Add more point and quaternion documentation.
This commit is contained in:
parent
b32a02f0ac
commit
4ce6555b96
|
@ -106,12 +106,26 @@ where DefaultAllocator: Allocator<N, D>
|
|||
{
|
||||
/// Clones this point into one that owns its data.
|
||||
#[inline]
|
||||
#[deprecated(note = "This will be removed. Use the `.clone()` method from the `Clone` trait instead.")]
|
||||
pub fn clone(&self) -> Point<N, D> {
|
||||
Point::from(self.coords.clone_owned())
|
||||
}
|
||||
|
||||
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
|
||||
/// end of it.
|
||||
///
|
||||
/// This is the same as `.into()`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
|
||||
/// let p = Point2::new(10.0, 20.0);
|
||||
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
|
||||
///
|
||||
/// // This works in any dimension.
|
||||
/// let p = Point3::new(10.0, 20.0, 30.0);
|
||||
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn to_homogeneous(&self) -> VectorN<N, DimNameSum<D, U1>>
|
||||
where
|
||||
|
@ -134,6 +148,17 @@ where DefaultAllocator: Allocator<N, D>
|
|||
}
|
||||
|
||||
/// The dimension of this point.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Point2, Point3};
|
||||
/// let p = Point2::new(1.0, 2.0);
|
||||
/// assert_eq!(p.len(), 2);
|
||||
///
|
||||
/// // This works in any dimension.
|
||||
/// let p = Point3::new(10.0, 20.0, 30.0);
|
||||
/// assert_eq!(p.len(), 3);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn len(&self) -> usize {
|
||||
self.coords.len()
|
||||
|
@ -142,11 +167,23 @@ where DefaultAllocator: Allocator<N, D>
|
|||
/// The stride of this point. This is the number of buffer element separating each component of
|
||||
/// this point.
|
||||
#[inline]
|
||||
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
|
||||
pub fn stride(&self) -> usize {
|
||||
self.coords.strides().0
|
||||
}
|
||||
|
||||
/// Iterates through this point coordinates.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Point3;
|
||||
/// let p = Point3::new(1.0, 2.0, 3.0);
|
||||
/// let mut it = p.iter().cloned();
|
||||
///
|
||||
/// assert_eq!(it.next(), Some(1.0));
|
||||
/// assert_eq!(it.next(), Some(2.0));
|
||||
/// assert_eq!(it.next(), Some(3.0));
|
||||
/// assert_eq!(it.next(), None);
|
||||
#[inline]
|
||||
pub fn iter(&self) -> MatrixIter<N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer> {
|
||||
self.coords.iter()
|
||||
|
@ -159,6 +196,17 @@ where DefaultAllocator: Allocator<N, D>
|
|||
}
|
||||
|
||||
/// Mutably iterates through this point coordinates.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Point3;
|
||||
/// let mut p = Point3::new(1.0, 2.0, 3.0);
|
||||
///
|
||||
/// for e in p.iter_mut() {
|
||||
/// *e *= 10.0;
|
||||
/// }
|
||||
///
|
||||
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
|
||||
#[inline]
|
||||
pub fn iter_mut(
|
||||
&mut self,
|
||||
|
|
|
@ -155,10 +155,13 @@ where
|
|||
*
|
||||
*/
|
||||
macro_rules! componentwise_constructors_impl(
|
||||
($($D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$(
|
||||
($($doc: expr; $D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$(
|
||||
impl<N: Scalar> Point<N, $D>
|
||||
where DefaultAllocator: Allocator<N, $D> {
|
||||
/// Initializes this matrix from its components.
|
||||
#[doc = "Initializes this matrix from its components."]
