Cholesky: add unchecked construction compatible with AoSoA SIMD.
This commit is contained in:
parent
423b4b27b0
commit
3359e25435
|
@ -3,6 +3,7 @@ use serde::{Deserialize, Serialize};
|
|||
|
||||
use num::One;
|
||||
use simba::scalar::ComplexField;
|
||||
use simba::simd::SimdComplexField;
|
||||
|
||||
use crate::allocator::Allocator;
|
||||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vector};
|
||||
|
@ -23,29 +24,26 @@ use crate::storage::{Storage, StorageMut};
|
|||
MatrixN<N, D>: Deserialize<'de>"))
|
||||
)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Cholesky<N: ComplexField, D: Dim>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
pub struct Cholesky<N: SimdComplexField, D: Dim>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
chol: MatrixN<N, D>,
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim> Copy for Cholesky<N, D>
|
||||
impl<N: SimdComplexField, D: Dim> Copy for Cholesky<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
MatrixN<N, D>: Copy,
|
||||
{
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
impl<N: SimdComplexField, D: Dim> Cholesky<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of `matrix`.
|
||||
/// Computes the Cholesky decomposition of `matrix` without checking that the matrix is definite-positive.
|
||||
///
|
||||
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
||||
/// to be symmetric and only the lower-triangular part is read.
|
||||
pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
|
||||
/// If the input matrix is not definite-positive, the decomposition may contain trash values (Inf, NaN, etc.)
|
||||
pub fn new_unchecked(mut matrix: MatrixN<N, D>) -> Self {
|
||||
assert!(matrix.is_square(), "The input matrix must be square.");
|
||||
|
||||
let n = matrix.nrows();
|
||||
|
@ -57,29 +55,21 @@ where
|
|||
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
|
||||
let mut col_j = col_j.rows_range_mut(j..);
|
||||
let col_k = col_k.rows_range(j..);
|
||||
|
||||
col_j.axpy(factor.conjugate(), &col_k, N::one());
|
||||
col_j.axpy(factor.simd_conjugate(), &col_k, N::one());
|
||||
}
|
||||
|
||||
let diag = unsafe { *matrix.get_unchecked((j, j)) };
|
||||
if !diag.is_zero() {
|
||||
if let Some(denom) = diag.try_sqrt() {
|
||||
let denom = diag.simd_sqrt();
|
||||
|
||||
unsafe {
|
||||
*matrix.get_unchecked_mut((j, j)) = denom;
|
||||
}
|
||||
|
||||
let mut col = matrix.slice_range_mut(j + 1.., j);
|
||||
col /= denom;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// The diagonal element is either zero or its square root could not
|
||||
// be taken (e.g. for negative real numbers).
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(Cholesky { chol: matrix })
|
||||
Cholesky { chol: matrix }
|
||||
}
|
||||
|
||||
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
|
||||
|
@ -121,8 +111,8 @@ where
|
|||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let _ = self.chol.solve_lower_triangular_mut(b);
|
||||
let _ = self.chol.ad_solve_lower_triangular_mut(b);
|
||||
self.chol.solve_lower_triangular_unchecked_mut(b);
|
||||
self.chol.ad_solve_lower_triangular_unchecked_mut(b);
|
||||
}
|
||||
|
||||
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
|
||||
|
@ -146,6 +136,51 @@ where
|
|||
self.solve_mut(&mut res);
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: ComplexField, D: Dim> Cholesky<N, D>
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of `matrix`.
|
||||
///
|
||||
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
||||
/// to be symmetric and only the lower-triangular part is read.
|
||||
pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
|
||||
assert!(matrix.is_square(), "The input matrix must be square.");
|
||||
|
||||
let n = matrix.nrows();
|
||||
|
||||
for j in 0..n {
|
||||
for k in 0..j {
|
||||
let factor = unsafe { -*matrix.get_unchecked((j, k)) };
|
||||
|
||||
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
|
||||
let mut col_j = col_j.rows_range_mut(j..);
|
||||
let col_k = col_k.rows_range(j..);
|
||||
|
||||
col_j.axpy(factor.conjugate(), &col_k, N::one());
|
||||
}
|
||||
|
||||
let diag = unsafe { *matrix.get_unchecked((j, j)) };
|
||||
if !diag.is_zero() {
|
||||
if let Some(denom) = diag.try_sqrt() {
|
||||
unsafe {
|
||||
*matrix.get_unchecked_mut((j, j)) = denom;
|
||||
}
|
||||
|
||||
let mut col = matrix.slice_range_mut(j + 1.., j);
|
||||
col /= denom;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// The diagonal element is either zero or its square root could not
|
||||
// be taken (e.g. for negative real numbers).
