Merge pull request #669 from daingun/patch-2
Use same algorithm to solve 2x2 eigenvalue problem
This commit is contained in:
commit
31ef5f0ab0
|
@ -309,16 +309,17 @@ where
|
|||
let hmn = t[(m, n)];
|
||||
let hnn = t[(n, n)];
|
||||
|
||||
let tra = hnn + hmm;
|
||||
let det = hnn * hmm - hnm * hmn;
|
||||
let discr = tra * tra * crate::convert(0.25) - det;
|
||||
// NOTE: use the same algorithm as in compute_2x2_eigvals.
|
||||
let val = (hmm - hnn) * crate::convert(0.5);
|
||||
let discr = hnm * hmn + val * val;
|
||||
|
||||
// All 2x2 blocks have negative discriminant because we already decoupled those
|
||||
// with positive eigenvalues..
|
||||
// with positive eigenvalues.
|
||||
let sqrt_discr = NumComplex::new(N::zero(), (-discr).sqrt());
|
||||
|
||||
out[m] = NumComplex::new(tra * crate::convert(0.5), N::zero()) + sqrt_discr;
|
||||
out[m + 1] = NumComplex::new(tra * crate::convert(0.5), N::zero()) - sqrt_discr;
|
||||
let half_tra = (hnn + hmm) * crate::convert(0.5);
|
||||
out[m] = NumComplex::new(half_tra, N::zero()) + sqrt_discr;
|
||||
out[m + 1] = NumComplex::new(half_tra, N::zero()) - sqrt_discr;
|
||||
|
||||
m += 2;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue