Add `na::eigen_qr` that performs an eigendecomposition using the qr algorithm.
This commit is contained in:
parent
663f8b3ccb
commit
314f0c0043
|
@ -1,6 +1,6 @@
|
|||
use std::num::{Zero, Float};
|
||||
use traits::operations::Transpose;
|
||||
use traits::structure::{ColSlice, Eye, Indexable};
|
||||
use traits::operations::{Transpose, ApproxEq};
|
||||
use traits::structure::{ColSlice, Eye, Indexable, Diag};
|
||||
use traits::geometry::Norm;
|
||||
use std::cmp::min;
|
||||
|
||||
|
@ -16,12 +16,16 @@ pub fn householder_matrix<N: Float,
|
|||
V: Indexable<uint, N>>
|
||||
(dim: uint, start: uint, vec: V) -> M {
|
||||
let mut qk : M = Eye::new_identity(dim);
|
||||
let stop = start + vec.shape();
|
||||
assert!(stop <= dim);
|
||||
let subdim = vec.shape();
|
||||
|
||||
let stop = subdim + start;
|
||||
|
||||
assert!(dim >= stop);
|
||||
|
||||
for j in range(start, stop) {
|
||||
for i in range(start, stop) {
|
||||
unsafe {
|
||||
let vv = vec.unsafe_at(i) * vec.unsafe_at(j);
|
||||
let vv = vec.unsafe_at(i - start) * vec.unsafe_at(j - start);
|
||||
let qkij = qk.unsafe_at((i, j));
|
||||
qk.unsafe_set((i, j), qkij - vv - vv);
|
||||
}
|
||||
|
@ -60,11 +64,70 @@ pub fn qr<N: Float,
|
|||
let x = v.unsafe_at(0);
|
||||
v.unsafe_set(0, x - alpha);
|
||||
}
|
||||
let _ = v.normalize();
|
||||
let qk: M = householder_matrix(rows, 0, v);
|
||||
if !v.normalize().is_zero() {
|
||||
let qk: M = householder_matrix(rows, ite, v);
|
||||
r = qk * r;
|
||||
q = q * Transpose::transpose_cpy(&qk);
|
||||
}
|
||||
}
|
||||
|
||||
(q, r)
|
||||
}
|
||||
|
||||
/// Eigendecomposition of a square matrix using the qr algorithm.
|
||||
pub fn eigen_qr<N: Float,
|
||||
V: Indexable<uint, N> + Norm<N>,
|
||||
V2: Zero,
|
||||
M: Clone + Eye + ColSlice<V> + Transpose
|
||||
+ Indexable<(uint, uint), N> + Mul<M, M>
|
||||
+ Diag<V2> + ApproxEq<N> + Add<M, M>
|
||||
+ Sub<M, M>>
|
||||
(m: &M, eps: &N, niter: uint) -> (M, V2) {
|
||||
let (rows, cols) = m.shape();
|
||||
|
||||
assert!(rows == cols, "The matrix being decomposed must be square.");
|
||||
|
||||
let mut eigenvectors: M = Eye::new_identity(rows);
|
||||
let mut eigenvalues = m.clone();
|
||||
let mut shifter: M = Eye::new_identity(rows);
|
||||
|
||||
let mut iter = 0u;
|
||||
for _ in range(0, niter) {
|
||||
let mut stop = true;
|
||||
|
||||
for j in range(0, cols) {
|
||||
for i in range(0, j) {
|
||||
if unsafe { eigenvalues.unsafe_at((i, j)) }.abs() >= *eps {
|
||||
stop = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for i in range(j + 1, rows) {
|
||||
if unsafe { eigenvalues.unsafe_at((i, j)) }.abs() >= *eps {
|
||||
stop = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if stop {
|
||||
break;
|
||||
}
|
||||
iter = iter + 1;
|
||||
|
||||
// FIXME: This is a very naive implementation.
