insert does compile

This commit is contained in:
Nestor Demeure 2019-11-03 18:02:27 +01:00 committed by Sébastien Crozet
parent c613360a5c
commit 27a2045389
1 changed files with 17 additions and 18 deletions

View File

@ -4,9 +4,9 @@ use serde::{Deserialize, Serialize};
use alga::general::ComplexField; use alga::general::ComplexField;
use crate::allocator::Allocator; use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix}; use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vector};
use crate::constraint::{SameNumberOfRows, ShapeConstraint}; use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimName, DimAdd, DimSum, DimDiff, DimSub, Dynamic, U1}; use crate::dimension::{Dim, DimAdd, DimSum, DimDiff, DimSub, Dynamic, U1};
use crate::storage::{Storage, StorageMut}; use crate::storage::{Storage, StorageMut};
use crate::base::allocator::Reallocator; use crate::base::allocator::Reallocator;
@ -149,7 +149,7 @@ where
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`, /// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`. /// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Matrix<N, R2, U1, S2>, sigma: N::RealField) pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Vector<N, R2, S2>, sigma: N::RealField)
where where
S2: Storage<N, R2, U1>, S2: Storage<N, R2, U1>,
DefaultAllocator: Allocator<N, R2, U1>, DefaultAllocator: Allocator<N, R2, U1>,
@ -192,17 +192,19 @@ where
/// Updates the decomposition such that we get the decomposition of a matrix with the given column `c` in the `j`th position. /// Updates the decomposition such that we get the decomposition of a matrix with the given column `c` in the `j`th position.
/// Since the matrix is square, an identical row will be added in the `j`th row. /// Since the matrix is square, an identical row will be added in the `j`th row.
pub fn insert_column<R2: Dim, S2>( pub fn insert_column<R2, S2>(
self, self,
j: usize, j: usize,
col: &Matrix<N, R2, U1, S2>, col: &Vector<N, R2, S2>,
) -> Cholesky<N, DimSum<D, U1>> ) -> Cholesky<N, DimSum<D, U1>>
where where
D: DimAdd<U1>, D: DimAdd<U1>,
DefaultAllocator: Reallocator<N, D, D, D, DimSum<D, U1>> + Reallocator<N, D, DimSum<D, U1>, DimSum<D, U1>, DimSum<D, U1>>, R2: Dim,
S2: Storage<N, R2, U1>, S2: Storage<N, R2, U1>,
DefaultAllocator: Reallocator<N, D, D, D, DimSum<D, U1>> + Reallocator<N, D, DimSum<D, U1>, DimSum<D, U1>, DimSum<D, U1>>,
ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>, ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>,
{ {
// for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
let n = col.nrows(); let n = col.nrows();
assert_eq!( assert_eq!(
n, n,
@ -211,7 +213,6 @@ where
); );
assert!(j < n, "j needs to be within the bound of the new matrix."); assert!(j < n, "j needs to be within the bound of the new matrix.");
// TODO what is the fastest way to produce the new matrix ? // TODO what is the fastest way to produce the new matrix ?
// TODO check for adjoint problems
let mut chol= self.chol.clone().insert_column(j, N::zero()).insert_row(j, N::zero()); let mut chol= self.chol.clone().insert_column(j, N::zero()).insert_row(j, N::zero());
// update the jth row // update the jth row
@ -225,16 +226,15 @@ where
chol[(j,j)] = center_element; chol[(j,j)] = center_element;
// update the jth column // update the jth column
let colj_plus = col.rows_range(j+1..).adjoint(); let colj_plus = col.rows_range(j+1..);
let bottom_left_corner = chol.slice_range(j+1, ..j-1); let bottom_left_corner = chol.slice_range(j+1.., ..j-1);
let colj = (colj_plus - bottom_left_corner*rowj.adjoint()) / center_element; let colj = (colj_plus - bottom_left_corner*rowj.adjoint()) / center_element; // TODO that can probably be done with a single optimized operation
chol.slice_range_mut(j+1.., j).copy_from(&colj); chol.slice_range_mut(j+1.., j).copy_from(&colj);
// update the bottom right corner // update the bottom right corner
let mut bottom_right_corner = chol.slice_range_mut(j.., j..); let mut bottom_right_corner = chol.slice_range_mut(j+1.., j+1..);
rank_one_update_helper(&mut bottom_right_corner, &colj, -N::real(N::one())); rank_one_update_helper(&mut bottom_right_corner, &colj, -N::real(N::one()));
// TODO see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
Cholesky { chol } Cholesky { chol }
} }
@ -278,15 +278,14 @@ where
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`, /// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`. /// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
fn rank_one_update_helper<N, D, S, R2, S2>(chol : &mut Matrix<N, D, D, S>, x: &Matrix<N, R2, U1, S2>, sigma: N::RealField) fn rank_one_update_helper<N, D, S, Rx, Sx>(chol : &mut Matrix<N, D, D, S>, x: &Vector<N, Rx, Sx>, sigma: N::RealField)
where where
N: ComplexField, N: ComplexField,
D: DimSub<Dynamic>, D: Dim,
R2: Dim, Rx: Dim,
S: StorageMut<N, D, D>, S: StorageMut<N, D, D>,
S2: Storage<N, R2, U1>, Sx: Storage<N, Rx, U1>,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, R2, U1>, DefaultAllocator: Allocator<N, Rx, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{ {
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html // heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
let n = x.nrows(); let n = x.nrows();