implemented QR factorization
this is a first sketch, the algorithm is not yet initialized and relies on knowledge of DMat internals. A next step would be to implement this algorithm in a more generic manner.
This commit is contained in:
parent
9badebf24c
commit
2fd880a62d
@ -44,6 +44,7 @@ pub use traits::{
|
||||
|
||||
pub use structs::{
|
||||
Identity,
|
||||
decomp_qr,
|
||||
DMat, DVec,
|
||||
Iso2, Iso3, Iso4,
|
||||
Mat1, Mat2, Mat3, Mat4,
|
||||
|
@ -4,12 +4,15 @@
|
||||
|
||||
use rand::Rand;
|
||||
use rand;
|
||||
use std::num::{One, Zero};
|
||||
use std::num::{One, Zero, Float};
|
||||
use traits::operations::ApproxEq;
|
||||
use std::mem;
|
||||
use structs::dvec::{DVec, DVecMulRhs};
|
||||
use traits::operations::{Inv, Transpose, Mean, Cov};
|
||||
use traits::structure::Cast;
|
||||
use traits::geometry::Norm;
|
||||
use std::cmp::min;
|
||||
use std::fmt::{Show, Formatter, Result};
|
||||
|
||||
#[doc(hidden)]
|
||||
mod metal;
|
||||
@ -494,6 +497,62 @@ impl<N: Clone + Num + Cast<f32> + DMatDivRhs<N, DMat<N>> + ToStr > Cov<DMat<N>>
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// QR decomposition using Householder reflections
|
||||
/// # Arguments
|
||||
/// * `m` matrix to decompose
|
||||
pub fn decomp_qr<N: Clone + Num + Float + Show>(m: &DMat<N>) -> (DMat<N>, DMat<N>) {
|
||||
let rows = m.nrows();
|
||||
let cols = m.ncols();
|
||||
assert!(rows >= cols);
|
||||
let mut q : DMat<N> = DMat::new_identity(rows);
|
||||
let mut r = m.clone();
|
||||
|
||||
let subtract_reflection = |vec: DVec<N>| -> DMat<N> {
|
||||
// FIXME: we don't handle the complex case here
|
||||
let mut qk : DMat<N> = DMat::new_identity(rows);
|
||||
let start = rows - vec.at.len();
|
||||
for j in range(start, rows) {
|
||||
for i in range(start, rows) {
|
||||
unsafe {
|
||||
let vv = vec.at_fast(i-start)*vec.at_fast(j-start);
|
||||
let qkij = qk.at_fast(i,j);
|
||||
qk.set_fast(i, j, qkij - vv - vv);
|
||||
}
|
||||
}
|
||||
}
|
||||
qk
|
||||
};
|
||||
|
||||
let iterations = min(rows-1, cols);
|
||||
|
||||
for ite in range(0u, iterations) {
|
||||
// we get the ite-th column truncated from its first ite elements,
|
||||
// this is fast thanks to the matrix being column major
|
||||
let start= m.offset(ite, ite);
|
||||
let stop = m.offset(rows, ite);
|
||||
let mut v = DVec::from_vec(rows - ite, r.mij.slice(start, stop));
|
||||
let alpha =
|
||||
if unsafe { v.at_fast(ite) } >= Zero::zero() {
|
||||
-Norm::norm(&v)
|
||||
}
|
||||
else {
|
||||
Norm::norm(&v)
|
||||
};
|
||||
unsafe {
|
||||
let x = v.at_fast(0);
|
||||
v.set_fast(0, x - alpha);
|
||||
}
|
||||
let _ = v.normalize();
|
||||
let qk = subtract_reflection(v);
|
||||
r = qk * r;
|
||||
q = q * Transpose::transpose_cpy(&qk);
|
||||
}
|
||||
|
||||
(q, r)
|
||||
}
|
||||
|
||||
|
||||
impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
|
||||
#[inline]
|
||||
fn approx_epsilon(_: Option<DMat<N>>) -> N {
|
||||
@ -515,6 +574,18 @@ impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<N: Show + Clone> Show for DMat<N> {
|
||||
fn fmt(&self, form:&mut Formatter) -> Result {
|
||||
for i in range(0u, self.nrows()) {
|
||||
for j in range(0u, self.ncols()) {
|
||||
write!(form.buf, "{} ", self.at(i, j));
|
||||
}
|
||||
write!(form.buf, "\n");
|
||||
}
|
||||
write!(form.buf, "\n")
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! scalar_mul_impl (
|
||||
($n: ident) => (
|
||||
impl DMatMulRhs<$n, DMat<$n>> for $n {
|
||||
|
@ -1,6 +1,7 @@
|
||||
//! Data structures and implementations.
|
||||
|
||||
pub use self::dmat::DMat;
|
||||
pub use self::dmat::decomp_qr;
|
||||
pub use self::dvec::DVec;
|
||||
pub use self::vec::{Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
|
||||
pub use self::mat::{Identity, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6};
|
||||
|
@ -2,6 +2,7 @@ use std::num::{Float, abs};
|
||||
use rand::random;
|
||||
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, DMat, DVec, Indexable};
|
||||
use na;
|
||||
use na::decomp_qr;
|
||||
|
||||
macro_rules! test_inv_mat_impl(
|
||||
($t: ty) => (
|
||||
@ -206,3 +207,23 @@ fn test_dmat_from_vec() {
|
||||
|
||||
assert!(mat1 == mat2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_decomp_qr() {
|
||||
let mat = DMat::from_row_vec(
|
||||
5,
|
||||
3,
|
||||
[
|
||||
4.0, 2.0, 0.60,
|
||||
4.2, 2.1, 0.59,
|
||||
3.9, 2.0, 0.58,
|
||||
4.3, 2.1, 0.62,
|
||||
4.1, 2.2, 0.63
|
||||
]
|
||||
);
|
||||
|
||||
let (q, r) = decomp_qr(&mat);
|
||||
let mat_ = q * r;
|
||||
|
||||
assert!(na::approx_eq(&mat_, &mat));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user