Restructured usage of convolves, added unit testing.
This commit is contained in:
parent
a3d571ea6b
commit
28525bfc20
|
@ -1,17 +0,0 @@
|
|||
extern crate nalgebra;
|
||||
use nalgebra::{Vector2,Vector3,Vector4,Vector5,convolve_full,convolve_same,convolve_valid};
|
||||
|
||||
fn main(){
|
||||
let vec = Vector4::new(1.0,2.0,3.0,4.0);
|
||||
let ker = Vector3::new(1.0,2.0,2.1);
|
||||
|
||||
let actual = Vector5::from_vec(vec![1.0,4.0,7.0,10.0,8.0]);
|
||||
|
||||
let expected = convolve_full(vec,ker);
|
||||
let expected2 = convolve_same(vec,ker);
|
||||
// let expected3 = convolve_valid(vec,ker);
|
||||
println!("{}", actual);
|
||||
println!("{}", expected);
|
||||
println!("{}", expected2);
|
||||
// println!("{}", expected3);
|
||||
}
|
|
@ -1,20 +1,19 @@
|
|||
use base::allocator::Allocator;
|
||||
use base::default_allocator::DefaultAllocator;
|
||||
use base::dimension::{DimAdd, DimDiff, DimMax, DimMaximum, DimName, DimSub, DimSum,Dim};
|
||||
use base::dimension::{Dim, DimAdd, DimDiff, DimMax, DimMaximum, DimSub, DimSum};
|
||||
use std::cmp;
|
||||
use storage::Storage;
|
||||
use {zero, Real, Vector, VectorN, U1};
|
||||
|
||||
/// Returns the convolution of the vector and a kernel
|
||||
/// Returns the convolution of the target vector and a kernel
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `vector` - A Vector with size > 0
|
||||
/// * `kernel` - A Vector with size > 0
|
||||
///
|
||||
/// This function is commutative. If kernel > vector,
|
||||
/// they will swap their roles as in
|
||||
/// (self, kernel) = (kernel,self)
|
||||
/// # Errors
|
||||
/// Inputs must statisfy `vector.len() >= kernel.len() > 0`.
|
||||
///
|
||||
pub fn convolve_full<N, D1, D2, S1, S2>(
|
||||
vector: Vector<N, D1, S1>,
|
||||
|
@ -27,18 +26,13 @@ where
|
|||
DimSum<D1, D2>: DimSub<U1>,
|
||||
S1: Storage<N, D1>,
|
||||
S2: Storage<N, D2>,
|
||||
DimSum<D1, D2>: Dim,
|
||||
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, D2>, U1>>,
|
||||
{
|
||||
let vec = vector.len();
|
||||
let ker = kernel.len();
|
||||
|
||||
if vec == 0 || ker == 0 {
|
||||
panic!("Convolve's inputs must not be 0-sized. ");
|
||||
}
|
||||
|
||||
if ker > vec {
|
||||
return convolve_full(kernel, vector);
|
||||
if ker == 0 || ker > vec {
|
||||
panic!("convolve_full expects `vector.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
|
||||
}
|
||||
|
||||
let result_len = vector.data.shape().0.add(kernel.data.shape().0).sub(U1);
|
||||
|
@ -61,8 +55,6 @@ where
|
|||
conv
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Returns the convolution of the vector and a kernel
|
||||
/// The output convolution consists only of those elements that do not rely on the zero-padding.
|
||||
/// # Arguments
|
||||
|
@ -70,36 +62,31 @@ where
|
|||
/// * `vector` - A Vector with size > 0
|
||||
/// * `kernel` - A Vector with size > 0
|
||||
///
|
||||
/// This function is commutative. If kernel > vector,
|
||||
/// they will swap their roles as in
|
||||
/// (self, kernel) = (kernel,self)
|
||||
///
|
||||
/// # Errors
|
||||
/// Inputs must statisfy `vector.len() >= kernel.len() > 0`.
