Move nalgebra proptest slow tests into slow
submodule
This way it's easier to keep track of what imports are only necessary for the slow tests.
This commit is contained in:
parent
f909638bf4
commit
402de4d045
@ -6,13 +6,6 @@ use proptest::prelude::*;
|
||||
use proptest::strategy::ValueTree;
|
||||
use proptest::test_runner::TestRunner;
|
||||
|
||||
#[cfg(feature = "slow-tests")]
|
||||
use {
|
||||
itertools::Itertools,
|
||||
std::iter::repeat,
|
||||
std::collections::HashSet,
|
||||
};
|
||||
|
||||
/// Generate a proptest that tests that all matrices generated with the
|
||||
/// provided rows and columns conform to the constraints defined by the
|
||||
/// input.
|
||||
@ -96,62 +89,6 @@ proptest! {
|
||||
fn ensure_arbitrary_test_compiles_dvector(_: DVector<i32>) {}
|
||||
}
|
||||
|
||||
#[cfg(feature = "slow-tests")]
|
||||
#[test]
|
||||
fn matrix_samples_all_possible_outputs() {
|
||||
// Test that the proptest generation covers all possible outputs for a small space of inputs
|
||||
// given enough samples.
|
||||
|
||||
// We use a deterministic test runner to make the test "stable".
|
||||
let mut runner = TestRunner::deterministic();
|
||||
|
||||
// This number needs to be high enough so that we with high probability sample
|
||||
// all possible cases
|
||||
let num_generated_matrices = 200000;
|
||||
|
||||
let values = -1..=1;
|
||||
let rows = 0..=2;
|
||||
let cols = 0..=3;
|
||||
let strategy = matrix(values.clone(), rows.clone(), cols.clone());
|
||||
|
||||
// Enumerate all possible combinations
|
||||
let mut all_combinations = HashSet::new();
|
||||
for nrows in rows {
|
||||
for ncols in cols.clone() {
|
||||
// For the given number of rows and columns
|
||||
let n_values = nrows * ncols;
|
||||
|
||||
if n_values == 0 {
|
||||
// If we have zero rows or columns, the set of matrices with the given
|
||||
// rows and columns is a single element: an empty matrix
|
||||
all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &[]));
|
||||
} else {
|
||||
// Otherwise, we need to sample all possible matrices.
|
||||
// To do this, we generate the values as the (multi) Cartesian product
|
||||
// of the value sets. For example, for a 2x2 matrices, we consider
|
||||
// all possible 4-element arrays that the matrices can take by
|
||||
// considering all elements in the cartesian product
|
||||
// V x V x V x V
|
||||
// where V is the set of eligible values, e.g. V := -1 ..= 1
|
||||
for matrix_values in repeat(values.clone()).take(n_values).multi_cartesian_product() {
|
||||
all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &matrix_values));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut visited_combinations = HashSet::new();
|
||||
for _ in 0..num_generated_matrices {
|
||||
let tree = strategy
|
||||
.new_tree(&mut runner)
|
||||
.expect("Tree generation should not fail");
|
||||
let matrix = tree.current();
|
||||
visited_combinations.insert(matrix.clone());
|
||||
}
|
||||
|
||||
assert_eq!(visited_combinations, all_combinations, "Did not sample all possible values.");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn matrix_shrinking_satisfies_constraints() {
|
||||
// We use a deterministic test runner to make the test "stable".
|
||||
@ -206,3 +143,77 @@ fn matrix_shrinking_satisfies_constraints() {
|
||||
|
||||
maybeprintln!("========================== (end of generation process)");
|
||||
}
|
||||
|
||||
#[cfg(feature = "slow-tests")]
|
||||
mod slow {
|
||||
use super::*;
|
||||
use itertools::Itertools;
|
||||
use std::collections::HashSet;
|
||||
use std::iter::repeat;
|
||||
|
||||
#[cfg(feature = "slow-tests")]
|
||||
#[test]
|
||||
fn matrix_samples_all_possible_outputs() {
|
||||
// Test that the proptest generation covers all possible outputs for a small space of inputs
|
||||
// given enough samples.
|
||||
|
||||
// We use a deterministic test runner to make the test "stable".
|
||||
let mut runner = TestRunner::deterministic();
|
||||
|
||||
// This number needs to be high enough so that we with high probability sample
|
||||
// all possible cases
|
||||
let num_generated_matrices = 200000;
|
||||
|
||||
let values = -1..=1;
|
||||
let rows = 0..=2;
|
||||
let cols = 0..=3;
|
||||
let strategy = matrix(values.clone(), rows.clone(), cols.clone());
|
||||
|
||||
// Enumerate all possible combinations
|
||||
let mut all_combinations = HashSet::new();
|
||||
for nrows in rows {
|
||||
for ncols in cols.clone() {
|
||||
// For the given number of rows and columns
|
||||
let n_values = nrows * ncols;
|
||||
|
||||
if n_values == 0 {
|
||||
// If we have zero rows or columns, the set of matrices with the given
|
||||
// rows and columns is a single element: an empty matrix
|
||||
all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &[]));
|
||||
} else {
|
||||
// Otherwise, we need to sample all possible matrices.
|
||||
// To do this, we generate the values as the (multi) Cartesian product
|
||||
// of the value sets. For example, for a 2x2 matrices, we consider
|
||||
// all possible 4-element arrays that the matrices can take by
|
||||
// considering all elements in the cartesian product
|
||||
// V x V x V x V
|
||||
// where V is the set of eligible values, e.g. V := -1 ..= 1
|
||||
for matrix_values in repeat(values.clone())
|
||||
.take(n_values)
|
||||
.multi_cartesian_product()
|
||||
{
|
||||
all_combinations.insert(DMatrix::from_row_slice(
|
||||
nrows,
|
||||
ncols,
|
||||
&matrix_values,
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut visited_combinations = HashSet::new();
|
||||
for _ in 0..num_generated_matrices {
|
||||
let tree = strategy
|
||||
.new_tree(&mut runner)
|
||||
.expect("Tree generation should not fail");
|
||||
let matrix = tree.current();
|
||||
visited_combinations.insert(matrix.clone());
|
||||
}
|
||||
|
||||
assert_eq!(
|
||||
visited_combinations, all_combinations,
|
||||
"Did not sample all possible values."
|
||||
);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user