Merge pull request #684 from aweinstock314/scalar-inlined-clone

Add inlined_clone to Scalar, and relax bounds from `Scalar + Copy` to…
This commit is contained in:
Sébastien Crozet 2020-01-05 21:02:05 +01:00
commit 2728827a45
69 changed files with 693 additions and 678 deletions

View File

@ -4,11 +4,11 @@ extern crate nalgebra as na;
use alga::general::{RealField, RingCommutative}; use alga::general::{RealField, RingCommutative};
use na::{Scalar, Vector3}; use na::{Scalar, Vector3};
fn print_vector<N: Scalar + Copy>(m: &Vector3<N>) { fn print_vector<N: Scalar>(m: &Vector3<N>) {
println!("{:?}", m) println!("{:?}", m)
} }
fn print_squared_norm<N: Scalar + Copy + RingCommutative>(v: &Vector3<N>) { fn print_squared_norm<N: Scalar + RingCommutative>(v: &Vector3<N>) {
// NOTE: alternatively, nalgebra already defines `v.squared_norm()`. // NOTE: alternatively, nalgebra already defines `v.squared_norm()`.
let sqnorm = v.dot(v); let sqnorm = v.dot(v);
println!("{:?}", sqnorm); println!("{:?}", sqnorm);

View File

@ -297,13 +297,13 @@ where DefaultAllocator: Alloc<f32, D> {
v.map(int_bits_to_float) v.map(int_bits_to_float)
} }
//pub fn isinf<N: Scalar + Copy, D: Dimension>(x: &TVec<N, D>) -> TVec<bool, D> //pub fn isinf<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<bool, D>
// where DefaultAllocator: Alloc<N, D> { // where DefaultAllocator: Alloc<N, D> {
// unimplemented!() // unimplemented!()
// //
//} //}
// //
//pub fn isnan<N: Scalar + Copy, D: Dimension>(x: &TVec<N, D>) -> TVec<bool, D> //pub fn isnan<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<bool, D>
// where DefaultAllocator: Alloc<N, D> { // where DefaultAllocator: Alloc<N, D> {
// unimplemented!() // unimplemented!()
// //
@ -504,7 +504,7 @@ where DefaultAllocator: Alloc<N, D> {
x.map(|x| x.round()) x.map(|x| x.round())
} }
//pub fn roundEven<N: Scalar + Copy, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D> //pub fn roundEven<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<N, D>
// where DefaultAllocator: Alloc<N, D> { // where DefaultAllocator: Alloc<N, D> {
// unimplemented!() // unimplemented!()
//} //}

View File

@ -15,28 +15,28 @@ use crate::aliases::{TMat, Qua, TVec1, TVec2, TVec3, TVec4, TMat2, TMat2x3, TMat
/// # use nalgebra_glm as glm; /// # use nalgebra_glm as glm;
/// let v = glm::vec1(true); /// let v = glm::vec1(true);
/// ``` /// ```
pub fn vec1<N: Scalar + Copy>(x: N) -> TVec1<N> { pub fn vec1<N: Scalar>(x: N) -> TVec1<N> {
TVec1::new(x) TVec1::new(x)
} }
/// Creates a new 2D vector. /// Creates a new 2D vector.
pub fn vec2<N: Scalar + Copy>(x: N, y: N) -> TVec2<N> { pub fn vec2<N: Scalar>(x: N, y: N) -> TVec2<N> {
TVec2::new(x, y) TVec2::new(x, y)
} }
/// Creates a new 3D vector. /// Creates a new 3D vector.
pub fn vec3<N: Scalar + Copy>(x: N, y: N, z: N) -> TVec3<N> { pub fn vec3<N: Scalar>(x: N, y: N, z: N) -> TVec3<N> {
TVec3::new(x, y, z) TVec3::new(x, y, z)
} }
/// Creates a new 4D vector. /// Creates a new 4D vector.
pub fn vec4<N: Scalar + Copy>(x: N, y: N, z: N, w: N) -> TVec4<N> { pub fn vec4<N: Scalar>(x: N, y: N, z: N, w: N) -> TVec4<N> {
TVec4::new(x, y, z, w) TVec4::new(x, y, z, w)
} }
/// Create a new 2x2 matrix. /// Create a new 2x2 matrix.
pub fn mat2<N: Scalar + Copy>(m11: N, m12: N, pub fn mat2<N: Scalar>(m11: N, m12: N,
m21: N, m22: N) -> TMat2<N> { m21: N, m22: N) -> TMat2<N> {
TMat::<N, U2, U2>::new( TMat::<N, U2, U2>::new(
m11, m12, m11, m12,
@ -45,7 +45,7 @@ pub fn mat2<N: Scalar + Copy>(m11: N, m12: N,
} }
/// Create a new 2x2 matrix. /// Create a new 2x2 matrix.
pub fn mat2x2<N: Scalar + Copy>(m11: N, m12: N, pub fn mat2x2<N: Scalar>(m11: N, m12: N,
m21: N, m22: N) -> TMat2<N> { m21: N, m22: N) -> TMat2<N> {
TMat::<N, U2, U2>::new( TMat::<N, U2, U2>::new(
m11, m12, m11, m12,
@ -54,7 +54,7 @@ pub fn mat2x2<N: Scalar + Copy>(m11: N, m12: N,
} }
/// Create a new 2x3 matrix. /// Create a new 2x3 matrix.
pub fn mat2x3<N: Scalar + Copy>(m11: N, m12: N, m13: N, pub fn mat2x3<N: Scalar>(m11: N, m12: N, m13: N,
m21: N, m22: N, m23: N) -> TMat2x3<N> { m21: N, m22: N, m23: N) -> TMat2x3<N> {
TMat::<N, U2, U3>::new( TMat::<N, U2, U3>::new(
m11, m12, m13, m11, m12, m13,
@ -63,7 +63,7 @@ pub fn mat2x3<N: Scalar + Copy>(m11: N, m12: N, m13: N,
} }
/// Create a new 2x4 matrix. /// Create a new 2x4 matrix.
pub fn mat2x4<N: Scalar + Copy>(m11: N, m12: N, m13: N, m14: N, pub fn mat2x4<N: Scalar>(m11: N, m12: N, m13: N, m14: N,
m21: N, m22: N, m23: N, m24: N) -> TMat2x4<N> { m21: N, m22: N, m23: N, m24: N) -> TMat2x4<N> {
TMat::<N, U2, U4>::new( TMat::<N, U2, U4>::new(
m11, m12, m13, m14, m11, m12, m13, m14,
@ -72,7 +72,7 @@ pub fn mat2x4<N: Scalar + Copy>(m11: N, m12: N, m13: N, m14: N,
} }
/// Create a new 3x3 matrix. /// Create a new 3x3 matrix.
pub fn mat3<N: Scalar + Copy>(m11: N, m12: N, m13: N, pub fn mat3<N: Scalar>(m11: N, m12: N, m13: N,
m21: N, m22: N, m23: N, m21: N, m22: N, m23: N,
m31: N, m32: N, m33: N) -> TMat3<N> { m31: N, m32: N, m33: N) -> TMat3<N> {
TMat::<N, U3, U3>::new( TMat::<N, U3, U3>::new(
@ -83,7 +83,7 @@ pub fn mat3<N: Scalar + Copy>(m11: N, m12: N, m13: N,
} }
/// Create a new 3x2 matrix. /// Create a new 3x2 matrix.
pub fn mat3x2<N: Scalar + Copy>(m11: N, m12: N, pub fn mat3x2<N: Scalar>(m11: N, m12: N,
m21: N, m22: N, m21: N, m22: N,
m31: N, m32: N) -> TMat3x2<N> { m31: N, m32: N) -> TMat3x2<N> {
TMat::<N, U3, U2>::new( TMat::<N, U3, U2>::new(
@ -94,7 +94,7 @@ pub fn mat3x2<N: Scalar + Copy>(m11: N, m12: N,
} }
/// Create a new 3x3 matrix. /// Create a new 3x3 matrix.
pub fn mat3x3<N: Scalar + Copy>(m11: N, m12: N, m13: N, pub fn mat3x3<N: Scalar>(m11: N, m12: N, m13: N,
m21: N, m22: N, m23: N, m21: N, m22: N, m23: N,
m31: N, m32: N, m33: N) -> TMat3<N> { m31: N, m32: N, m33: N) -> TMat3<N> {
TMat::<N, U3, U3>::new( TMat::<N, U3, U3>::new(
@ -105,7 +105,7 @@ pub fn mat3x3<N: Scalar + Copy>(m11: N, m12: N, m13: N,
} }
/// Create a new 3x4 matrix. /// Create a new 3x4 matrix.
pub fn mat3x4<N: Scalar + Copy>(m11: N, m12: N, m13: N, m14: N, pub fn mat3x4<N: Scalar>(m11: N, m12: N, m13: N, m14: N,
m21: N, m22: N, m23: N, m24: N, m21: N, m22: N, m23: N, m24: N,
m31: N, m32: N, m33: N, m34: N) -> TMat3x4<N> { m31: N, m32: N, m33: N, m34: N) -> TMat3x4<N> {
TMat::<N, U3, U4>::new( TMat::<N, U3, U4>::new(
@ -116,7 +116,7 @@ pub fn mat3x4<N: Scalar + Copy>(m11: N, m12: N, m13: N, m14: N,
} }
/// Create a new 4x2 matrix. /// Create a new 4x2 matrix.
pub fn mat4x2<N: Scalar + Copy>(m11: N, m12: N, pub fn mat4x2<N: Scalar>(m11: N, m12: N,
m21: N, m22: N, m21: N, m22: N,
m31: N, m32: N, m31: N, m32: N,
m41: N, m42: N) -> TMat4x2<N> { m41: N, m42: N) -> TMat4x2<N> {
@ -129,7 +129,7 @@ pub fn mat4x2<N: Scalar + Copy>(m11: N, m12: N,
} }
/// Create a new 4x3 matrix. /// Create a new 4x3 matrix.
pub fn mat4x3<N: Scalar + Copy>(m11: N, m12: N, m13: N, pub fn mat4x3<N: Scalar>(m11: N, m12: N, m13: N,
m21: N, m22: N, m23: N, m21: N, m22: N, m23: N,
m31: N, m32: N, m33: N, m31: N, m32: N, m33: N,
m41: N, m42: N, m43: N) -> TMat4x3<N> { m41: N, m42: N, m43: N) -> TMat4x3<N> {
@ -142,7 +142,7 @@ pub fn mat4x3<N: Scalar + Copy>(m11: N, m12: N, m13: N,
} }
/// Create a new 4x4 matrix. /// Create a new 4x4 matrix.
pub fn mat4x4<N: Scalar + Copy>(m11: N, m12: N, m13: N, m14: N, pub fn mat4x4<N: Scalar>(m11: N, m12: N, m13: N, m14: N,
m21: N, m22: N, m23: N, m24: N, m21: N, m22: N, m23: N, m24: N,
m31: N, m32: N, m33: N, m34: N, m31: N, m32: N, m33: N, m34: N,
m41: N, m42: N, m43: N, m44: N) -> TMat4<N> { m41: N, m42: N, m43: N, m44: N) -> TMat4<N> {
@ -155,7 +155,7 @@ pub fn mat4x4<N: Scalar + Copy>(m11: N, m12: N, m13: N, m14: N,
} }
/// Create a new 4x4 matrix. /// Create a new 4x4 matrix.
pub fn mat4<N: Scalar + Copy>(m11: N, m12: N, m13: N, m14: N, pub fn mat4<N: Scalar>(m11: N, m12: N, m13: N, m14: N,
m21: N, m22: N, m23: N, m24: N, m21: N, m22: N, m23: N, m24: N,
m31: N, m32: N, m33: N, m34: N, m31: N, m32: N, m33: N, m34: N,
m41: N, m42: N, m43: N, m44: N) -> TMat4<N> { m41: N, m42: N, m43: N, m44: N) -> TMat4<N> {

