Make DMat able to represent rectangular matrices.
The code is largely untested.
This commit is contained in:
parent
8973e0d67c
commit
628066cdc8
182
src/dmat.rs
182
src/dmat.rs
|
@ -1,106 +1,110 @@
|
|||
use std::num::{One, Zero};
|
||||
use std::vec::from_elem;
|
||||
use std::cmp::ApproxEq;
|
||||
use std::util;
|
||||
use traits::inv::Inv;
|
||||
use traits::transpose::Transpose;
|
||||
use traits::rlmul::{RMul, LMul};
|
||||
use dvec::{DVec, zero_vec_with_dim};
|
||||
use dvec::DVec;
|
||||
|
||||
/// Square matrix with a dimension unknown at compile-time.
|
||||
/// Matrix with dimensions unknown at compile-time.
|
||||
#[deriving(Eq, ToStr, Clone)]
|
||||
pub struct DMat<N> {
|
||||
priv dim: uint, // FIXME: handle more than just square matrices
|
||||
priv nrows: uint,
|
||||
priv ncols: uint,
|
||||
priv mij: ~[N]
|
||||
}
|
||||
|
||||
/// Builds a matrix filled with zeros.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
|
||||
/// components.
|
||||
#[inline]
|
||||
pub fn zero_mat_with_dim<N: Zero + Clone>(dim: uint) -> DMat<N> {
|
||||
DMat { dim: dim, mij: from_elem(dim * dim, Zero::zero()) }
|
||||
}
|
||||
|
||||
/// Tests if all components of the matrix are zeroes.
|
||||
#[inline]
|
||||
pub fn is_zero_mat<N: Zero>(mat: &DMat<N>) -> bool {
|
||||
mat.mij.iter().all(|e| e.is_zero())
|
||||
}
|
||||
|
||||
/// Builds an identity matrix.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
|
||||
/// components.
|
||||
#[inline]
|
||||
pub fn one_mat_with_dim<N: Clone + One + Zero>(dim: uint) -> DMat<N> {
|
||||
let mut res = zero_mat_with_dim(dim);
|
||||
let _1: N = One::one();
|
||||
|
||||
for i in range(0u, dim) {
|
||||
res.set(i, i, &_1);
|
||||
impl<N: Zero + Clone> DMat<N> {
|
||||
/// Builds a matrix filled with zeros.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
|
||||
/// components.
|
||||
#[inline]
|
||||
pub fn new_zeros(nrows: uint, ncols: uint) -> DMat<N> {
|
||||
DMat {
|
||||
nrows: nrows,
|
||||
ncols: ncols,
|
||||
mij: from_elem(nrows * ncols, Zero::zero())
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
/// Tests if all components of the matrix are zeroes.
|
||||
#[inline]
|
||||
pub fn is_zero(&self) -> bool {
|
||||
self.mij.iter().all(|e| e.is_zero())
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: add a function to modify the dimension (to avoid useless allocations)?
|
||||
|
||||
impl<N: One + Zero + Clone> DMat<N> {
|
||||
/// Builds an identity matrix.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
|
||||
/// components.
|
||||
#[inline]
|
||||
pub fn new_identity(dim: uint) -> DMat<N> {
|
||||
let mut res = DMat::new_zeros(dim, dim);
|
||||
|
||||
for i in range(0u, dim) {
|
||||
let _1: N = One::one();
|
||||
res.set(i, i, _1);
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl<N: Clone> DMat<N> {
|
||||
#[inline]
|
||||
fn offset(&self, i: uint, j: uint) -> uint {
|
||||
i * self.dim + j
|
||||
i * self.ncols + j
|
||||
}
|
||||
|
||||
/// Changes the value of a component of the matrix.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `i` - 0-based index of the line to be changed
|
||||
/// * `j` - 0-based index of the column to be changed
|
||||
/// * `row` - 0-based index of the line to be changed
|
||||
/// * `col` - 0-based index of the column to be changed
|
||||
#[inline]
|
||||
pub fn set(&mut self, i: uint, j: uint, t: &N) {
|
||||
assert!(i < self.dim);
|
||||
assert!(j < self.dim);
|
||||
self.mij[self.offset(i, j)] = t.clone()
|
||||
pub fn set(&mut self, row: uint, col: uint, val: N) {
|
||||
assert!(row < self.nrows);
|
||||
assert!(col < self.ncols);
|
||||
self.mij[self.offset(row, col)] = val
|
||||
}
|
||||
|
||||
