for uint::range(0u, 10000u) |_|
|
||||
// {
|
||||
// let v : NVec<d7, f64> = random();
|
||||
// let v1 = v.normalized();
|
||||
// let subbasis = v1.orthogonal_subspace_basis();
|
||||
//
|
||||
// // check vectors are orthogonal to v1
|
||||
// assert!(all(subbasis, |e| v1.dot(e).approx_eq(&Zero::zero())));
|
||||
// // check vectors form an ortogonal basis
|
||||
// assert!(all2(subbasis, subbasis, |e1, e2| e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero())));
|
||||
// // check vectors form an orthonormal basis
|
||||
// assert!(all(subbasis, |e| e.norm().approx_eq(&One::one())));
|
||||
// }
|
||||
// }
|
||||
#[test]
|
||||
fn test_subspace_basis_nvec()
|
||||
{ test_subspace_basis_impl!(NVec<d7, f64>); }
|
||||
|
|
Loading…
Reference in New Issue