|
||||
///
|
||||
pub fn convolve_valid<N, D1, D2, S1, S2>(
|
||||
vector: Vector<N, D1, S1>,
|
||||
kernel: Vector<N, D2, S2>,
|
||||
) -> VectorN<N, DimSum<DimDiff<D1, D2>, U1>>
|
||||
) -> VectorN<N, DimDiff<DimSum<D1, U1>, D2>>
|
||||
where
|
||||
N: Real,
|
||||
D1: DimSub<D2>,
|
||||
D2: DimSub<D1, Output = DimDiff<D1, D2>>,
|
||||
DimDiff<D1, D2>: DimAdd<U1>,
|
||||
D1: DimAdd<U1>,
|
||||
D2: Dim,
|
||||
DimSum<D1, U1>: DimSub<D2>,
|
||||
S1: Storage<N, D1>,
|
||||
S2: Storage<N, D2>,
|
||||
DimDiff<D1, D2>: DimName,
|
||||
DefaultAllocator: Allocator<N, DimSum<DimDiff<D1, D2>, U1>>
|
||||
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, U1>, D2>>,
|
||||
{
|
||||
|
||||
let vec = vector.len();
|
||||
let ker = kernel.len();
|
||||
|
||||
if vec == 0 || ker == 0 {
|
||||
panic!("Convolve's inputs must not be 0-sized. ");
|
||||
if ker == 0 || ker > vec {
|
||||
panic!("convolve_valid expects `vector.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
|
||||
}
|
||||
|
||||
if ker > vec {
|
||||
return convolve_valid(kernel, vector);
|
||||
}
|
||||
let result_len = vector.data.shape().0.sub(kernel.data.shape().0).add(U1);
|
||||
let result_len = vector.data.shape().0.add(U1).sub(kernel.data.shape().0);
|
||||
let mut conv = VectorN::zeros_generic(result_len, U1);
|
||||
|
||||
for i in 0..(vec - ker + 1) {
|
||||
|
@ -117,10 +104,8 @@ where
|
|||
/// * `vector` - A Vector with size > 0
|
||||
/// * `kernel` - A Vector with size > 0
|
||||
///
|
||||
/// This function is commutative. If kernel > vector,
|
||||
/// they will swap their roles as in
|
||||
/// (self, kernel) = (kernel,self)
|
||||
///
|
||||
/// # Errors
|
||||
/// Inputs must statisfy `vector.len() >= kernel.len() > 0`.
|
||||
pub fn convolve_same<N, D1, D2, S1, S2>(
|
||||
vector: Vector<N, D1, S1>,
|
||||
kernel: Vector<N, D2, S2>,
|
||||
|
@ -131,18 +116,13 @@ where
|
|||
D2: DimMax<D1, Output = DimMaximum<D1, D2>>,
|
||||
S1: Storage<N, D1>,
|
||||
S2: Storage<N, D2>,
|
||||
DimMaximum<D1, D2>: Dim,
|
||||
DefaultAllocator: Allocator<N, DimMaximum<D1, D2>>,
|
||||
{
|
||||
let vec = vector.len();
|
||||
let ker = kernel.len();
|
||||
|
||||
if vec == 0 || ker == 0 {
|
||||
panic!("Convolve's inputs must not be 0-sized. ");
|
||||
}
|
||||
|
||||
if ker > vec {
|
||||
return convolve_same(kernel, vector);
|
||||
if ker == 0 || ker > vec {
|
||||
panic!("convolve_same expects `vector.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
|
||||
}
|
||||
|
||||
let result_len = vector.data.shape().0.max(kernel.data.shape().0);
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
#[allow(unused_imports)] // remove after fixing unit test
|
||||
use na::linalg::{convolve_full,convolve_valid,convolve_same};
|
||||
#[allow(unused_imports)]
|
||||
use na::{Vector2,Vector3,Vector4,Vector5,DVector};
|
||||
use std::panic;
|
||||
|
||||
//
|
||||
