QR decomposition depends less on DMat internals
This commit is contained in:
parent
2fd880a62d
commit
5611307b4d
|
@ -119,6 +119,7 @@ extern crate test;
|
|||
pub mod na;
|
||||
mod structs;
|
||||
mod traits;
|
||||
mod linalg;
|
||||
|
||||
// mod lower_triangular;
|
||||
// mod chol;
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
use std::num::{Zero, Float};
|
||||
use na::DVec;
|
||||
use na::DMat;
|
||||
use traits::operations::{Transpose, ColSlice};
|
||||
use traits::geometry::Norm;
|
||||
use std::cmp::min;
|
||||
|
||||
/// QR decomposition using Householder reflections
|
||||
/// # Arguments
|
||||
/// * `m` matrix to decompose
|
||||
pub fn decomp_qr<N: Clone + Num + Float>(m: &DMat<N>) -> (DMat<N>, DMat<N>) {
|
||||
let rows = m.nrows();
|
||||
let cols = m.ncols();
|
||||
assert!(rows >= cols);
|
||||
let mut q : DMat<N> = DMat::new_identity(rows);
|
||||
let mut r = m.clone();
|
||||
|
||||
let subtract_reflection = |vec: DVec<N>| -> DMat<N> {
|
||||
// FIXME: we don't handle the complex case here
|
||||
let mut qk : DMat<N> = DMat::new_identity(rows);
|
||||
let start = rows - vec.at.len();
|
||||
for j in range(start, rows) {
|
||||
for i in range(start, rows) {
|
||||
unsafe {
|
||||
let vv = vec.at_fast(i-start)*vec.at_fast(j-start);
|
||||
let qkij = qk.at_fast(i,j);
|
||||
qk.set_fast(i, j, qkij - vv - vv);
|
||||
}
|
||||
}
|
||||
}
|
||||
qk
|
||||
};
|
||||
|
||||
let iterations = min(rows-1, cols);
|
||||
|
||||
for ite in range(0u, iterations) {
|
||||
let mut v = r.col_slice(ite, ite, rows);
|
||||
//let mut v = r.col_slice<DVec<N>>(ite, rows-ite, rows);
|
||||
let alpha =
|
||||
if unsafe { v.at_fast(ite) } >= Zero::zero() {
|
||||
-Norm::norm(&v)
|
||||
}
|
||||
else {
|
||||
Norm::norm(&v)
|
||||
};
|
||||
unsafe {
|
||||
let x = v.at_fast(0);
|
||||
v.set_fast(0, x - alpha);
|
||||
}
|
||||
let _ = v.normalize();
|
||||
let qk = subtract_reflection(v);
|
||||
r = qk * r;
|
||||
q = q * Transpose::transpose_cpy(&qk);
|
||||
}
|
||||
|
||||
(q, r)
|
||||
}
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
|
||||
pub use self::decompositions::decomp_qr;
|
||||
|
||||
mod decompositions;
|
|
@ -39,12 +39,12 @@ pub use traits::{
|
|||
Transpose,
|
||||
UniformSphereSample,
|
||||
AnyVec,
|
||||
VecExt
|
||||
VecExt,
|
||||
ColSlice, RowSlice
|
||||
};
|
||||
|
||||
pub use structs::{
|
||||
Identity,
|
||||
decomp_qr,
|
||||
DMat, DVec,
|
||||
Iso2, Iso3, Iso4,
|
||||
Mat1, Mat2, Mat3, Mat4,
|
||||
|
@ -53,6 +53,10 @@ pub use structs::{
|
|||
Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6
|
||||
};
|
||||
|
||||
pub use linalg::{
|
||||
decomp_qr
|
||||
};
|
||||
|
||||
/// Traits to work around the language limitations related to operator overloading.
|
||||
///
|
||||
/// The trait names are formed by:
|
||||
|
|
|
@ -4,14 +4,12 @@
|
|||
|
||||
use rand::Rand;
|
||||
use rand;
|
||||
use std::num::{One, Zero, Float};
|
||||
use std::num::{One, Zero};
|
||||
use traits::operations::ApproxEq;
|
||||
use std::mem;
|
||||
use structs::dvec::{DVec, DVecMulRhs};
|
||||
use traits::operations::{Inv, Transpose, Mean, Cov};
|
||||
use traits::operations::{Inv, Transpose, Mean, Cov, ColSlice, RowSlice};
|
||||
use traits::structure::Cast;
|
||||
use traits::geometry::Norm;
|
||||
use std::cmp::min;
|
||||
use std::fmt::{Show, Formatter, Result};
|
||||
|
||||
#[doc(hidden)]
|
||||
|
@ -497,61 +495,38 @@ impl<N: Clone + Num + Cast<f32> + DMatDivRhs<N, DMat<N>> + ToStr > Cov<DMat<N>>
|
|||
}
|
||||
}
|
||||
|
||||
impl<N: Clone> ColSlice<DVec<N>> for DMat<N> {
|
||||
fn col_slice(&self, col_id :uint, row_start: uint, row_end: uint) -> DVec<N> {
|
||||
assert!(col_id < self.ncols);
|
||||
assert!(row_start < row_end);
|
||||
assert!(row_end <= self.nrows);
|
||||
// we can init from slice thanks to the matrix being column major
|
||||
let start= self.offset(row_start, col_id);
|
||||
let stop = self.offset(row_end, col_id);
|
||||
let slice = DVec::from_vec(
|
||||
row_end - row_start, self.mij.slice(start, stop));
|
||||
slice
|
||||
}
|
||||
}
|
||||
|
||||
/// QR decomposition using Householder reflections
|
||||
/// # Arguments
|
||||
/// * `m` matrix to decompose
|
||||
pub fn decomp_qr<N: Clone + Num + Float + Show>(m: &DMat<N>) -> (DMat<N>, DMat<N>) {