|
||||
#[doc = "# Example\n```"]
|
||||
#[doc = $doc]
|
||||
#[doc = "```"]
|
||||
#[inline]
|
||||
pub fn new($($args: N),*) -> Point<N, $D> {
|
||||
unsafe {
|
||||
|
@ -173,11 +176,17 @@ macro_rules! componentwise_constructors_impl(
|
|||
);
|
||||
|
||||
componentwise_constructors_impl!(
|
||||
"# use nalgebra::Point1;\nlet p = Point1::new(1.0);\nassert!(p.x == 1.0);";
|
||||
U1, x:0;
|
||||
"# use nalgebra::Point2;\nlet p = Point2::new(1.0, 2.0);\nassert!(p.x == 1.0 && p.y == 2.0);";
|
||||
U2, x:0, y:1;
|
||||
"# use nalgebra::Point3;\nlet p = Point3::new(1.0, 2.0, 3.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);";
|
||||
U3, x:0, y:1, z:2;
|
||||
"# use nalgebra::Point4;\nlet p = Point4::new(1.0, 2.0, 3.0, 4.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);";
|
||||
U4, x:0, y:1, z:2, w:3;
|
||||
"# use nalgebra::Point5;\nlet p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);";
|
||||
U5, x:0, y:1, z:2, w:3, a:4;
|
||||
"# use nalgebra::Point6;\nlet p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);";
|
||||
U6, x:0, y:1, z:2, w:3, a:4, b:5;
|
||||
);
|
||||
|
||||
|
|
|
@ -110,12 +110,30 @@ impl<N: Real> Quaternion<N> {
|
|||
}
|
||||
|
||||
/// Normalizes this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let q_normalized = q.normalize();
|
||||
/// relative_eq!(q_normalized.norm(), 1.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn normalize(&self) -> Quaternion<N> {
|
||||
Quaternion::from_vector(self.coords.normalize())
|
||||
}
|
||||
|
||||
/// Compute the conjugate of this quaternion.
|
||||
/// The conjugate of this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let conj = q.conjugate();
|
||||
/// assert!(conj.i == -2.0 && conj.j == -3.0 && conj.k == -4.0 && conj.w == 1.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn conjugate(&self) -> Quaternion<N> {
|
||||
let v = Vector4::new(
|
||||
|
@ -128,6 +146,24 @@ impl<N: Real> Quaternion<N> {
|
|||
}
|
||||
|
||||
/// Inverts this quaternion if it is not zero.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let inv_q = q.try_inverse();
|
||||
///
|
||||
/// assert!(inv_q.is_some());
|
||||
/// assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity());
|
||||
///
|
||||
/// //Non-invertible case
|
||||
/// let q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
|
||||
/// let inv_q = q.try_inverse();
|
||||
///
|
||||
/// assert!(inv_q.is_none());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn try_inverse(&self) -> Option<Quaternion<N>> {
|
||||
let mut res = Quaternion::from_vector(self.coords.clone_owned());
|
||||
|
@ -140,30 +176,75 @@ impl<N: Real> Quaternion<N> {
|
|||
}
|
||||
|
||||
/// Linear interpolation between two quaternion.
|
||||
///
|
||||
/// Computes `self * (1 - t) + other * t`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let q2 = Quaternion::new(10.0, 20.0, 30.0, 40.0);
|
||||
///
|
||||
/// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(1.9, 3.8, 5.7, 7.6));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn lerp(&self, other: &Quaternion<N>, t: N) -> Quaternion<N> {
|
||||
self * (N::one() - t) + other * t
|
||||
}
|
||||
|
||||
/// The vector part `(i, j, k)` of this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert_eq!(q.vector()[0], 2.0);
|
||||
/// assert_eq!(q.vector()[1], 3.0);
|
||||
/// assert_eq!(q.vector()[2], 4.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn vector(&self) -> MatrixSlice<N, U3, U1, RStride<N, U4, U1>, CStride<N, U4, U1>> {
|
||||
self.coords.fixed_rows::<U3>(0)
|
||||
}
|
||||
|
||||
/// The scalar part `w` of this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert_eq!(q.scalar(), 1.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn scalar(&self) -> N {
|
||||
self.coords[3]
|
||||
}
|
||||
|
||||
/// Reinterprets this quaternion as a 4D vector.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Vector4, Quaternion};
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// // Recall that the quaternion is stored internally as (i, j, k, w)
|
||||
/// // while the ::new constructor takes the arguments as (w, i, j, k).