// Should mimic calculations in Python's scipy library
|
||||
|
@ -12,70 +11,110 @@ use na::{Vector2,Vector3,Vector4,Vector5,DVector};
|
|||
// array([ 1, 4, 7, 10])
|
||||
#[test]
|
||||
fn convolve_same_check(){
|
||||
let vec_s = Vector4::new(1.0,2.0,3.0,4.0);
|
||||
let ker_s = Vector2::new(1.0,2.0);
|
||||
|
||||
// Static Tests
|
||||
let actual_s = Vector4::from_vec(vec![1.0,4.0,7.0,10.0]);
|
||||
|
||||
let expected_s = convolve_same(vec_s,ker_s);
|
||||
let expected_s_r = convolve_same(ker_s,vec_s);
|
||||
let expected_s = convolve_same(Vector4::new(1.0,2.0,3.0,4.0), Vector2::new(1.0,2.0));
|
||||
|
||||
assert!(relative_eq!(actual_s, expected_s, epsilon = 1.0e-7));
|
||||
assert!(relative_eq!(actual_s, expected_s_r, epsilon = 1.0e-7));
|
||||
|
||||
let vec_d = DVector::from_vec(4,vec![1.0,2.0,3.0,4.0]);
|
||||
let ker_d = DVector::from_vec(2,vec![1.0,2.0]);
|
||||
|
||||
let actual_d = DVector::from_vec(4,vec![1.0,4.0,7.0,10.0]);
|
||||
|
||||
let expected_d = convolve_same(vec_d.clone(),ker_d.clone());
|
||||
let expected_d_r = convolve_same(ker_d,vec_d);
|
||||
// Dynamic Tests
|
||||
let actual_d = DVector::from_vec(vec![1.0,4.0,7.0,10.0]);
|
||||
let expected_d = convolve_same(DVector::from_vec(vec![1.0,2.0,3.0,4.0]),DVector::from_vec(vec![1.0,2.0]));
|
||||
|
||||
assert!(relative_eq!(actual_d, expected_d, epsilon = 1.0e-7));
|
||||
assert!(relative_eq!(actual_d, expected_d_r, epsilon = 1.0e-7));
|
||||
|
||||
// Panic Tests
|
||||
// These really only apply to dynamic sized vectors
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_same(DVector::from_vec(vec![1.0,2.0]), DVector::from_vec(vec![1.0,2.0,3.0,4.0]));
|
||||
}).is_err()
|
||||
);
|
||||
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_same(DVector::<f32>::from_vec(vec![]), DVector::from_vec(vec![1.0,2.0,3.0,4.0]));
|
||||
}).is_err()
|
||||
);
|
||||
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_same(DVector::from_vec(vec![1.0,2.0,3.0,4.0]),DVector::<f32>::from_vec(vec![]));
|
||||
}).is_err()
|
||||
);
|
||||
}
|
||||
|
||||
// >>> convolve([1,2,3,4],[1,2],"full")
|
||||
// array([ 1, 4, 7, 10, 8])
|
||||
#[test]
|
||||
fn convolve_full_check(){
|
||||
let vec_s = Vector4::new(1.0,2.0,3.0,4.0);
|
||||
let ker_s = Vector2::new(1.0,2.0);
|
||||
|
||||
// Static Tests
|
||||
let actual_s = Vector5::new(1.0,4.0,7.0,10.0,8.0);
|
||||
|
||||
let expected_s = convolve_full(vec_s,ker_s);
|
||||
let expected_s_r = convolve_full(ker_s,vec_s);
|
||||
let expected_s = convolve_full(Vector4::new(1.0,2.0,3.0,4.0), Vector2::new(1.0,2.0));
|
||||
|
||||
assert!(relative_eq!(actual_s, expected_s, epsilon = 1.0e-7));
|
||||
assert!(relative_eq!(actual_s, expected_s_r, epsilon = 1.0e-7));
|
||||
|
||||
let vec_d = DVector::from_vec(4,vec![1.0,2.0,3.0,4.0]);
|
||||
let ker_d = DVector::from_vec(2,vec![1.0,2.0]);
|
||||
|
||||
let actual_d = DVector::from_vec(5,vec![1.0,4.0,7.0,10.0,8.0]);
