diff --git a/src/sparse/cs_matrix_cholesky.rs b/src/sparse/cs_matrix_cholesky.rs index 2826b555..3b4185a8 100644 --- a/src/sparse/cs_matrix_cholesky.rs +++ b/src/sparse/cs_matrix_cholesky.rs @@ -21,7 +21,6 @@ where // equal to `original_i.len()` at the end. original_p: Vec, original_i: Vec, - original_len: usize, // Number of elements on the numerical value vector of the original matrix. // Decomposition result. l: CsMatrix, // Used only for the pattern. @@ -63,7 +62,6 @@ where CsCholesky { original_p, original_i: m.data.i.clone(), - original_len: m.data.i.len(), l, u, ok: false, @@ -91,7 +89,7 @@ where // Performs the numerical Cholesky decomposition given the set of numerical values. pub fn decompose(&mut self, values: &[N]) -> bool { assert!( - values.len() >= self.original_len, + values.len() >= self.original_i.len(), "The set of values is too small." ); @@ -100,51 +98,64 @@ where // Perform the decomposition. for k in 0..self.l.nrows() { - // Scatter the k-th column of the original matrix with the values provided. - let column_range = self.original_p[k]..self.original_p[k + 1]; + unsafe { + // Scatter the k-th column of the original matrix with the values provided. + let column_range = + *self.original_p.get_unchecked(k)..*self.original_p.get_unchecked(k + 1); - self.work_x[k] = N::zero(); - for p in column_range.clone() { - let irow = self.original_i[p]; + *self.work_x.vget_unchecked_mut(k) = N::zero(); + for p in column_range.clone() { + let irow = *self.original_i.get_unchecked(p); - if irow <= k { - self.work_x[irow] = values[p]; - } - } - - let mut diag = self.work_x[k]; - self.work_x[k] = N::zero(); - - // Triangular solve. - for irow in self.u.data.column_row_indices(k) { - if irow >= k { - continue; + if irow <= k { + *self.work_x.vget_unchecked_mut(irow) = *values.get_unchecked(p); + } } - let lki = self.work_x[irow] / self.l.data.vals[self.l.data.p[irow]]; - self.work_x[irow] = N::zero(); + let mut diag = *self.work_x.vget_unchecked(k); + *self.work_x.vget_unchecked_mut(k) = N::zero(); - for p in self.l.data.p[irow] + 1..self.work_c[irow] { - self.work_x[self.l.data.i[p]] -= self.l.data.vals[p] * lki; + // Triangular solve. + for irow in self.u.data.column_row_indices(k) { + if irow >= k { + continue; + } + + let lki = *self.work_x.vget_unchecked(irow) + / *self + .l + .data + .vals + .get_unchecked(*self.l.data.p.vget_unchecked(irow)); + *self.work_x.vget_unchecked_mut(irow) = N::zero(); + + for p in + *self.l.data.p.vget_unchecked(irow) + 1..*self.work_c.vget_unchecked(irow) + { + *self + .work_x + .vget_unchecked_mut(*self.l.data.i.get_unchecked(p)) -= + *self.l.data.vals.get_unchecked(p) * lki; + } + + diag -= lki * lki; + let p = *self.work_c.vget_unchecked(irow); + *self.work_c.vget_unchecked_mut(irow) += 1; + *self.l.data.i.get_unchecked_mut(p) = k; + *self.l.data.vals.get_unchecked_mut(p) = lki; } - diag -= lki * lki; - let p = self.work_c[irow]; - self.work_c[irow] += 1; - self.l.data.i[p] = k; - self.l.data.vals[p] = lki; - } + if diag <= N::zero() { + self.ok = false; + return false; + } - if diag <= N::zero() { - self.ok = false; - return false; + // Deal with the diagonal element. + let p = *self.work_c.vget_unchecked(k); + *self.work_c.vget_unchecked_mut(k) += 1; + *self.l.data.i.get_unchecked_mut(p) = k; + *self.l.data.vals.get_unchecked_mut(p) = diag.sqrt(); } - - // Deal with the diagonal element. - let p = self.work_c[k]; - self.work_c[k] += 1; - self.l.data.i[p] = k; - self.l.data.vals[p] = diag.sqrt(); } self.ok = true;