Correction in eigenvector matrices build up algorithm
This commit is contained in:
parent
a4de6a83cc
commit
497a4d8bd9
|
@ -220,12 +220,13 @@ where
|
|||
|
||||
let mut c = 0;
|
||||
|
||||
let epsilon = T::RealField::default_epsilon();
|
||||
|
||||
while c < n {
|
||||
if eigenvalues[c].im.abs() > T::RealField::default_epsilon() && c + 1 < n && {
|
||||
if eigenvalues[c].im.abs() > epsilon && c + 1 < n && {
|
||||
let e_conj = eigenvalues[c].conj();
|
||||
let e = eigenvalues[c + 1];
|
||||
((e_conj.re - e.re).abs() < T::RealField::default_epsilon())
|
||||
&& ((e_conj.im - e.im).abs() < T::RealField::default_epsilon())
|
||||
(&e_conj.re).ulps_eq(&e.re, epsilon, 6) && (&e_conj.im).ulps_eq(&e.im, epsilon, 6)
|
||||
} {
|
||||
// taking care of the left eigenvector matrix
|
||||
l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| {
|
||||
|
@ -255,7 +256,7 @@ where
|
|||
/// computes the generalized eigenvalues i.e values of lambda that satisfy the following equation
|
||||
/// determinant(A - lambda* B) = 0
|
||||
#[must_use]
|
||||
fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
||||
pub fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<Complex<T>, D>,
|
||||
{
|
||||
|
@ -265,23 +266,8 @@ where
|
|||
out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() {
|
||||
Complex::zero()
|
||||
} else {
|
||||
let mut cr = self.alphar[i].clone();
|
||||
let mut ci = self.alphai[i].clone();
|
||||
let b = self.beta[i].clone();
|
||||
|
||||
if cr.clone().abs() < T::RealField::default_epsilon() {
|
||||
cr = T::RealField::zero()
|
||||
} else {
|
||||
cr = cr / b.clone()
|
||||
};
|
||||
|
||||
if ci.clone().abs() < T::RealField::default_epsilon() {
|
||||
ci = T::RealField::zero()
|
||||
} else {
|
||||
ci = ci / b
|
||||
};
|
||||
|
||||
Complex::new(cr, ci)
|
||||
Complex::new(self.alphar[i].clone(), self.alphai[i].clone())
|
||||
* (Complex::new(self.beta[i].clone(), T::RealField::zero()).inv())
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue