Add csr, csc, sparsity_pattern proptest generators (untested)

This commit is contained in:
Andreas Longva 2020-11-24 17:34:19 +01:00
parent 41ce9a23df
commit 6083d24dd6
2 changed files with 144 additions and 3 deletions

View File

@ -4,11 +4,42 @@
use crate::coo::CooMatrix; use crate::coo::CooMatrix;
use proptest::prelude::*; use proptest::prelude::*;
use proptest::collection::{vec, hash_map}; use proptest::collection::{vec, hash_map, btree_set};
use nalgebra::Scalar; use nalgebra::Scalar;
use std::cmp::min; use std::cmp::min;
use std::iter::repeat; use std::iter::{repeat};
use proptest::sample::{Index}; use proptest::sample::{Index};
use crate::csr::CsrMatrix;
use crate::pattern::SparsityPattern;
use std::sync::Arc;
use crate::csc::CscMatrix;
fn dense_row_major_coord_strategy(nrows: usize, ncols: usize, nnz: usize)
-> impl Strategy<Value=Vec<(usize, usize)>>
{
let mut booleans = vec![true; nnz];
booleans.append(&mut vec![false; (nrows * ncols) - nnz]);
// Make sure that exactly `nnz` of the booleans are true
Just(booleans)
// Need to shuffle to make sure they are randomly distributed
.prop_shuffle()
.prop_map(move |booleans| {
booleans
.into_iter()
.enumerate()
.filter_map(|(index, is_entry)| {
if is_entry {
// Convert linear index to row/col pair
let i = index / ncols;
let j = index % ncols;
Some((i, j))
} else {
None
}
})
.collect::<Vec<_>>()
})
}
/// A strategy for generating `nnz` triplets. /// A strategy for generating `nnz` triplets.
/// ///
@ -177,4 +208,112 @@ where
} }
coo coo
}) })
}
fn sparsity_pattern_from_row_major_coords<I>(nmajor: usize, nminor: usize, coords: I) -> SparsityPattern
where
I: Iterator<Item=(usize, usize)> + ExactSizeIterator,
{
let mut minors = Vec::with_capacity(coords.len());
let mut offsets = Vec::with_capacity(nmajor + 1);
let mut current_major = 0;
offsets.push(0);
for (idx, (i, j)) in coords.enumerate() {
assert!(i >= current_major);
assert!(i < nmajor && j < nminor, "Generated coords are out of bounds");
while current_major < i{
offsets.push(idx);
current_major += 1;
}
minors.push(j);
}
while current_major < nmajor {
offsets.push(minors.len());
current_major += 1;
}
assert_eq!(offsets.first().unwrap(), &0);
assert_eq!(offsets.len(), nmajor + 1);
SparsityPattern::try_from_offsets_and_indices(nmajor,
nminor,
offsets,
minors)
.expect("Internal error: Generated sparsity pattern is invalid")
}
/// TODO
pub fn sparsity_pattern(
major_lanes: impl Strategy<Value=usize> + 'static,
minor_lanes: impl Strategy<Value=usize> + 'static,
max_nonzeros: usize)
-> impl Strategy<Value=SparsityPattern>
{
(major_lanes, minor_lanes)
.prop_flat_map(move |(nmajor, nminor)| {
let max_nonzeros = min(nmajor * nminor, max_nonzeros);
(Just(nmajor), Just(nminor), 0 ..= max_nonzeros)
}).prop_flat_map(move |(nmajor, nminor, nnz)| {
if 10 * nnz < nmajor * nminor {
// If nnz is small compared to a dense matrix, then use a sparse sampling strategy
btree_set((0..nmajor, 0..nminor), nnz)
.prop_map(move |coords| {
sparsity_pattern_from_row_major_coords(nmajor, nminor, coords.into_iter())
})
.boxed()
} else {
// If the required number of nonzeros is sufficiently dense,
// we instead use a dense sampling
dense_row_major_coord_strategy(nmajor, nminor, nnz)
.prop_map(move |triplets| {
let coords = triplets.into_iter();
sparsity_pattern_from_row_major_coords(nmajor, nminor, coords)
}).boxed()
}
})
}
/// TODO
pub fn csr<T>(value_strategy: T,
rows: impl Strategy<Value=usize> + 'static,
cols: impl Strategy<Value=usize> + 'static,
max_nonzeros: usize)
-> impl Strategy<Value=CsrMatrix<T::Value>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
sparsity_pattern(rows, cols, max_nonzeros)
.prop_flat_map(move |pattern| {
let nnz = pattern.nnz();
let values = vec![value_strategy.clone(); nnz];
(Just(pattern), values)
})
.prop_map(|(pattern, values)| {
CsrMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
.expect("Internal error: Generated CsrMatrix is invalid")
})
}
/// TODO
pub fn csc<T>(value_strategy: T,
rows: impl Strategy<Value=usize> + 'static,
cols: impl Strategy<Value=usize> + 'static,
max_nonzeros: usize)
-> impl Strategy<Value=CscMatrix<T::Value>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
sparsity_pattern(cols, rows, max_nonzeros)
.prop_flat_map(move |pattern| {
let nnz = pattern.nnz();
let values = vec![value_strategy.clone(); nnz];
(Just(pattern), values)
})
.prop_map(|(pattern, values)| {
CscMatrix::try_from_pattern_and_values(Arc::new(pattern), values)
.expect("Internal error: Generated CscMatrix is invalid")
})
} }

View File

@ -131,4 +131,6 @@ mod slow {
// is contained in the set of visited matrices // is contained in the set of visited matrices
assert!(all_combinations.is_subset(&visited_combinations)); assert!(all_combinations.is_subset(&visited_combinations));
} }
} }
// TODO: Tests for csr, csc and sparsity_pattern strategies