|
||||
let shift = unsafe { eigenvalues.unsafe_at((rows - 1, rows - 1)) };
|
||||
|
||||
for i in range(0, rows) {
|
||||
unsafe { shifter.unsafe_set((i, i), shift.clone()) }
|
||||
}
|
||||
|
||||
let (q, r) = qr(&(eigenvalues - shifter));
|
||||
|
||||
eigenvalues = r * q + shifter;
|
||||
eigenvectors = eigenvectors * q;
|
||||
}
|
||||
|
||||
(eigenvectors, eigenvalues.diag())
|
||||
}
|
||||
|
|
|
@ -37,34 +37,28 @@ macro_rules! test_qr_impl(
|
|||
);
|
||||
)
|
||||
|
||||
macro_rules! test_eigen_qr_impl(
|
||||
($t: ty) => {
|
||||
for _ in range(0u, 10000) {
|
||||
let randmat : $t = random();
|
||||
|
||||
let (eigenvalues, eigenvectors) = na::eigen_qr(&randmat, &Float::epsilon(), 1000);
|
||||
|
||||
// FIXME: provide a method to initialize a matrix from its diagonal!
|
||||
let diag: $t = na::zero();
|
||||
|
||||
for i in range(0, na::dim::<$t>()) {
|
||||
diag.set((i, i), eigenvalues.at(i));
|
||||
}
|
||||
|
||||
let recomp = na::transpose(&eigenvectors) * diag * eigenvectors;
|
||||
|
||||
println!("mat: {}", randmat);
|
||||
println!("eigenvectors: {}", eigenvectors);
|
||||
println!("eigenvalues: {}", eigenvalues);
|
||||
println!("recomp: {}", recomp);
|
||||
|
||||
assert!(false);
|
||||
fail!("what!");
|
||||
|
||||
assert!(na::approx_eq(&randmat, &recomp));
|
||||
}
|
||||
}
|
||||
)
|
||||
// NOTE: deactivated untile we get a better convergence rate.
|
||||
// macro_rules! test_eigen_qr_impl(
|
||||
// ($t: ty) => {
|
||||
// for _ in range(0u, 10000) {
|
||||
// let randmat : $t = random();
|
||||
// // Make it symetric so that we can recompose the matrix to test at the end.
|
||||
// let randmat = na::transpose(&randmat) * randmat;
|
||||
//
|
||||
// let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &Float::epsilon(), 100);
|
||||
//
|
||||
// let diag: $t = Diag::from_diag(&eigenvalues);
|
||||
//
|
||||
// let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
|
||||
//
|
||||
// println!("eigenvalues: {}", eigenvalues);
|
||||
// println!(" mat: {}", randmat);
|
||||
// println!("recomp: {}", recomp);
|
||||
//
|
||||
// assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
|
||||
// }
|
||||
// }
|
||||
// )
|
||||
|
||||
#[test]
|
||||
fn test_transpose_mat1() {
|
||||
|
@ -295,6 +289,7 @@ fn test_qr_mat6() {
|
|||
test_qr_impl!(Mat6<f64>);
|
||||
}
|
||||
|
||||
// NOTE: deactivated untile we get a better convergence rate.
|
||||
// #[test]
|
||||
// fn test_eigen_qr_mat1() {
|
||||
// test_eigen_qr_impl!(Mat1<f64>);
|
||||
|
|
|
@ -144,7 +144,7 @@ pub trait Indexable<Index, Res> {
|
|||
/// Swaps the `i`-th element of `self` with its `j`-th element.
|
||||
fn swap(&mut self, i: Index, j: Index);
|
||||
|
||||
/// Returns the shape of the iterable range
|
||||
/// Returns the shape of the iterable range.
|
||||
fn shape(&self) -> Index;
|
||||
|
||||
/// Reads the `i`-th element of `self`.
|
||||
|
|
Loading…
Reference in New Issue