View File

@ -19,7 +19,7 @@ pub fn bitfieldFillOne<IU>(Value: IU, FirstBit: i32, BitCount: i32) -> IU {
unimplemented!() unimplemented!()
} }
pub fn bitfieldFillOne2<N: Scalar + Copy, D: Dimension>(Value: &TVec<N, D>, FirstBit: i32, BitCount: i32) -> TVec<N, D> pub fn bitfieldFillOne2<N: Scalar, D: Dimension>(Value: &TVec<N, D>, FirstBit: i32, BitCount: i32) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -28,7 +28,7 @@ pub fn bitfieldFillZero<IU>(Value: IU, FirstBit: i32, BitCount: i32) -> IU {
unimplemented!() unimplemented!()
} }
pub fn bitfieldFillZero2<N: Scalar + Copy, D: Dimension>(Value: &TVec<N, D>, FirstBit: i32, BitCount: i32) -> TVec<N, D> pub fn bitfieldFillZero2<N: Scalar, D: Dimension>(Value: &TVec<N, D>, FirstBit: i32, BitCount: i32) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -113,7 +113,7 @@ pub fn bitfieldRotateLeft<IU>(In: IU, Shift: i32) -> IU {
unimplemented!() unimplemented!()
} }
pub fn bitfieldRotateLeft2<N: Scalar + Copy, D: Dimension>(In: &TVec<N, D>, Shift: i32) -> TVec<N, D> pub fn bitfieldRotateLeft2<N: Scalar, D: Dimension>(In: &TVec<N, D>, Shift: i32) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -122,7 +122,7 @@ pub fn bitfieldRotateRight<IU>(In: IU, Shift: i32) -> IU {
unimplemented!() unimplemented!()
} }
pub fn bitfieldRotateRight2<N: Scalar + Copy, D: Dimension>(In: &TVec<N, D>, Shift: i32) -> TVec<N, D> pub fn bitfieldRotateRight2<N: Scalar, D: Dimension>(In: &TVec<N, D>, Shift: i32) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -131,7 +131,7 @@ pub fn mask<IU>(Bits: IU) -> IU {
unimplemented!() unimplemented!()
} }
pub fn mask2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn mask2<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }

View File

@ -3,7 +3,7 @@
//use crate::traits::{Alloc, Dimension}; //use crate::traits::{Alloc, Dimension};
//use crate::aliases::TVec; //use crate::aliases::TVec;
//pub fn iround<N: Scalar + Copy, D: Dimension>(x: &TVec<N, D>) -> TVec<i32, D> //pub fn iround<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<i32, D>
// where DefaultAllocator: Alloc<N, D> { // where DefaultAllocator: Alloc<N, D> {
// x.map(|x| x.round()) // x.map(|x| x.round())
//} //}
@ -12,7 +12,7 @@
// unimplemented!() // unimplemented!()
//} //}
// //
//pub fn uround<N: Scalar + Copy, D: Dimension>(x: &TVec<N, D>) -> TVec<u32, D> //pub fn uround<N: Scalar, D: Dimension>(x: &TVec<N, D>) -> TVec<u32, D>
// where DefaultAllocator: Alloc<N, D> { // where DefaultAllocator: Alloc<N, D> {
// unimplemented!() // unimplemented!()
//} //}

View File

@ -10,7 +10,7 @@ use crate::traits::{Alloc, Dimension};
/// * [`row`](fn.row.html) /// * [`row`](fn.row.html)
/// * [`set_column`](fn.set_column.html) /// * [`set_column`](fn.set_column.html)
/// * [`set_row`](fn.set_row.html) /// * [`set_row`](fn.set_row.html)
pub fn column<N: Scalar + Copy, R: Dimension, C: Dimension>( pub fn column<N: Scalar, R: Dimension, C: Dimension>(
m: &TMat<N, R, C>, m: &TMat<N, R, C>,
index: usize, index: usize,
) -> TVec<N, R> ) -> TVec<N, R>
@ -27,7 +27,7 @@ where
/// * [`column`](fn.column.html) /// * [`column`](fn.column.html)
/// * [`row`](fn.row.html) /// * [`row`](fn.row.html)
/// * [`set_row`](fn.set_row.html) /// * [`set_row`](fn.set_row.html)
pub fn set_column<N: Scalar + Copy, R: Dimension, C: Dimension>( pub fn set_column<N: Scalar, R: Dimension, C: Dimension>(
m: &TMat<N, R, C>, m: &TMat<N, R, C>,
index: usize, index: usize,
x: &TVec<N, R>, x: &TVec<N, R>,
@ -47,7 +47,7 @@ where
/// * [`column`](fn.column.html) /// * [`column`](fn.column.html)
/// * [`set_column`](fn.set_column.html) /// * [`set_column`](fn.set_column.html)
/// * [`set_row`](fn.set_row.html) /// * [`set_row`](fn.set_row.html)
pub fn row<N: Scalar + Copy, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, C> pub fn row<N: Scalar, R: Dimension, C: Dimension>(m: &TMat<N, R, C>, index: usize) -> TVec<N, C>
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
m.row(index).into_owned().transpose() m.row(index).into_owned().transpose()
} }
@ -59,7 +59,7 @@ where DefaultAllocator: Alloc<N, R, C> {
/// * [`column`](fn.column.html) /// * [`column`](fn.column.html)
/// * [`row`](fn.row.html) /// * [`row`](fn.row.html)
/// * [`set_column`](fn.set_column.html) /// * [`set_column`](fn.set_column.html)
pub fn set_row<N: Scalar + Copy, R: Dimension, C: Dimension>( pub fn set_row<N: Scalar, R: Dimension, C: Dimension>(
m: &TMat<N, R, C>, m: &TMat<N, R, C>,
index: usize, index: usize,
x: &TVec<N, C>, x: &TVec<N, C>,

View File

@ -49,7 +49,7 @@ pub fn packInt4x8(v: &I8Vec4) -> i32 {
unimplemented!() unimplemented!()
} }
pub fn packRGBM<N: Scalar + Copy>(rgb: &TVec3<N>) -> TVec4<N> { pub fn packRGBM<N: Scalar>(rgb: &TVec3<N>) -> TVec4<N> {
unimplemented!() unimplemented!()
} }
@ -155,7 +155,7 @@ pub fn unpackF3x9_E1x5(p: i32) -> Vec3 {
unimplemented!() unimplemented!()
} }
pub fn unpackHalf<N: Scalar + Copy, D: Dimension>(p: TVec<i16, D>) -> TVec<N, D> pub fn unpackHalf<N: Scalar, D: Dimension>(p: TVec<i16, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -192,7 +192,7 @@ pub fn unpackInt4x8(p: i32) -> I8Vec4 {
unimplemented!() unimplemented!()
} }
pub fn unpackRGBM<N: Scalar + Copy>(rgbm: &TVec4<N>) -> TVec3<N> { pub fn unpackRGBM<N: Scalar>(rgbm: &TVec4<N>) -> TVec3<N> {
unimplemented!() unimplemented!()
} }

View File

@ -8,7 +8,7 @@ pub fn ceilMultiple<T>(v: T, Multiple: T) -> T {
unimplemented!() unimplemented!()
} }
pub fn ceilMultiple2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<N, D> pub fn ceilMultiple2<N: Scalar, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -17,7 +17,7 @@ pub fn ceilPowerOfTwo<IU>(v: IU) -> IU {
unimplemented!() unimplemented!()
} }
pub fn ceilPowerOfTwo2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn ceilPowerOfTwo2<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -26,7 +26,7 @@ pub fn floorMultiple<T>(v: T, Multiple: T) -> T {
unimplemented!() unimplemented!()
} }
pub fn floorMultiple2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<N, D> pub fn floorMultiple2<N: Scalar, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -35,7 +35,7 @@ pub fn floorPowerOfTwo<IU>(v: IU) -> IU {
unimplemented!() unimplemented!()
} }
pub fn floorPowerOfTwo2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn floorPowerOfTwo2<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -44,12 +44,12 @@ pub fn isMultiple<IU>(v: IU, Multiple: IU) -> bool {
unimplemented!() unimplemented!()
} }
pub fn isMultiple2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>,Multiple: N) -> TVec<bool, D> pub fn isMultiple2<N: Scalar, D: Dimension>(v: &TVec<N, D>,Multiple: N) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn isMultiple3<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<bool, D> pub fn isMultiple3<N: Scalar, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -58,7 +58,7 @@ pub fn isPowerOfTwo2<IU>(v: IU) -> bool {
unimplemented!() unimplemented!()
} }
pub fn isPowerOfTwo<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<bool, D> pub fn isPowerOfTwo<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<bool, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -67,7 +67,7 @@ pub fn roundMultiple<T>(v: T, Multiple: T) -> T {
unimplemented!() unimplemented!()
} }
pub fn roundMultiple2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<N, D> pub fn roundMultiple2<N: Scalar, D: Dimension>(v: &TVec<N, D>, Multiple: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -76,7 +76,7 @@ pub fn roundPowerOfTwo<IU>(v: IU) -> IU {
unimplemented!() unimplemented!()
} }
pub fn roundPowerOfTwo2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn roundPowerOfTwo2<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }

View File

@ -7,62 +7,62 @@ use crate::aliases::{
use crate::traits::{Alloc, Dimension, Number}; use crate::traits::{Alloc, Dimension, Number};
/// Creates a 2x2 matrix from a slice arranged in column-major order. /// Creates a 2x2 matrix from a slice arranged in column-major order.
pub fn make_mat2<N: Scalar + Copy>(ptr: &[N]) -> TMat2<N> { pub fn make_mat2<N: Scalar>(ptr: &[N]) -> TMat2<N> {
TMat2::from_column_slice(ptr) TMat2::from_column_slice(ptr)
} }
/// Creates a 2x2 matrix from a slice arranged in column-major order. /// Creates a 2x2 matrix from a slice arranged in column-major order.
pub fn make_mat2x2<N: Scalar + Copy>(ptr: &[N]) -> TMat2<N> { pub fn make_mat2x2<N: Scalar>(ptr: &[N]) -> TMat2<N> {
TMat2::from_column_slice(ptr) TMat2::from_column_slice(ptr)
} }
/// Creates a 2x3 matrix from a slice arranged in column-major order. /// Creates a 2x3 matrix from a slice arranged in column-major order.
pub fn make_mat2x3<N: Scalar + Copy>(ptr: &[N]) -> TMat2x3<N> { pub fn make_mat2x3<N: Scalar>(ptr: &[N]) -> TMat2x3<N> {
TMat2x3::from_column_slice(ptr) TMat2x3::from_column_slice(ptr)
} }
/// Creates a 2x4 matrix from a slice arranged in column-major order. /// Creates a 2x4 matrix from a slice arranged in column-major order.
pub fn make_mat2x4<N: Scalar + Copy>(ptr: &[N]) -> TMat2x4<N> { pub fn make_mat2x4<N: Scalar>(ptr: &[N]) -> TMat2x4<N> {
TMat2x4::from_column_slice(ptr) TMat2x4::from_column_slice(ptr)
} }
/// Creates a 3 matrix from a slice arranged in column-major order. /// Creates a 3 matrix from a slice arranged in column-major order.
pub fn make_mat3<N: Scalar + Copy>(ptr: &[N]) -> TMat3<N> { pub fn make_mat3<N: Scalar>(ptr: &[N]) -> TMat3<N> {
TMat3::from_column_slice(ptr) TMat3::from_column_slice(ptr)
} }
/// Creates a 3x2 matrix from a slice arranged in column-major order. /// Creates a 3x2 matrix from a slice arranged in column-major order.
pub fn make_mat3x2<N: Scalar + Copy>(ptr: &[N]) -> TMat3x2<N> { pub fn make_mat3x2<N: Scalar>(ptr: &[N]) -> TMat3x2<N> {
TMat3x2::from_column_slice(ptr) TMat3x2::from_column_slice(ptr)
} }
/// Creates a 3x3 matrix from a slice arranged in column-major order. /// Creates a 3x3 matrix from a slice arranged in column-major order.
pub fn make_mat3x3<N: Scalar + Copy>(ptr: &[N]) -> TMat3<N> { pub fn make_mat3x3<N: Scalar>(ptr: &[N]) -> TMat3<N> {
TMat3::from_column_slice(ptr) TMat3::from_column_slice(ptr)
} }
/// Creates a 3x4 matrix from a slice arranged in column-major order. /// Creates a 3x4 matrix from a slice arranged in column-major order.
pub fn make_mat3x4<N: Scalar + Copy>(ptr: &[N]) -> TMat3x4<N> { pub fn make_mat3x4<N: Scalar>(ptr: &[N]) -> TMat3x4<N> {
TMat3x4::from_column_slice(ptr) TMat3x4::from_column_slice(ptr)
} }
/// Creates a 4x4 matrix from a slice arranged in column-major order. /// Creates a 4x4 matrix from a slice arranged in column-major order.
pub fn make_mat4<N: Scalar + Copy>(ptr: &[N]) -> TMat4<N> { pub fn make_mat4<N: Scalar>(ptr: &[N]) -> TMat4<N> {
TMat4::from_column_slice(ptr) TMat4::from_column_slice(ptr)
} }
/// Creates a 4x2 matrix from a slice arranged in column-major order. /// Creates a 4x2 matrix from a slice arranged in column-major order.
pub fn make_mat4x2<N: Scalar + Copy>(ptr: &[N]) -> TMat4x2<N> { pub fn make_mat4x2<N: Scalar>(ptr: &[N]) -> TMat4x2<N> {
TMat4x2::from_column_slice(ptr) TMat4x2::from_column_slice(ptr)
} }
/// Creates a 4x3 matrix from a slice arranged in column-major order. /// Creates a 4x3 matrix from a slice arranged in column-major order.
pub fn make_mat4x3<N: Scalar + Copy>(ptr: &[N]) -> TMat4x3<N> { pub fn make_mat4x3<N: Scalar>(ptr: &[N]) -> TMat4x3<N> {
TMat4x3::from_column_slice(ptr) TMat4x3::from_column_slice(ptr)
} }
/// Creates a 4x4 matrix from a slice arranged in column-major order. /// Creates a 4x4 matrix from a slice arranged in column-major order.
pub fn make_mat4x4<N: Scalar + Copy>(ptr: &[N]) -> TMat4<N> { pub fn make_mat4x4<N: Scalar>(ptr: &[N]) -> TMat4<N> {
TMat4::from_column_slice(ptr) TMat4::from_column_slice(ptr)
} }
@ -75,8 +75,8 @@ pub fn mat2_to_mat3<N: Number>(m: &TMat2<N>) -> TMat3<N> {
} }
/// Converts a 3x3 matrix to a 2x2 matrix. /// Converts a 3x3 matrix to a 2x2 matrix.
pub fn mat3_to_mat2<N: Scalar + Copy>(m: &TMat3<N>) -> TMat2<N> { pub fn mat3_to_mat2<N: Scalar>(m: &TMat3<N>) -> TMat2<N> {
TMat2::new(m.m11, m.m12, m.m21, m.m22) TMat2::new(m.m11.inlined_clone(), m.m12.inlined_clone(), m.m21.inlined_clone(), m.m22.inlined_clone())
} }
/// Converts a 3x3 matrix to a 4x4 matrix. /// Converts a 3x3 matrix to a 4x4 matrix.
@ -90,9 +90,11 @@ pub fn mat3_to_mat4<N: Number>(m: &TMat3<N>) -> TMat4<N> {
} }
/// Converts a 4x4 matrix to a 3x3 matrix. /// Converts a 4x4 matrix to a 3x3 matrix.
pub fn mat4_to_mat3<N: Scalar + Copy>(m: &TMat4<N>) -> TMat3<N> { pub fn mat4_to_mat3<N: Scalar>(m: &TMat4<N>) -> TMat3<N> {
TMat3::new( TMat3::new(
m.m11, m.m12, m.m13, m.m21, m.m22, m.m23, m.m31, m.m32, m.m33, m.m11.inlined_clone(), m.m12.inlined_clone(), m.m13.inlined_clone(),
m.m21.inlined_clone(), m.m22.inlined_clone(), m.m23.inlined_clone(),
m.m31.inlined_clone(), m.m32.inlined_clone(), m.m33.inlined_clone(),
) )
} }
@ -107,8 +109,8 @@ pub fn mat2_to_mat4<N: Number>(m: &TMat2<N>) -> TMat4<N> {
} }
/// Converts a 4x4 matrix to a 2x2 matrix. /// Converts a 4x4 matrix to a 2x2 matrix.