|
||||
let rows = m.nrows();
|
||||
let cols = m.ncols();
|
||||
assert!(rows >= cols);
|
||||
let mut q : DMat<N> = DMat::new_identity(rows);
|
||||
let mut r = m.clone();
|
||||
|
||||
let subtract_reflection = |vec: DVec<N>| -> DMat<N> {
|
||||
// FIXME: we don't handle the complex case here
|
||||
let mut qk : DMat<N> = DMat::new_identity(rows);
|
||||
let start = rows - vec.at.len();
|
||||
for j in range(start, rows) {
|
||||
for i in range(start, rows) {
|
||||
unsafe {
|
||||
let vv = vec.at_fast(i-start)*vec.at_fast(j-start);
|
||||
let qkij = qk.at_fast(i,j);
|
||||
qk.set_fast(i, j, qkij - vv - vv);
|
||||
}
|
||||
}
|
||||
}
|
||||
qk
|
||||
};
|
||||
|
||||
let iterations = min(rows-1, cols);
|
||||
|
||||
for ite in range(0u, iterations) {
|
||||
// we get the ite-th column truncated from its first ite elements,
|
||||
// this is fast thanks to the matrix being column major
|
||||
let start= m.offset(ite, ite);
|
||||
let stop = m.offset(rows, ite);
|
||||
let mut v = DVec::from_vec(rows - ite, r.mij.slice(start, stop));
|
||||
let alpha =
|
||||
if unsafe { v.at_fast(ite) } >= Zero::zero() {
|
||||
-Norm::norm(&v)
|
||||
}
|
||||
else {
|
||||
Norm::norm(&v)
|
||||
impl<N: Clone> RowSlice<DVec<N>> for DMat<N> {
|
||||
fn row_slice(&self, row_id :uint, col_start: uint, col_end: uint) -> DVec<N> {
|
||||
assert!(row_id < self.nrows);
|
||||
assert!(col_start < col_end);
|
||||
assert!(col_end <= self.ncols);
|
||||
let mut slice : DVec<N> = unsafe {
|
||||
DVec::new_uninitialized(self.nrows)
|
||||
};
|
||||
let mut slice_idx = 0u;
|
||||
for col_id in range(col_start, col_end) {
|
||||
unsafe {
|
||||
let x = v.at_fast(0);
|
||||
v.set_fast(0, x - alpha);
|
||||
slice.set_fast(slice_idx, self.at_fast(row_id, col_id));
|
||||
}
|
||||
let _ = v.normalize();
|
||||
let qk = subtract_reflection(v);
|
||||
r = qk * r;
|
||||
q = q * Transpose::transpose_cpy(&qk);
|
||||
slice_idx += 1;
|
||||
}
|
||||
slice
|
||||
}
|
||||
|
||||
(q, r)
|
||||
}
|
||||
|
||||
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
|
||||
#[inline]
|
||||
|
@ -578,9 +553,9 @@ impl<N: Show + Clone> Show for DMat<N> {
|
|||
fn fmt(&self, form:&mut Formatter) -> Result {
|
||||
for i in range(0u, self.nrows()) {
|
||||
for j in range(0u, self.ncols()) {
|
||||
write!(form.buf, "{} ", self.at(i, j));
|
||||
let _ = write!(form.buf, "{} ", self.at(i, j));
|
||||
}
|
||||
write!(form.buf, "\n");
|
||||
let _ = write!(form.buf, "\n");
|
||||
}
|
||||
write!(form.buf, "\n")
|
||||
}
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
//! Data structures and implementations.
|
||||
|
||||
pub use self::dmat::DMat;
|
||||
pub use self::dmat::decomp_qr;
|
||||
pub use self::dvec::DVec;
|
||||
pub use self::vec::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
|
||||
pub use self::mat::{Identity, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6};
|
||||
|
|
|
@ -8,7 +8,7 @@ pub use self::structure::{FloatVec, FloatVecExt, Basis, Cast, Col, Dim, Indexabl
|
|||
Iterable, IterableMut, Mat, Row, AnyVec, VecExt};
|
||||
|
||||
pub use self::operations::{Absolute, ApproxEq, Cov, Inv, LMul, Mean, Outer, PartialOrd, RMul,
|
||||
ScalarAdd, ScalarSub, Transpose};
|
||||
ScalarAdd, ScalarSub, Transpose, ColSlice, RowSlice};
|
||||
pub use self::operations::{PartialOrdering, PartialLess, PartialEqual, PartialGreater, NotComparable};
|
||||
|
||||
pub mod geometry;
|
||||
|
|
|
@ -244,6 +244,18 @@ pub trait Mean<N> {
|
|||
fn mean(&Self) -> N;
|
||||
}
|
||||
|
||||
/// Trait for objects that support column slicing
|
||||
pub trait ColSlice<VecLike> {
|
||||
/// Returns a view to a slice of a column of a matrix.
|
||||
fn col_slice(&self, col_id :uint, row_start: uint, row_end: uint) -> VecLike;
|
||||
}
|
||||
|
||||
/// Trait for objects that support column slicing
|
||||
pub trait RowSlice<VecLike> {
|
||||
/// Returns a view to a slice of a row of a matrix.
|
||||
fn row_slice(&self, row_id :uint, col_start: uint, col_end: uint) -> VecLike;
|
||||
}
|
||||
|
||||
// /// Cholesky decomposition.
|
||||
// pub trait Chol {
|
||||
// /// Performs the cholesky decomposition on `self`. The resulting upper-triangular matrix is
|
||||
|
|
Loading…
Reference in New Issue