diff --git a/src/geometry/rotation_construction.rs b/src/geometry/rotation_construction.rs index c18c6a58..1fc033e4 100644 --- a/src/geometry/rotation_construction.rs +++ b/src/geometry/rotation_construction.rs @@ -15,9 +15,16 @@ where /// /// # Example /// ``` - /// # use nalgebra::Quaternion; - /// let rot1 = Quaternion::identity(); - /// let rot2 = Quaternion::new(1.0, 2.0, 3.0, 4.0); + /// # use nalgebra::{Rotation2, Rotation3}; + /// # use nalgebra::Vector3; + /// let rot1 = Rotation2::identity(); + /// let rot2 = Rotation2::new(std::f32::consts::FRAC_PI_2); + /// + /// assert_eq!(rot1 * rot2, rot2); + /// assert_eq!(rot2 * rot1, rot2); + /// + /// let rot1 = Rotation3::identity(); + /// let rot2 = Rotation3::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_2); /// /// assert_eq!(rot1 * rot2, rot2); /// assert_eq!(rot2 * rot1, rot2); diff --git a/src/geometry/rotation_specialization.rs b/src/geometry/rotation_specialization.rs index c24514ba..41405c87 100644 --- a/src/geometry/rotation_specialization.rs +++ b/src/geometry/rotation_specialization.rs @@ -60,7 +60,7 @@ impl Rotation2 { impl Rotation2 { /// Builds a rotation from a basis assumed to be orthonormal. /// - /// In order to get a valid unit-quaternion, the input must be an + /// In order to get a valid rotation matrix, the input must be an /// orthonormal basis, i.e., all vectors are normalized, and the are /// all orthogonal to each other. These invariants are not checked /// by this method. @@ -204,7 +204,7 @@ impl Rotation2 { *self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into()) } - /// Raise the quaternion to a given floating power, i.e., returns the rotation with the angle + /// Raise the rotation to a given floating power, i.e., returns the rotation with the angle /// of `self` multiplied by `n`. /// /// # Example @@ -660,7 +660,7 @@ where other * self.inverse() } - /// Raise the quaternion to a given floating power, i.e., returns the rotation with the same + /// Raise the rotation to a given floating power, i.e., returns the rotation with the same /// axis as `self` and an angle equal to `self.angle()` multiplied by `n`. /// /// # Example @@ -692,7 +692,7 @@ where /// Builds a rotation from a basis assumed to be orthonormal. /// - /// In order to get a valid unit-quaternion, the input must be an + /// In order to get a valid rotation matrix, the input must be an /// orthonormal basis, i.e., all vectors are normalized, and the are /// all orthogonal to each other. These invariants are not checked /// by this method. @@ -846,7 +846,7 @@ impl Rotation3 { } } - /// The rotation axis and angle in ]0, pi] of this unit quaternion. + /// The rotation axis and angle in ]0, pi] of this rotation matrix. /// /// Returns `None` if the angle is zero. ///