pub fn mat4_to_mat2<N: Scalar + Copy>(m: &TMat4<N>) -> TMat2<N> { pub fn mat4_to_mat2<N: Scalar>(m: &TMat4<N>) -> TMat2<N> {
TMat2::new(m.m11, m.m12, m.m21, m.m22) TMat2::new(m.m11.inlined_clone(), m.m12.inlined_clone(), m.m21.inlined_clone(), m.m22.inlined_clone())
} }
/// Creates a quaternion from a slice arranged as `[x, y, z, w]`. /// Creates a quaternion from a slice arranged as `[x, y, z, w]`.
@ -123,8 +125,8 @@ pub fn make_quat<N: RealField>(ptr: &[N]) -> Qua<N> {
/// * [`make_vec2`](fn.make_vec2.html) /// * [`make_vec2`](fn.make_vec2.html)
/// * [`make_vec3`](fn.make_vec3.html) /// * [`make_vec3`](fn.make_vec3.html)
/// * [`make_vec4`](fn.make_vec4.html) /// * [`make_vec4`](fn.make_vec4.html)
pub fn make_vec1<N: Scalar + Copy>(v: &TVec1<N>) -> TVec1<N> { pub fn make_vec1<N: Scalar>(v: &TVec1<N>) -> TVec1<N> {
*v v.clone()
} }
/// Creates a 1D vector from another vector. /// Creates a 1D vector from another vector.
@ -137,8 +139,8 @@ pub fn make_vec1<N: Scalar + Copy>(v: &TVec1<N>) -> TVec1<N> {
/// * [`vec1_to_vec2`](fn.vec1_to_vec2.html) /// * [`vec1_to_vec2`](fn.vec1_to_vec2.html)
/// * [`vec1_to_vec3`](fn.vec1_to_vec3.html) /// * [`vec1_to_vec3`](fn.vec1_to_vec3.html)
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html) /// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
pub fn vec2_to_vec1<N: Scalar + Copy>(v: &TVec2<N>) -> TVec1<N> { pub fn vec2_to_vec1<N: Scalar>(v: &TVec2<N>) -> TVec1<N> {
TVec1::new(v.x) TVec1::new(v.x.inlined_clone())
} }
/// Creates a 1D vector from another vector. /// Creates a 1D vector from another vector.
@ -151,8 +153,8 @@ pub fn vec2_to_vec1<N: Scalar + Copy>(v: &TVec2<N>) -> TVec1<N> {
/// * [`vec1_to_vec2`](fn.vec1_to_vec2.html) /// * [`vec1_to_vec2`](fn.vec1_to_vec2.html)
/// * [`vec1_to_vec3`](fn.vec1_to_vec3.html) /// * [`vec1_to_vec3`](fn.vec1_to_vec3.html)
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html) /// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
pub fn vec3_to_vec1<N: Scalar + Copy>(v: &TVec3<N>) -> TVec1<N> { pub fn vec3_to_vec1<N: Scalar>(v: &TVec3<N>) -> TVec1<N> {
TVec1::new(v.x) TVec1::new(v.x.inlined_clone())
} }
/// Creates a 1D vector from another vector. /// Creates a 1D vector from another vector.
@ -165,8 +167,8 @@ pub fn vec3_to_vec1<N: Scalar + Copy>(v: &TVec3<N>) -> TVec1<N> {
/// * [`vec1_to_vec2`](fn.vec1_to_vec2.html) /// * [`vec1_to_vec2`](fn.vec1_to_vec2.html)
/// * [`vec1_to_vec3`](fn.vec1_to_vec3.html) /// * [`vec1_to_vec3`](fn.vec1_to_vec3.html)
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html) /// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
pub fn vec4_to_vec1<N: Scalar + Copy>(v: &TVec4<N>) -> TVec1<N> { pub fn vec4_to_vec1<N: Scalar>(v: &TVec4<N>) -> TVec1<N> {
TVec1::new(v.x) TVec1::new(v.x.inlined_clone())
} }
/// Creates a 2D vector from another vector. /// Creates a 2D vector from another vector.
@ -182,7 +184,7 @@ pub fn vec4_to_vec1<N: Scalar + Copy>(v: &TVec4<N>) -> TVec1<N> {
/// * [`vec2_to_vec3`](fn.vec2_to_vec3.html) /// * [`vec2_to_vec3`](fn.vec2_to_vec3.html)
/// * [`vec2_to_vec4`](fn.vec2_to_vec4.html) /// * [`vec2_to_vec4`](fn.vec2_to_vec4.html)
pub fn vec1_to_vec2<N: Number>(v: &TVec1<N>) -> TVec2<N> { pub fn vec1_to_vec2<N: Number>(v: &TVec1<N>) -> TVec2<N> {
TVec2::new(v.x, N::zero()) TVec2::new(v.x.inlined_clone(), N::zero())
} }
/// Creates a 2D vector from another vector. /// Creates a 2D vector from another vector.
@ -196,8 +198,8 @@ pub fn vec1_to_vec2<N: Number>(v: &TVec1<N>) -> TVec2<N> {
/// * [`vec2_to_vec2`](fn.vec2_to_vec2.html) /// * [`vec2_to_vec2`](fn.vec2_to_vec2.html)
/// * [`vec2_to_vec3`](fn.vec2_to_vec3.html) /// * [`vec2_to_vec3`](fn.vec2_to_vec3.html)
/// * [`vec2_to_vec4`](fn.vec2_to_vec4.html) /// * [`vec2_to_vec4`](fn.vec2_to_vec4.html)
pub fn vec2_to_vec2<N: Scalar + Copy>(v: &TVec2<N>) -> TVec2<N> { pub fn vec2_to_vec2<N: Scalar>(v: &TVec2<N>) -> TVec2<N> {
*v v.clone()
} }
/// Creates a 2D vector from another vector. /// Creates a 2D vector from another vector.
@ -210,8 +212,8 @@ pub fn vec2_to_vec2<N: Scalar + Copy>(v: &TVec2<N>) -> TVec2<N> {
/// * [`vec2_to_vec2`](fn.vec2_to_vec2.html) /// * [`vec2_to_vec2`](fn.vec2_to_vec2.html)
/// * [`vec2_to_vec3`](fn.vec2_to_vec3.html) /// * [`vec2_to_vec3`](fn.vec2_to_vec3.html)
/// * [`vec2_to_vec4`](fn.vec2_to_vec4.html) /// * [`vec2_to_vec4`](fn.vec2_to_vec4.html)
pub fn vec3_to_vec2<N: Scalar + Copy>(v: &TVec3<N>) -> TVec2<N> { pub fn vec3_to_vec2<N: Scalar>(v: &TVec3<N>) -> TVec2<N> {
TVec2::new(v.x, v.y) TVec2::new(v.x.inlined_clone(), v.y.inlined_clone())
} }
/// Creates a 2D vector from another vector. /// Creates a 2D vector from another vector.
@ -224,8 +226,8 @@ pub fn vec3_to_vec2<N: Scalar + Copy>(v: &TVec3<N>) -> TVec2<N> {
/// * [`vec2_to_vec2`](fn.vec2_to_vec2.html) /// * [`vec2_to_vec2`](fn.vec2_to_vec2.html)
/// * [`vec2_to_vec3`](fn.vec2_to_vec3.html) /// * [`vec2_to_vec3`](fn.vec2_to_vec3.html)
/// * [`vec2_to_vec4`](fn.vec2_to_vec4.html) /// * [`vec2_to_vec4`](fn.vec2_to_vec4.html)
pub fn vec4_to_vec2<N: Scalar + Copy>(v: &TVec4<N>) -> TVec2<N> { pub fn vec4_to_vec2<N: Scalar>(v: &TVec4<N>) -> TVec2<N> {
TVec2::new(v.x, v.y) TVec2::new(v.x.inlined_clone(), v.y.inlined_clone())
} }
/// Creates a 2D vector from a slice. /// Creates a 2D vector from a slice.