|
||||
|
||||
let expected_d = convolve_full(vec_d.clone(),ker_d.clone());
|
||||
let expected_d_r = convolve_full(ker_d,vec_d);
|
||||
// Dynamic Tests
|
||||
let actual_d = DVector::from_vec(vec![1.0,4.0,7.0,10.0,8.0]);
|
||||
let expected_d = convolve_full(DVector::from_vec(vec![1.0,2.0,3.0,4.0]), DVector::from_vec(vec![1.0,2.0]));
|
||||
|
||||
assert!(relative_eq!(actual_d, expected_d, epsilon = 1.0e-7));
|
||||
assert!(relative_eq!(actual_d, expected_d_r, epsilon = 1.0e-7));
|
||||
|
||||
// Panic Tests
|
||||
// These really only apply to dynamic sized vectors
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_full(DVector::from_vec(vec![1.0,2.0]), DVector::from_vec(vec![1.0,2.0,3.0,4.0]));
|
||||
}).is_err()
|
||||
);
|
||||
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_full(DVector::<f32>::from_vec(vec![]), DVector::from_vec(vec![1.0,2.0,3.0,4.0]));
|
||||
}).is_err()
|
||||
);
|
||||
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_full(DVector::from_vec(vec![1.0,2.0,3.0,4.0]),DVector::<f32>::from_vec(vec![]));
|
||||
}).is_err()
|
||||
);
|
||||
}
|
||||
|
||||
// >>> convolve([1,2,3,4],[1,2],"valid")
|
||||
// array([ 4, 7, 10])
|
||||
// #[test]
|
||||
// fn convolve_valid_check(){
|
||||
// let vec = Vector4::new(1.0,2.0,3.0,4.0);
|
||||
// let ker = Vector2::new(1.0,2.0);
|
||||
#[test]
|
||||
fn convolve_valid_check(){
|
||||
// Static Tests
|
||||
let actual_s = Vector3::from_vec(vec![4.0,7.0,10.0]);
|
||||
let expected_s = convolve_valid( Vector4::new(1.0,2.0,3.0,4.0), Vector2::new(1.0,2.0));
|
||||
|
||||
// let actual = Vector3::from_vec(vec![4.0,7.0,10.0]);
|
||||
assert!(relative_eq!(actual_s, expected_s, epsilon = 1.0e-7));
|
||||
|
||||
// let expected1 = convolve_valid(vec, ker);
|
||||
// let expected2 = convolve_valid(ker, vec);
|
||||
// Dynamic Tests
|
||||
let actual_d = DVector::from_vec(vec![4.0,7.0,10.0]);
|
||||
let expected_d = convolve_valid(DVector::from_vec(vec![1.0,2.0,3.0,4.0]), DVector::from_vec(vec![1.0,2.0]));
|
||||
|
||||
assert!(relative_eq!(actual_d, expected_d, epsilon = 1.0e-7));
|
||||
|
||||
// assert!(relative_eq!(actual, expected1, epsilon = 1.0e-7));
|
||||
// assert!(relative_eq!(actual, expected2, epsilon = 1.0e-7));
|
||||
// Panic Tests
|
||||
// These really only apply to dynamic sized vectors
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_valid(DVector::from_vec(vec![1.0,2.0]), DVector::from_vec(vec![1.0,2.0,3.0,4.0]));
|
||||
}).is_err()
|
||||
);
|
||||
|
||||
// }
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_valid(DVector::<f32>::from_vec(vec![]), DVector::from_vec(vec![1.0,2.0,3.0,4.0]));
|
||||
}).is_err()
|
||||
);
|
||||
|
||||
assert!(
|
||||
panic::catch_unwind(|| {
|
||||
convolve_valid(DVector::from_vec(vec![1.0,2.0,3.0,4.0]),DVector::<f32>::from_vec(vec![]));
|
||||
}).is_err()
|
||||
);
|
||||
|
||||
}
|
Loading…
Reference in New Issue