|
||||
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn as_vector(&self) -> &Vector4<N> {
|
||||
&self.coords
|
||||
}
|
||||
|
||||
/// The norm of this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert_relative_eq!(q.norm(), 5.47722557, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn norm(&self) -> N {
|
||||
self.coords.norm()
|
||||
|
@ -172,30 +253,59 @@ impl<N: Real> Quaternion<N> {
|
|||
/// A synonym for the norm of this quaternion.
|
||||
///
|
||||
/// Aka the length.
|
||||
/// This is the same as `.norm()`
|
||||
///
|
||||
/// This function is simply implemented as a call to `norm()`
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert_relative_eq!(q.magnitude(), 5.47722557, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn magnitude(&self) -> N {
|
||||
self.norm()
|
||||
}
|
||||
|
||||
/// A synonym for the squared norm of this quaternion.
|
||||
///
|
||||
/// Aka the squared length.
|
||||
///
|
||||
/// This function is simply implemented as a call to `norm_squared()`
|
||||
#[inline]
|
||||
pub fn magnitude_squared(&self) -> N {
|
||||
self.norm_squared()
|
||||
}
|
||||
|
||||
/// The squared norm of this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert_eq!(q.magnitude_squared(), 30.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn norm_squared(&self) -> N {
|
||||
self.coords.norm_squared()
|
||||
}
|
||||
|
||||
/// A synonym for the squared norm of this quaternion.
|
||||
///
|
||||
/// Aka the squared length.
|
||||
/// This is the same as `.norm_squared()`
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert_eq!(q.magnitude_squared(), 30.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn magnitude_squared(&self) -> N {
|
||||
self.norm_squared()
|
||||
}
|
||||
|
||||
/// The dot product of two quaternions.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// let q2 = Quaternion::new(5.0, 6.0, 7.0, 8.0);
|
||||
/// assert_eq!(q1.dot(&q2), 70.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn dot(&self, rhs: &Self) -> N {
|
||||
self.coords.dot(&rhs.coords)
|
||||
|
@ -205,6 +315,17 @@ impl<N: Real> Quaternion<N> {
|
|||
///
|
||||
/// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation
|
||||
/// axis. If the rotation angle is zero, the rotation axis is set to `None`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use std::f32;
|
||||
/// # use nalgebra::{Vector3, Quaternion};
|
||||
/// let q = Quaternion::new(0.0, 5.0, 0.0, 0.0);
|
||||
/// let (norm, half_ang, axis) = q.polar_decomposition();
|
||||
/// assert_eq!(norm, 5.0);
|
||||
/// assert_eq!(half_ang, f32::consts::FRAC_PI_2);
|
||||
/// assert_eq!(axis, Some(Vector3::x_axis()));
|
||||
/// ```
|
||||
pub fn polar_decomposition(&self) -> (N, N, Option<Unit<Vector3<N>>>) {
|
||||
if let Some((q, n)) = Unit::try_new_and_get(*self, N::zero()) {
|
||||
if let Some(axis) = Unit::try_new(self.vector().clone_owned(), N::zero()) {
|
||||
|
@ -219,13 +340,55 @@ impl<N: Real> Quaternion<N> {
|
|||
}
|
||||
}
|
||||
|
||||
/// Compute the natural logarithm of a quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(2.0, 5.0, 0.0, 0.0);
|
||||
/// assert_relative_eq!(q.ln(), Quaternion::new(1.683647, 1.190289, 0.0, 0.0), epsilon = 1.0e-6)
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn ln(&self) -> Quaternion<N> {
|
||||
let n = self.norm();
|
||||
let v = self.vector();
|
||||
let s = self.scalar();
|
||||
|
||||
Quaternion::from_parts(n.ln(), v.normalize() * (s / n).acos())
|
||||
}
|
||||
|
||||
/// Compute the exponential of a quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
|
||||
/// assert_relative_eq!(q.exp(), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5)
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn exp(&self) -> Quaternion<N> {
|
||||
self.exp_eps(N::default_epsilon())
|
||||
}
|
||||
|
||||
/// Compute the exponential of a quaternion.