@ -235,7 +237,7 @@ pub fn vec4_to_vec2<N: Scalar + Copy>(v: &TVec4<N>) -> TVec2<N> {
/// * [`make_vec1`](fn.make_vec1.html) /// * [`make_vec1`](fn.make_vec1.html)
/// * [`make_vec3`](fn.make_vec3.html) /// * [`make_vec3`](fn.make_vec3.html)
/// * [`make_vec4`](fn.make_vec4.html) /// * [`make_vec4`](fn.make_vec4.html)
pub fn make_vec2<N: Scalar + Copy>(ptr: &[N]) -> TVec2<N> { pub fn make_vec2<N: Scalar>(ptr: &[N]) -> TVec2<N> {
TVec2::from_column_slice(ptr) TVec2::from_column_slice(ptr)
} }
@ -251,7 +253,7 @@ pub fn make_vec2<N: Scalar + Copy>(ptr: &[N]) -> TVec2<N> {
/// * [`vec1_to_vec2`](fn.vec1_to_vec2.html) /// * [`vec1_to_vec2`](fn.vec1_to_vec2.html)
/// * [`vec1_to_vec4`](fn.vec1_to_vec4.html) /// * [`vec1_to_vec4`](fn.vec1_to_vec4.html)
pub fn vec1_to_vec3<N: Number>(v: &TVec1<N>) -> TVec3<N> { pub fn vec1_to_vec3<N: Number>(v: &TVec1<N>) -> TVec3<N> {
TVec3::new(v.x, N::zero(), N::zero()) TVec3::new(v.x.inlined_clone(), N::zero(), N::zero())
} }
/// Creates a 3D vector from another vector. /// Creates a 3D vector from another vector.
@ -267,7 +269,7 @@ pub fn vec1_to_vec3<N: Number>(v: &TVec1<N>) -> TVec3<N> {
/// * [`vec3_to_vec2`](fn.vec3_to_vec2.html) /// * [`vec3_to_vec2`](fn.vec3_to_vec2.html)
/// * [`vec3_to_vec4`](fn.vec3_to_vec4.html) /// * [`vec3_to_vec4`](fn.vec3_to_vec4.html)
pub fn vec2_to_vec3<N: Number>(v: &TVec2<N>) -> TVec3<N> { pub fn vec2_to_vec3<N: Number>(v: &TVec2<N>) -> TVec3<N> {
TVec3::new(v.x, v.y, N::zero()) TVec3::new(v.x.inlined_clone(), v.y.inlined_clone(), N::zero())
} }
/// Creates a 3D vector from another vector. /// Creates a 3D vector from another vector.
@ -280,8 +282,8 @@ pub fn vec2_to_vec3<N: Number>(v: &TVec2<N>) -> TVec3<N> {
/// * [`vec3_to_vec1`](fn.vec3_to_vec1.html) /// * [`vec3_to_vec1`](fn.vec3_to_vec1.html)
/// * [`vec3_to_vec2`](fn.vec3_to_vec2.html) /// * [`vec3_to_vec2`](fn.vec3_to_vec2.html)
/// * [`vec3_to_vec4`](fn.vec3_to_vec4.html) /// * [`vec3_to_vec4`](fn.vec3_to_vec4.html)
pub fn vec3_to_vec3<N: Scalar + Copy>(v: &TVec3<N>) -> TVec3<N> { pub fn vec3_to_vec3<N: Scalar>(v: &TVec3<N>) -> TVec3<N> {
*v v.clone()
} }
/// Creates a 3D vector from another vector. /// Creates a 3D vector from another vector.
@ -294,8 +296,8 @@ pub fn vec3_to_vec3<N: Scalar + Copy>(v: &TVec3<N>) -> TVec3<N> {
/// * [`vec3_to_vec1`](fn.vec3_to_vec1.html) /// * [`vec3_to_vec1`](fn.vec3_to_vec1.html)
/// * [`vec3_to_vec2`](fn.vec3_to_vec2.html) /// * [`vec3_to_vec2`](fn.vec3_to_vec2.html)
/// * [`vec3_to_vec4`](fn.vec3_to_vec4.html) /// * [`vec3_to_vec4`](fn.vec3_to_vec4.html)
pub fn vec4_to_vec3<N: Scalar + Copy>(v: &TVec4<N>) -> TVec3<N> { pub fn vec4_to_vec3<N: Scalar>(v: &TVec4<N>) -> TVec3<N> {
TVec3::new(v.x, v.y, v.z) TVec3::new(v.x.inlined_clone(), v.y.inlined_clone(), v.z.inlined_clone())
} }
/// Creates a 3D vector from another vector. /// Creates a 3D vector from another vector.
@ -305,7 +307,7 @@ pub fn vec4_to_vec3<N: Scalar + Copy>(v: &TVec4<N>) -> TVec3<N> {
/// * [`make_vec1`](fn.make_vec1.html) /// * [`make_vec1`](fn.make_vec1.html)
/// * [`make_vec2`](fn.make_vec2.html) /// * [`make_vec2`](fn.make_vec2.html)
/// * [`make_vec4`](fn.make_vec4.html) /// * [`make_vec4`](fn.make_vec4.html)
pub fn make_vec3<N: Scalar + Copy>(ptr: &[N]) -> TVec3<N> { pub fn make_vec3<N: Scalar>(ptr: &[N]) -> TVec3<N> {
TVec3::from_column_slice(ptr) TVec3::from_column_slice(ptr)
} }
@ -367,8 +369,8 @@ pub fn vec3_to_vec4<N: Number>(v: &TVec3<N>) -> TVec4<N> {
/// * [`vec4_to_vec1`](fn.vec4_to_vec1.html) /// * [`vec4_to_vec1`](fn.vec4_to_vec1.html)
/// * [`vec4_to_vec2`](fn.vec4_to_vec2.html) /// * [`vec4_to_vec2`](fn.vec4_to_vec2.html)
/// * [`vec4_to_vec3`](fn.vec4_to_vec3.html) /// * [`vec4_to_vec3`](fn.vec4_to_vec3.html)
pub fn vec4_to_vec4<N: Scalar + Copy>(v: &TVec4<N>) -> TVec4<N> { pub fn vec4_to_vec4<N: Scalar>(v: &TVec4<N>) -> TVec4<N> {
*v v.clone()
} }
/// Creates a 4D vector from another vector. /// Creates a 4D vector from another vector.
@ -378,18 +380,18 @@ pub fn vec4_to_vec4<N: Scalar + Copy>(v: &TVec4<N>) -> TVec4<N> {
/// * [`make_vec1`](fn.make_vec1.html) /// * [`make_vec1`](fn.make_vec1.html)
/// * [`make_vec2`](fn.make_vec2.html) /// * [`make_vec2`](fn.make_vec2.html)
/// * [`make_vec3`](fn.make_vec3.html) /// * [`make_vec3`](fn.make_vec3.html)
pub fn make_vec4<N: Scalar + Copy>(ptr: &[N]) -> TVec4<N> { pub fn make_vec4<N: Scalar>(ptr: &[N]) -> TVec4<N> {
TVec4::from_column_slice(ptr) TVec4::from_column_slice(ptr)
} }
/// Converts a matrix or vector to a slice arranged in column-major order. /// Converts a matrix or vector to a slice arranged in column-major order.
pub fn value_ptr<N: Scalar + Copy, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> &[N] pub fn value_ptr<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> &[N]
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
x.as_slice() x.as_slice()
} }
/// Converts a matrix or vector to a mutable slice arranged in column-major order. /// Converts a matrix or vector to a mutable slice arranged in column-major order.
pub fn value_ptr_mut<N: Scalar + Copy, R: Dimension, C: Dimension>(x: &mut TMat<N, R, C>) -> &mut [N] pub fn value_ptr_mut<N: Scalar, R: Dimension, C: Dimension>(x: &mut TMat<N, R, C>) -> &mut [N]
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
x.as_mut_slice() x.as_mut_slice()
} }