/// Reads the value of a component of the matrix.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `i` - 0-based index of the line to be read
|
||||
/// * `j` - 0-based index of the column to be read
|
||||
/// * `row` - 0-based index of the line to be read
|
||||
/// * `col` - 0-based index of the column to be read
|
||||
#[inline]
|
||||
pub fn at(&self, i: uint, j: uint) -> N {
|
||||
assert!(i < self.dim);
|
||||
assert!(j < self.dim);
|
||||
self.mij[self.offset(i, j)].clone()
|
||||
pub fn at(&self, row: uint, col: uint) -> N {
|
||||
assert!(row < self.nrows);
|
||||
assert!(col < self.ncols);
|
||||
self.mij[self.offset(row, col)].clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Clone> Index<(uint, uint), N> for DMat<N> {
|
||||
#[inline]
|
||||
fn index(&self, &(i, j): &(uint, uint)) -> N {
|
||||
self.at(i, j)
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Clone + Mul<N, N> + Add<N, N> + Zero>
|
||||
Mul<DMat<N>, DMat<N>> for DMat<N> {
|
||||
impl<N: Clone + Mul<N, N> + Add<N, N> + Zero> Mul<DMat<N>, DMat<N>> for DMat<N> {
|
||||
fn mul(&self, other: &DMat<N>) -> DMat<N> {
|
||||
assert!(self.dim == other.dim);
|
||||
assert!(self.ncols == other.nrows);
|
||||
|
||||
let dim = self.dim;
|
||||
let mut res = zero_mat_with_dim(dim);
|
||||
let mut res = DMat::new_zeros(self.nrows, other.ncols);
|
||||
|
||||
for i in range(0u, dim) {
|
||||
for j in range(0u, dim) {
|
||||
for i in range(0u, self.nrows) {
|
||||
for j in range(0u, other.ncols) {
|
||||
let mut acc: N = Zero::zero();
|
||||
|
||||
for k in range(0u, dim) {
|
||||
for k in range(0u, self.ncols) {
|
||||
acc = acc + self.at(i, k) * other.at(k, j);
|
||||
}
|
||||
|
||||
res.set(i, j, &acc);
|
||||
res.set(i, j, acc);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -111,15 +115,18 @@ Mul<DMat<N>, DMat<N>> for DMat<N> {
|
|||
impl<N: Clone + Add<N, N> + Mul<N, N> + Zero>
|
||||
RMul<DVec<N>> for DMat<N> {
|
||||
fn rmul(&self, other: &DVec<N>) -> DVec<N> {
|
||||
assert!(self.dim == other.at.len());
|
||||
assert!(self.ncols == other.at.len());
|
||||
|
||||
let dim = self.dim;
|
||||
let mut res : DVec<N> = zero_vec_with_dim(dim);
|
||||
let mut res : DVec<N> = DVec::new_zeros(self.nrows);
|
||||
|
||||
for i in range(0u, dim) {
|
||||
for j in range(0u, dim) {
|
||||
res.at[i] = res.at[i] + other.at[j] * self.at(i, j);
|
||||
for i in range(0u, self.nrows) {
|
||||
let mut acc: N = Zero::zero();
|
||||
|
||||
for j in range(0u, self.ncols) {
|
||||
acc = acc + other.at[j] * self.at(i, j);
|
||||
}
|
||||
|
||||
res.at[i] = acc;
|
||||
}
|
||||
|
||||
res
|
||||
|
@ -129,15 +136,18 @@ RMul<DVec<N>> for DMat<N> {
|
|||
impl<N: Clone + Add<N, N> + Mul<N, N> + Zero>
|
||||
LMul<DVec<N>> for DMat<N> {
|
||||
fn lmul(&self, other: &DVec<N>) -> DVec<N> {
|
||||
assert!(self.dim == other.at.len());
|
||||
assert!(self.nrows == other.at.len());
|
||||
|
||||
let dim = self.dim;
|
||||
let mut res : DVec<N> = zero_vec_with_dim(dim);
|
||||
let mut res : DVec<N> = DVec::new_zeros(self.ncols);
|
||||
|
||||
for i in range(0u, dim) {
|
||||
for j in range(0u, dim) {
|
||||
res.at[i] = res.at[i] + other.at[j] * self.at(j, i);
|
||||
for i in range(0u, self.ncols) {
|
||||
let mut acc: N = Zero::zero();
|
||||
|
||||
for j in range(0u, self.nrows) {
|
||||
acc = acc + other.at[j] * self.at(j, i);
|
||||
}
|
||||
|
||||
res.at[i] = acc;
|
||||
}
|
||||
|
||||
res
|
||||
|
@ -159,9 +169,11 @@ Inv for DMat<N> {
|
|||
}
|
||||
|
||||
fn inplace_inverse(&mut self) -> bool {
|
||||
let dim = self.dim;
|
||||
let mut res = one_mat_with_dim::<N>(dim);
|
||||
let _0T: N = Zero::zero();
|
||||
assert!(self.nrows == self.ncols);
|
||||
|
||||
let dim = self.nrows;
|
||||