|
||||
/// Compute the exponential of a quaternion. Returns the identity if the vector part of this quaternion
|
||||
/// has a norm smaller than `eps`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
|
||||
/// assert_relative_eq!(q.exp_eps(1.0e-6), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5);
|
||||
///
|
||||
/// // Singular case.
|
||||
/// let q = Quaternion::new(0.0000001, 0.0, 0.0, 0.0);
|
||||
/// assert_eq!(q.exp_eps(1.0e-6), Quaternion::identity());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn exp_eps(&self, eps: N) -> Quaternion<N> {
|
||||
let v = self.vector();
|
||||
|
@ -238,33 +401,54 @@ impl<N: Real> Quaternion<N> {
|
|||
let n = nn.sqrt();
|
||||
let nv = v * (w_exp * n.sin() / n);
|
||||
|
||||
Quaternion::from_parts(n.cos(), nv)
|
||||
Quaternion::from_parts(w_exp * n.cos(), nv)
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute the natural logarithm of a quaternion.
|
||||
#[inline]
|
||||
pub fn ln(&self) -> Quaternion<N> {
|
||||
let n = self.norm();
|
||||
let v = self.vector();
|
||||
let s = self.scalar();
|
||||
|
||||
Quaternion::from_parts(n.ln(), v.normalize() * (s / n).acos())
|
||||
}
|
||||
|
||||
/// Raise the quaternion to a given floating power.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert_relative_eq!(q.powf(1.5), Quaternion::new( -6.2576659, 4.1549037, 6.2323556, 8.3098075), epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn powf(&self, n: N) -> Quaternion<N> {
|
||||
(self.ln() * n).exp()
|
||||
}
|
||||
|
||||
/// Transforms this quaternion into its 4D vector form (Vector part, Scalar part).
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Quaternion, Vector4};
|
||||
/// let mut q = Quaternion::identity();
|
||||
/// *q.as_vector_mut() = Vector4::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// assert!(q.i == 1.0 && q.j == 2.0 && q.k == 3.0 && q.w == 4.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn as_vector_mut(&mut self) -> &mut Vector4<N> {
|
||||
&mut self.coords
|
||||
}
|
||||
|
||||
/// The mutable vector part `(i, j, k)` of this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Quaternion, Vector4};
|
||||
/// let mut q = Quaternion::identity();
|
||||
/// {
|
||||
/// let mut v = q.vector_mut();
|
||||
/// v[0] = 2.0;
|
||||
/// v[1] = 3.0;
|
||||
/// v[2] = 4.0;
|
||||
/// }
|
||||
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn vector_mut(
|
||||
&mut self,
|
||||
|
@ -273,6 +457,14 @@ impl<N: Real> Quaternion<N> {
|
|||
}
|
||||
|
||||
/// Replaces this quaternion by its conjugate.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// q.conjugate_mut();
|
||||
/// assert!(q.i == -2.0 && q.j == -3.0 && q.k == -4.0 && q.w == 1.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn conjugate_mut(&mut self) {
|
||||
self.coords[0] = -self.coords[0];
|
||||
|
@ -281,6 +473,21 @@ impl<N: Real> Quaternion<N> {
|
|||
}
|
||||
|
||||
/// Inverts this quaternion in-place if it is not zero.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
///
|
||||
/// assert!(q.try_inverse_mut());
|
||||
/// assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity());
|
||||
///
|
||||
/// //Non-invertible case
|
||||
/// let mut q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
|
||||
/// assert!(!q.try_inverse_mut());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn try_inverse_mut(&mut self) -> bool {
|
||||
let norm_squared = self.norm_squared();
|
||||
|
@ -296,6 +503,16 @@ impl<N: Real> Quaternion<N> {
|
|||
}
|
||||
|
||||
/// Normalizes this quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::Quaternion;
|
||||
/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
||||
/// q.normalize_mut();
|
||||
/// assert_relative_eq!(q.norm(), 1.0);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn normalize_mut(&mut self) -> N {
|
||||
self.coords.normalize_mut()
|
||||
|
@ -368,19 +585,27 @@ pub type UnitQuaternion<N> = Unit<Quaternion<N>>;
|
|||
impl<N: Real> UnitQuaternion<N> {
|
||||
/// Moves this unit quaternion into one that owns its data.