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(Cholesky { chol: matrix })
|
||||
}
|
||||
|
||||
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
||||
/// performs a rank one update such that we end up with the decomposition of `M + sigma * (v * v.adjoint())`.
|
||||
|
@ -327,8 +362,7 @@ where
|
|||
}
|
||||
|
||||
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||||
where
|
||||
DefaultAllocator: Allocator<N, D, D>,
|
||||
where DefaultAllocator: Allocator<N, D, D>
|
||||
{
|
||||
/// Attempts to compute the Cholesky decomposition of this matrix.
|
||||
///
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
use simba::scalar::ComplexField;
|
||||
use simba::simd::SimdComplexField;
|
||||
|
||||
use crate::base::allocator::Allocator;
|
||||
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
|
||||
|
@ -432,3 +433,336 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|||
true
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* SIMD-compatible unchecked versions.
|
||||
*
|
||||
*/
|
||||
|
||||
impl<N: SimdComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||||
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
|
||||
/// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
#[inline]
|
||||
pub fn solve_lower_triangular_unchecked<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> MatrixMN<N, R2, C2>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let mut res = b.clone_owned();
|
||||
self.solve_lower_triangular_unchecked_mut(&mut res);
|
||||
res
|
||||
}
|
||||
|
||||
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
|
||||
/// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
#[inline]
|
||||
pub fn solve_upper_triangular_unchecked<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> MatrixMN<N, R2, C2>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let mut res = b.clone_owned();
|
||||
self.solve_upper_triangular_unchecked_mut(&mut res);
|
||||
res
|
||||
}
|
||||
|
||||
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||||
/// lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
pub fn solve_lower_triangular_unchecked_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
for i in 0..b.ncols() {
|
||||
self.solve_lower_triangular_vector_unchecked_mut(&mut b.column_mut(i));
|
||||
}
|
||||
}
|
||||
|
||||
fn solve_lower_triangular_vector_unchecked_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>)
|
||||
where
|
||||
S2: StorageMut<N, R2, U1>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let dim = self.nrows();
|
||||
|
||||
for i in 0..dim {
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = *self.get_unchecked((i, i));
|
||||
coeff = *b.vget_unchecked(i) / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
}
|
||||
|
||||
b.rows_range_mut(i + 1..)
|
||||
.axpy(-coeff, &self.slice_range(i + 1.., i), N::one());
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: add the same but for solving upper-triangular.
|
||||
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||||
/// lower-triangular part of `self` is considered not-zero. The diagonal is never read as it is
|
||||
/// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero.
|
||||
pub fn solve_lower_triangular_with_diag_unchecked_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
diag: N,
|
||||
) where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let dim = self.nrows();
|
||||
let cols = b.ncols();
|
||||
|
||||
for k in 0..cols {
|
||||
let mut bcol = b.column_mut(k);
|
||||
|
||||
for i in 0..dim - 1 {
|
||||
let coeff = unsafe { *bcol.vget_unchecked(i) } / diag;
|
||||
bcol.rows_range_mut(i + 1..)
|
||||
.axpy(-coeff, &self.slice_range(i + 1.., i), N::one());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
||||
/// upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
pub fn solve_upper_triangular_unchecked_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
for i in 0..b.ncols() {
|
||||
self.solve_upper_triangular_vector_unchecked_mut(&mut b.column_mut(i))
|
||||
}
|
||||
}
|
||||
|
||||
fn solve_upper_triangular_vector_unchecked_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>)
|
||||
where
|
||||
S2: StorageMut<N, R2, U1>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let dim = self.nrows();
|
||||
|
||||
for i in (0..dim).rev() {
|
||||
let coeff;
|
||||
|
||||
unsafe {
|
||||
let diag = *self.get_unchecked((i, i));
|
||||
coeff = *b.vget_unchecked(i) / diag;
|
||||
*b.vget_unchecked_mut(i) = coeff;
|
||||
}
|
||||
|
||||
b.rows_range_mut(..i)
|
||||
.axpy(-coeff, &self.slice_range(..i, i), N::one());
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* Transpose and adjoint versions
|
||||
*
|
||||
*/
|
||||
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
|
||||
/// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
#[inline]
|
||||
pub fn tr_solve_lower_triangular_unchecked<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> MatrixMN<N, R2, C2>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let mut res = b.clone_owned();