let mut res: DMat<N> = DMat::new_identity(dim);
|
||||
let _0T: N = Zero::zero();
|
||||
|
||||
// inversion using Gauss-Jordan elimination
|
||||
for k in range(0u, dim) {
|
||||
|
@ -197,12 +209,12 @@ Inv for DMat<N> {
|
|||
let pivot = self.at(k, k);
|
||||
|
||||
for j in range(k, dim) {
|
||||
let selfval = &(self.at(k, j) / pivot);
|
||||
let selfval = self.at(k, j) / pivot;
|
||||
self.set(k, j, selfval);
|
||||
}
|
||||
|
||||
for j in range(0u, dim) {
|
||||
let resval = &(res.at(k, j) / pivot);
|
||||
let resval = res.at(k, j) / pivot;
|
||||
res.set(k, j, resval);
|
||||
}
|
||||
|
||||
|
@ -211,12 +223,12 @@ Inv for DMat<N> {
|
|||
let normalizer = self.at(l, k);
|
||||
|
||||
for j in range(k, dim) {
|
||||
let selfval = &(self.at(l, j) - self.at(k, j) * normalizer);
|
||||
let selfval = self.at(l, j) - self.at(k, j) * normalizer;
|
||||
self.set(l, j, selfval);
|
||||
}
|
||||
|
||||
for j in range(0u, dim) {
|
||||
let resval = &(res.at(l, j) - res.at(k, j) * normalizer);
|
||||
let resval = res.at(l, j) - res.at(k, j) * normalizer;
|
||||
res.set(l, j, resval);
|
||||
}
|
||||
}
|
||||
|
@ -240,23 +252,23 @@ impl<N: Clone> Transpose for DMat<N> {
|
|||
}
|
||||
|
||||
fn transpose(&mut self) {
|
||||
let dim = self.dim;
|
||||
|
||||
for i in range(1u, dim) {
|
||||
for j in range(0u, dim - 1) {
|
||||
for i in range(1u, self.nrows) {
|
||||
for j in range(0u, self.ncols - 1) {
|
||||
let off_i_j = self.offset(i, j);
|
||||
let off_j_i = self.offset(j, i);
|
||||
|
||||
self.mij.swap(off_i_j, off_j_i);
|
||||
}
|
||||
}
|
||||
|
||||
util::swap(&mut self.nrows, &mut self.ncols);
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
|
||||
#[inline]
|
||||
fn approx_epsilon() -> N {
|
||||
fail!("Fix this.")
|
||||
fail!("This function cannot work due to a compiler bug.")
|
||||
// let res: N = ApproxEq::<N>::approx_epsilon();
|
||||
|
||||
// res
|
||||
|
|
30
src/dvec.rs
30
src/dvec.rs
|
@ -15,19 +15,21 @@ pub struct DVec<N> {
|
|||
at: ~[N]
|
||||
}
|
||||
|
||||
/// Builds a vector filled with zeros.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the vector.
|
||||
#[inline]
|
||||
pub fn zero_vec_with_dim<N: Zero + Clone>(dim: uint) -> DVec<N> {
|
||||
DVec { at: from_elem(dim, Zero::zero()) }
|
||||
}
|
||||
impl<N: Zero + Clone> DVec<N> {
|
||||
/// Builds a vector filled with zeros.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `dim` - The dimension of the vector.
|
||||
#[inline]
|
||||
pub fn new_zeros(dim: uint) -> DVec<N> {
|
||||
DVec { at: from_elem(dim, Zero::zero()) }
|
||||
}
|
||||
|
||||
/// Tests if all components of the vector are zeroes.
|
||||
#[inline]
|
||||
pub fn is_zero_vec<N: Zero>(vec: &DVec<N>) -> bool {
|
||||
vec.at.iter().all(|e| e.is_zero())
|
||||
/// Tests if all components of the vector are zeroes.
|
||||
#[inline]
|
||||
pub fn is_zero(&self) -> bool {
|
||||
self.at.iter().all(|e| e.is_zero())
|
||||
}
|
||||
}
|
||||
|
||||
impl<N> Iterable<N> for DVec<N> {
|
||||
|
@ -62,7 +64,7 @@ impl<N: Clone + Num + Algebraic + ApproxEq<N>> DVec<N> {
|
|||
let mut res : ~[DVec<N>] = ~[];
|
||||
|
||||
for i in range(0u, dim) {
|
||||
let mut basis_element : DVec<N> = zero_vec_with_dim(dim);
|
||||
let mut basis_element : DVec<N> = DVec::new_zeros(dim);
|
||||
|
||||
basis_element.at[i] = One::one();
|
||||
|
||||
|
@ -81,7 +83,7 @@ impl<N: Clone + Num + Algebraic + ApproxEq<N>> DVec<N> {
|
|||
let mut res : ~[DVec<N>] = ~[];
|
||||
|
||||
for i in range(0u, dim) {
|
||||
let mut basis_element : DVec<N> = zero_vec_with_dim(self.at.len());
|
||||
let mut basis_element : DVec<N> = DVec::new_zeros(self.at.len());
|
||||
|
||||
basis_element.at[i] = One::one();
|
||||
|
||||
|
|
Loading…
Reference in New Issue