diff --git a/nalgebra-lapack/src/eigen.rs b/nalgebra-lapack/src/eigen.rs index bab9de83..68b34b56 100644 --- a/nalgebra-lapack/src/eigen.rs +++ b/nalgebra-lapack/src/eigen.rs @@ -13,7 +13,7 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; -/// Eigendecomposition of a real square matrix with real eigenvalues. +/// Eigendecomposition of a real square matrix with real or complex eigenvalues. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", @@ -36,8 +36,10 @@ pub struct Eigen where DefaultAllocator: Allocator + Allocator, { - /// The eigenvalues of the decomposed matrix. - pub eigenvalues: OVector, + /// The real parts of eigenvalues of the decomposed matrix. + pub eigenvalues_re: OVector, + /// The imaginary parts of the eigenvalues of the decomposed matrix. + pub eigenvalues_im: OVector, /// The (right) eigenvectors of the decomposed matrix. pub eigenvectors: Option>, /// The left eigenvectors of the decomposed matrix. @@ -104,169 +106,27 @@ where lapack_check!(info); let mut work = vec![T::zero(); lwork as usize]; + let mut vl = if left_eigenvectors { + Some(Matrix::zeros_generic(nrows, ncols)) + } else { + None + }; + let mut vr = if eigenvectors { + Some(Matrix::zeros_generic(nrows, ncols)) + } else { + None + }; - match (left_eigenvectors, eigenvectors) { - (true, true) => { - // TODO: avoid the initializations? - let mut vl = Matrix::zeros_generic(nrows, ncols); - let mut vr = Matrix::zeros_generic(nrows, ncols); + let vl_ref = vl + .as_mut() + .map(|m| m.as_mut_slice()) + .unwrap_or(&mut placeholder1); + let vr_ref = vr + .as_mut() + .map(|m| m.as_mut_slice()) + .unwrap_or(&mut placeholder2); - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut vl.as_mut_slice(), - n as i32, - &mut vr.as_mut_slice(), - n as i32, - &mut work, - lwork, - &mut info, - ); - lapack_check!(info); - - if wi.iter().all(|e| e.is_zero()) { - return Some(Self { - eigenvalues: wr, - left_eigenvectors: Some(vl), - eigenvectors: Some(vr), - }); - } - } - (true, false) => { - // TODO: avoid the initialization? - let mut vl = Matrix::zeros_generic(nrows, ncols); - - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut vl.as_mut_slice(), - n as i32, - &mut placeholder2, - 1 as i32, - &mut work, - lwork, - &mut info, - ); - lapack_check!(info); - - if wi.iter().all(|e| e.is_zero()) { - return Some(Self { - eigenvalues: wr, - left_eigenvectors: Some(vl), - eigenvectors: None, - }); - } - } - (false, true) => { - // TODO: avoid the initialization? - let mut vr = Matrix::zeros_generic(nrows, ncols); - - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut placeholder1, - 1 as i32, - &mut vr.as_mut_slice(), - n as i32, - &mut work, - lwork, - &mut info, - ); - lapack_check!(info); - - if wi.iter().all(|e| e.is_zero()) { - return Some(Self { - eigenvalues: wr, - left_eigenvectors: None, - eigenvectors: Some(vr), - }); - } - } - (false, false) => { - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut placeholder1, - 1 as i32, - &mut placeholder2, - 1 as i32, - &mut work, - lwork, - &mut info, - ); - lapack_check!(info); - - if wi.iter().all(|e| e.is_zero()) { - return Some(Self { - eigenvalues: wr, - left_eigenvectors: None, - eigenvectors: None, - }); - } - } - } - - None - } - - /// The complex eigen decomposition of the given matrix. - /// - /// Panics if the eigenvalue computation does not converge. - pub fn complex_eigen_decomposition( - mut m: OMatrix, - left_eigenvectors: bool, - eigenvectors: bool, - ) -> ( - OVector, D>, - Option>, - Option>, - ) - where - DefaultAllocator: Allocator, D> + Allocator, D, D>, - { - assert!