Use same algorithm to solve 2x2 eigenvalue problem
The eigenvalue problem is solved in two different method that use different methods to calculate the discriminant of the solution to the quadratic equation. Use the method whose computation is considered more stable.
This commit is contained in:
parent
1103d49b80
commit
50417494ec
|
@ -309,16 +309,17 @@ where
|
|||
let hmn = t[(m, n)];
|
||||
let hnn = t[(n, n)];
|
||||
|
||||
let tra = hnn + hmm;
|
||||
let det = hnn * hmm - hnm * hmn;
|
||||
let discr = tra * tra * crate::convert(0.25) - det;
|
||||
// NOTE: use the same algorithm as in compute_2x2_eigvals.
|
||||
let val = (hmm - hnn) * crate::convert(0.5);
|
||||
let discr = hnm * hmn + val * val;
|
||||
|
||||
// All 2x2 blocks have negative discriminant because we already decoupled those
|
||||
// with positive eigenvalues..
|
||||
// with positive eigenvalues.
|
||||
let sqrt_discr = NumComplex::new(N::zero(), (-discr).sqrt());
|
||||
|
||||
out[m] = NumComplex::new(tra * crate::convert(0.5), N::zero()) + sqrt_discr;
|
||||
out[m + 1] = NumComplex::new(tra * crate::convert(0.5), N::zero()) - sqrt_discr;
|
||||
let half_tra = (hnn + hmm) * crate::convert(0.5);
|
||||
out[m] = NumComplex::new(half_tra, N::zero()) + sqrt_discr;
|
||||
out[m + 1] = NumComplex::new(half_tra, N::zero()) - sqrt_discr;
|
||||
|
||||
m += 2;
|
||||
}
|
||||
|
@ -413,7 +414,6 @@ where
|
|||
let inv_rot = rot.inverse();
|
||||
inv_rot.rotate(&mut m);
|
||||
rot.rotate_rows(&mut m);
|
||||
m[(1, 0)] = N::zero();
|
||||
|
||||
if compute_q {
|
||||
// XXX: we have to build the matrix manually because
|
||||
|
|
Loading…
Reference in New Issue