|
||||
#[inline]
|
||||
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
|
||||
#[deprecated(note = "This method is unnecessary and will be removed in a future release. Use `.clone()` instead.")]
|
||||
pub fn into_owned(self) -> UnitQuaternion<N> {
|
||||
self
|
||||
}
|
||||
|
||||
/// Clones this unit quaternion into one that owns its data.
|
||||
#[inline]
|
||||
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
|
||||
#[deprecated(note = "This method is unnecessary and will be removed in a future release. Use `.clone()` instead.")]
|
||||
pub fn clone_owned(&self) -> UnitQuaternion<N> {
|
||||
*self
|
||||
}
|
||||
|
||||
/// The rotation angle in [0; pi] of this unit quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Unit, UnitQuaternion, Vector3};
|
||||
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
|
||||
/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
|
||||
/// assert_eq!(rot.angle(), 1.78);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn angle(&self) -> N {
|
||||
let w = self.quaternion().scalar().abs();
|
||||
|
@ -396,24 +621,60 @@ impl<N: Real> UnitQuaternion<N> {
|
|||
/// The underlying quaternion.
|
||||
///
|
||||
/// Same as `self.as_ref()`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{UnitQuaternion, Quaternion};
|
||||
/// let axis = UnitQuaternion::identity();
|
||||
/// assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn quaternion(&self) -> &Quaternion<N> {
|
||||
self.as_ref()
|
||||
}
|
||||
|
||||
/// Compute the conjugate of this unit quaternion.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Unit, UnitQuaternion, Vector3};
|
||||
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
|
||||
/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
|
||||
/// let conj = rot.conjugate();
|
||||
/// assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78));
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn conjugate(&self) -> UnitQuaternion<N> {
|
||||
UnitQuaternion::new_unchecked(self.as_ref().conjugate())
|
||||
}
|
||||
|
||||
/// Inverts this quaternion if it is not zero.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # use nalgebra::{Unit, UnitQuaternion, Vector3};
|
||||
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
|
||||
/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
|
||||
/// let inv = rot.inverse();
|
||||
/// assert_eq!(rot * inv, UnitQuaternion::identity());
|
||||
/// assert_eq!(inv * rot, UnitQuaternion::identity());
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn inverse(&self) -> UnitQuaternion<N> {
|
||||
self.conjugate()
|
||||
}
|
||||
|
||||
/// The rotation angle needed to make `self` and `other` coincide.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::{UnitQuaternion, Vector3};
|
||||
/// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
|
||||
/// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
|
||||
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn angle_to(&self, other: &UnitQuaternion<N>) -> N {
|
||||
let delta = self.rotation_to(other);
|
||||
|
@ -423,6 +684,17 @@ impl<N: Real> UnitQuaternion<N> {
|
|||
/// The unit quaternion needed to make `self` and `other` coincide.
|
||||
///
|
||||
/// The result is such that: `self.rotation_to(other) * self == other`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// # #[macro_use] extern crate approx;
|
||||
/// # extern crate nalgebra;
|
||||
/// # use nalgebra::{UnitQuaternion, Vector3};
|
||||
/// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
|
||||
/// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
|
||||
/// let rot_to = rot1.rotation_to(&rot2);
|
||||
/// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn rotation_to(&self, other: &UnitQuaternion<N>) -> UnitQuaternion<N> {
|
||||
other / self
|
||||
|
@ -437,6 +709,8 @@ impl<N: Real> UnitQuaternion<N> {
|
|||
}
|
||||
|
||||
/// Normalized linear interpolation between two unit quaternions.
|
||||
///
|
||||
/// This is the same as `self.lerp` except that the result is normalized.
|
||||
#[inline]
|
||||
pub fn nlerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
|
||||
let mut res = self.lerp(other, t);
|
||||
|
|
Loading…
Reference in New Issue