|
||||
self.tr_solve_lower_triangular_unchecked_mut(&mut res);
|
||||
res
|
||||
}
|
||||
|
||||
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
|
||||
/// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
#[inline]
|
||||
pub fn tr_solve_upper_triangular_unchecked<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> MatrixMN<N, R2, C2>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let mut res = b.clone_owned();
|
||||
self.tr_solve_upper_triangular_unchecked_mut(&mut res);
|
||||
res
|
||||
}
|
||||
|
||||
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
|
||||
/// lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
pub fn tr_solve_lower_triangular_unchecked_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
for i in 0..b.ncols() {
|
||||
self.xx_solve_lower_triangular_vector_unchecked_mut(
|
||||
&mut b.column_mut(i),
|
||||
|e| e,
|
||||
|a, b| a.dot(b),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
|
||||
/// upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
pub fn tr_solve_upper_triangular_unchecked_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
for i in 0..b.ncols() {
|
||||
self.xx_solve_upper_triangular_vector_unchecked_mut(
|
||||
&mut b.column_mut(i),
|
||||
|e| e,
|
||||
|a, b| a.dot(b),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the solution of the linear system `self.adjoint() . x = b` where `x` is the unknown and only
|
||||
/// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
#[inline]
|
||||
pub fn ad_solve_lower_triangular_unchecked<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> MatrixMN<N, R2, C2>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let mut res = b.clone_owned();
|
||||
self.ad_solve_lower_triangular_unchecked_mut(&mut res);
|
||||
res
|
||||
}
|
||||
|
||||
/// Computes the solution of the linear system `self.adjoint() . x = b` where `x` is the unknown and only
|
||||
/// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
#[inline]
|
||||
pub fn ad_solve_upper_triangular_unchecked<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &Matrix<N, R2, C2, S2>,
|
||||
) -> MatrixMN<N, R2, C2>
|
||||
where
|
||||
S2: Storage<N, R2, C2>,
|
||||
DefaultAllocator: Allocator<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let mut res = b.clone_owned();
|
||||
self.ad_solve_upper_triangular_unchecked_mut(&mut res);
|
||||
res
|
||||
}
|
||||
|
||||
/// Solves the linear system `self.adjoint() . x = b` where `x` is the unknown and only the
|
||||
/// lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
pub fn ad_solve_lower_triangular_unchecked_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
for i in 0..b.ncols() {
|
||||
self.xx_solve_lower_triangular_vector_unchecked_mut(
|
||||
&mut b.column_mut(i),
|
||||
|e| e.simd_conjugate(),
|
||||
|a, b| a.dotc(b),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Solves the linear system `self.adjoint() . x = b` where `x` is the unknown and only the
|
||||
/// upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
||||
pub fn ad_solve_upper_triangular_unchecked_mut<R2: Dim, C2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Matrix<N, R2, C2, S2>,
|
||||
) where
|
||||
S2: StorageMut<N, R2, C2>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
for i in 0..b.ncols() {
|
||||
self.xx_solve_upper_triangular_vector_unchecked_mut(
|
||||
&mut b.column_mut(i),
|
||||
|e| e.simd_conjugate(),
|
||||
|a, b| a.dotc(b),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn xx_solve_lower_triangular_vector_unchecked_mut<R2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Vector<N, R2, S2>,
|
||||
conjugate: impl Fn(N) -> N,
|
||||
dot: impl Fn(
|
||||
&DVectorSlice<N, S::RStride, S::CStride>,
|
||||
&DVectorSlice<N, S2::RStride, S2::CStride>,
|
||||
) -> N,
|
||||
) where
|
||||
S2: StorageMut<N, R2, U1>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
let dim = self.nrows();
|
||||
|
||||
for i in (0..dim).rev() {
|
||||
let dot = dot(&self.slice_range(i + 1.., i), &b.slice_range(i + 1.., 0));
|
||||
|
||||
unsafe {
|
||||
let b_i = b.vget_unchecked_mut(i);
|
||||
let diag = conjugate(*self.get_unchecked((i, i)));
|
||||
*b_i = (*b_i - dot) / diag;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn xx_solve_upper_triangular_vector_unchecked_mut<R2: Dim, S2>(
|
||||
&self,
|
||||
b: &mut Vector<N, R2, S2>,
|
||||
conjugate: impl Fn(N) -> N,
|
||||
dot: impl Fn(
|
||||
&DVectorSlice<N, S::RStride, S::CStride>,
|
||||
&DVectorSlice<N, S2::RStride, S2::CStride>,
|
||||
) -> N,
|
||||
) where
|
||||
S2: StorageMut<N, R2, U1>,
|
||||
ShapeConstraint: SameNumberOfRows<R2, D>,
|
||||
{
|
||||
for i in 0..self.nrows() {
|
||||
let dot = dot(&self.slice_range(..i, i), &b.slice_range(..i, 0));
|
||||
|
||||
unsafe {
|
||||
let b_i = b.vget_unchecked_mut(i);
|
||||
let diag = conjugate(*self.get_unchecked((i, i)));
|
||||
*b_i = (*b_i - dot) / diag;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue