Move nalgebra proptest slow tests into `slow` submodule

This way it's easier to keep track of what imports are only
necessary for the slow tests.
This commit is contained in:
Andreas Longva 2020-11-23 13:41:10 +01:00
parent f909638bf4
commit 402de4d045
1 changed files with 74 additions and 63 deletions

View File

@ -6,13 +6,6 @@ use proptest::prelude::*;
use proptest::strategy::ValueTree;
use proptest::test_runner::TestRunner;
#[cfg(feature = "slow-tests")]
use {
itertools::Itertools,
std::iter::repeat,
std::collections::HashSet,
};
/// Generate a proptest that tests that all matrices generated with the
/// provided rows and columns conform to the constraints defined by the
/// input.
@ -96,62 +89,6 @@ proptest! {
fn ensure_arbitrary_test_compiles_dvector(_: DVector<i32>) {}
}
#[cfg(feature = "slow-tests")]
#[test]
fn matrix_samples_all_possible_outputs() {
// Test that the proptest generation covers all possible outputs for a small space of inputs
// given enough samples.
// We use a deterministic test runner to make the test "stable".
let mut runner = TestRunner::deterministic();
// This number needs to be high enough so that we with high probability sample
// all possible cases
let num_generated_matrices = 200000;
let values = -1..=1;
let rows = 0..=2;
let cols = 0..=3;
let strategy = matrix(values.clone(), rows.clone(), cols.clone());
// Enumerate all possible combinations
let mut all_combinations = HashSet::new();
for nrows in rows {
for ncols in cols.clone() {
// For the given number of rows and columns
let n_values = nrows * ncols;
if n_values == 0 {
// If we have zero rows or columns, the set of matrices with the given
// rows and columns is a single element: an empty matrix
all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &[]));
} else {
// Otherwise, we need to sample all possible matrices.
// To do this, we generate the values as the (multi) Cartesian product
// of the value sets. For example, for a 2x2 matrices, we consider
// all possible 4-element arrays that the matrices can take by
// considering all elements in the cartesian product
// V x V x V x V
// where V is the set of eligible values, e.g. V := -1 ..= 1
for matrix_values in repeat(values.clone()).take(n_values).multi_cartesian_product() {
all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &matrix_values));
}
}
}
}
let mut visited_combinations = HashSet::new();
for _ in 0..num_generated_matrices {
let tree = strategy
.new_tree(&mut runner)
.expect("Tree generation should not fail");
let matrix = tree.current();
visited_combinations.insert(matrix.clone());
}
assert_eq!(visited_combinations, all_combinations, "Did not sample all possible values.");
}
#[test]
fn matrix_shrinking_satisfies_constraints() {
// We use a deterministic test runner to make the test "stable".
@ -206,3 +143,77 @@ fn matrix_shrinking_satisfies_constraints() {
maybeprintln!("========================== (end of generation process)");
}
#[cfg(feature = "slow-tests")]
mod slow {
use super::*;
use itertools::Itertools;
use std::collections::HashSet;
use std::iter::repeat;
#[cfg(feature = "slow-tests")]
#[test]
fn matrix_samples_all_possible_outputs() {
// Test that the proptest generation covers all possible outputs for a small space of inputs
// given enough samples.
// We use a deterministic test runner to make the test "stable".
let mut runner = TestRunner::deterministic();
// This number needs to be high enough so that we with high probability sample
// all possible cases
let num_generated_matrices = 200000;
let values = -1..=1;
let rows = 0..=2;
let cols = 0..=3;
let strategy = matrix(values.clone(), rows.clone(), cols.clone());
// Enumerate all possible combinations
let mut all_combinations = HashSet::new();
for nrows in rows {
for ncols in cols.clone() {
// For the given number of rows and columns
let n_values = nrows * ncols;
if n_values == 0 {
// If we have zero rows or columns, the set of matrices with the given
// rows and columns is a single element: an empty matrix
all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &[]));
} else {
// Otherwise, we need to sample all possible matrices.
// To do this, we generate the values as the (multi) Cartesian product
// of the value sets. For example, for a 2x2 matrices, we consider
// all possible 4-element arrays that the matrices can take by
// considering all elements in the cartesian product
// V x V x V x V
// where V is the set of eligible values, e.g. V := -1 ..= 1
for matrix_values in repeat(values.clone())
.take(n_values)
.multi_cartesian_product()
{
all_combinations.insert(DMatrix::from_row_slice(
nrows,
ncols,
&matrix_values,
));
}
}
}
}
let mut visited_combinations = HashSet::new();
for _ in 0..num_generated_matrices {
let tree = strategy
.new_tree(&mut runner)
.expect("Tree generation should not fail");
let matrix = tree.current();
visited_combinations.insert(matrix.clone());
}
assert_eq!(
visited_combinations, all_combinations,
"Did not sample all possible values."
);
}
}