( - m.is_square(), - "Unable to compute the eigenvalue decomposition of a non-square matrix." - ); - - let ljob = if left_eigenvectors { b'V' } else { b'N' }; - let rjob = if eigenvectors { b'V' } else { b'N' }; - - let (nrows, ncols) = m.shape_generic(); - let n = nrows.value(); - - let lda = n as i32; - - // TODO: avoid the initialization? - let mut wr = Matrix::zeros_generic(nrows, Const::<1>); - // TODO: Tap into the workspace. - let mut wi = Matrix::zeros_generic(nrows, Const::<1>); - - let mut info = 0; - let mut placeholder1 = [T::zero()]; - let mut placeholder2 = [T::zero()]; - - let lwork = T::xgeev_work_size( + T::xgeev( ljob, rjob, n as i32, @@ -274,142 +134,36 @@ where lda, wr.as_mut_slice(), wi.as_mut_slice(), - &mut placeholder1, - n as i32, - &mut placeholder2, - n as i32, + vl_ref, + if left_eigenvectors { n as i32 } else { 1 }, + vr_ref, + if eigenvectors { n as i32 } else { 1 }, + &mut work, + lwork, &mut info, ); + lapack_check!(info); - lapack_panic!(info); + Some(Self { + eigenvalues_re: wr, + eigenvalues_im: wi, + left_eigenvectors: vl, + eigenvectors: vr, + }) + } - let mut work = vec![T::zero(); lwork as usize]; - - match (left_eigenvectors, eigenvectors) { - (true, true) => { - // TODO: avoid the initializations? - let mut vl = Matrix::zeros_generic(nrows, ncols); - let mut vr = Matrix::zeros_generic(nrows, ncols); - - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut vl.as_mut_slice(), - n as i32, - &mut vr.as_mut_slice(), - n as i32, - &mut work, - lwork, - &mut info, - ); - lapack_panic!(info); - - let mut res = Matrix::zeros_generic(nrows, Const::<1>); - - for i in 0..res.len() { - res[i] = Complex::new(wr[i].clone(), wi[i].clone()); - } - (res, Some(vl), Some(vr)) - } - (true, false) => { - // TODO: avoid the initialization? - let mut vl = Matrix::zeros_generic(nrows, ncols); - - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut vl.as_mut_slice(), - n as i32, - &mut placeholder2, - 1 as i32, - &mut work, - lwork, - &mut info, - ); - lapack_panic!(info); - - let mut res = Matrix::zeros_generic(nrows, Const::<1>); - - for i in 0..res.len() { - res[i] = Complex::new(wr[i].clone(), wi[i].clone()); - } - (res, Some(vl), None) - } - (false, true) => { - // TODO: avoid the initialization? - let mut vr = Matrix::zeros_generic(nrows, ncols); - - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut placeholder1, - 1 as i32, - &mut vr.as_mut_slice(), - n as i32, - &mut work, - lwork, - &mut info, - ); - lapack_panic!(info); - - let mut res = Matrix::zeros_generic(nrows, Const::<1>); - - for i in 0..res.len() { - res[i] = Complex::new(wr[i].clone(), wi[i].clone()); - } - (res, None, Some(vr)) - } - (false, false) => { - T::xgeev( - ljob, - rjob, - n as i32, - m.as_mut_slice(), - lda, - wr.as_mut_slice(), - wi.as_mut_slice(), - &mut placeholder1, - 1 as i32, - &mut placeholder2, - 1 as i32, - &mut work, - lwork, - &mut info, - ); - lapack_panic!(info); - - let mut res = Matrix::zeros_generic(nrows, Const::<1>); - - for i in 0..res.len() { - res[i] = Complex::new(wr[i].clone(), wi[i].clone()); - } - (res, None, None) - } - } + /// Returns `true` if all the eigenvalues are real. + pub fn eigenvalues_are_real(&self) -> bool { + self.eigenvalues_im.iter().all(|e| e.is_zero()) } /// The determinant of the decomposed matrix. #[inline] #[must_use] - pub fn determinant(&self) -> T { - let mut det = T::one(); - for e in self.eigenvalues.iter() { - det *= e.clone(); + pub fn determinant(&self) -> Complex { + let mut det: Complex = na::one(); + for (re, im) in self.eigenvalues_re.iter().zip(self.eigenvalues_im.iter()) { + det *= Complex::new(re.clone(), im.clone()); } det