Correct typos, move doc portion to comment and fix borrow to clone
This commit is contained in:
parent
c8a920ff2c
commit
3413ab7da8
|
@ -181,7 +181,7 @@ where
|
|||
|
||||
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
|
||||
/// Outputs two matrices.
|
||||
/// The first output matix contains the left eigenvectors of the generalized eigenvalues
|
||||
/// The first output matrix contains the left eigenvectors of the generalized eigenvalues
|
||||
/// as columns.
|
||||
/// The second matrix contains the right eigenvectors of the generalized eigenvalues
|
||||
/// as columns.
|
||||
|
@ -196,46 +196,45 @@ where
|
|||
///
|
||||
/// u(j)**H * A = lambda(j) * u(j)**H * B
|
||||
/// where u(j)**H is the conjugate-transpose of u(j).
|
||||
///
|
||||
/// How the eigenvectors are build up:
|
||||
///
|
||||
/// Since the input entries are all real, the generalized eigenvalues if complex come in pairs
|
||||
/// as a consequence of <https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem>
|
||||
/// The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated
|
||||
/// eigenvectors from the real matrix output via the following procedure
|
||||
///
|
||||
/// (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns,
|
||||
/// VR stands for the lapack real matrix output containing the right eigenvectors as columns)
|
||||
///
|
||||
/// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
|
||||
/// then
|
||||
///
|
||||
/// u(j) = VL(:,j)+i*VL(:,j+1)
|
||||
/// u(j+1) = VL(:,j)-i*VL(:,j+1)
|
||||
///
|
||||
/// and
|
||||
///
|
||||
/// u(j) = VR(:,j)+i*VR(:,j+1)
|
||||
/// v(j+1) = VR(:,j)-i*VR(:,j+1).
|
||||
///
|
||||
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
|
||||
pub fn eigenvectors(&self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
|
||||
where
|
||||
DefaultAllocator:
|
||||
Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D> + Allocator<(Complex<T>, T), D>,
|
||||
{
|
||||
/*
|
||||
How the eigenvectors are built up:
|
||||
|
||||
Since the input entries are all real, the generalized eigenvalues if complex come in pairs
|
||||
as a consequence of the [complex conjugate root thorem](https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem)
|
||||
The Lapack routine output reflects this by expecting the user to unpack the complex eigenvalues associated
|
||||
eigenvectors from the real matrix output via the following procedure
|
||||
|
||||
(Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns,
|
||||
VR stands for the lapack real matrix output containing the right eigenvectors as columns)
|
||||
|
||||
If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
|
||||
then
|
||||
|
||||
u(j) = VL(:,j)+i*VL(:,j+1)
|
||||
u(j+1) = VL(:,j)-i*VL(:,j+1)
|
||||
|
||||
and
|
||||
|
||||
u(j) = VR(:,j)+i*VR(:,j+1)
|
||||
v(j+1) = VR(:,j)-i*VR(:,j+1).
|
||||
*/
|
||||
|
||||
let n = self.vsl.shape().0;
|
||||
|
||||
let mut l = self
|
||||
.vsl
|
||||
.clone()
|
||||
.map(|x| Complex::new(x, T::RealField::zero()));
|
||||
|
||||
let mut r = self
|
||||
.vsr
|
||||
.clone()
|
||||
.map(|x| Complex::new(x, T::RealField::zero()));
|
||||
|
||||
let eigenvalues = &self.raw_eigenvalues();
|
||||
let eigenvalues = self.raw_eigenvalues();
|
||||
|
||||
let mut c = 0;
|
||||
|
||||
|
|
Loading…
Reference in New Issue