View File

@ -7,7 +7,7 @@ pub fn float_distance<T>(x: T, y: T) -> u64 {
unimplemented!() unimplemented!()
} }
pub fn float_distance2<N: Scalar + Copy>(x: &TVec2<N>, y: &TVec2<N>) -> TVec<u64, U2> { pub fn float_distance2<N: Scalar>(x: &TVec2<N>, y: &TVec2<N>) -> TVec<u64, U2> {
unimplemented!() unimplemented!()
} }

View File

@ -7,22 +7,22 @@ pub fn bitCount<T>(v: T) -> i32 {
unimplemented!() unimplemented!()
} }
pub fn bitCount2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<i32, D> pub fn bitCount2<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<i32, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn bitfieldExtract<N: Scalar + Copy, D: Dimension>(Value: &TVec<N, D>, Offset: i32, Bits: i32) -> TVec<N, D> pub fn bitfieldExtract<N: Scalar, D: Dimension>(Value: &TVec<N, D>, Offset: i32, Bits: i32) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn bitfieldInsert<N: Scalar + Copy, D: Dimension>(Base: &TVec<N, D>, Insert: &TVec<N, D>, Offset: i32, Bits: i32) -> TVec<N, D> pub fn bitfieldInsert<N: Scalar, D: Dimension>(Base: &TVec<N, D>, Insert: &TVec<N, D>, Offset: i32, Bits: i32) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn bitfieldReverse<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D> pub fn bitfieldReverse<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<N, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -31,7 +31,7 @@ pub fn findLSB<IU>(x: IU) -> u32 {
unimplemented!() unimplemented!()
} }
pub fn findLSB2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<i32, D> pub fn findLSB2<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<i32, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
@ -40,27 +40,27 @@ pub fn findMSB<IU>(x: IU) -> i32 {
unimplemented!() unimplemented!()
} }
pub fn findMSB2<N: Scalar + Copy, D: Dimension>(v: &TVec<N, D>) -> TVec<i32, D> pub fn findMSB2<N: Scalar, D: Dimension>(v: &TVec<N, D>) -> TVec<i32, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn imulExtended<N: Scalar + Copy, D: Dimension>(x: &TVec<i32, D>, y: &TVec<i32, D>, msb: &TVec<i32, D>, lsb: &TVec<i32, D>) pub fn imulExtended<N: Scalar, D: Dimension>(x: &TVec<i32, D>, y: &TVec<i32, D>, msb: &TVec<i32, D>, lsb: &TVec<i32, D>)
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn uaddCarry<N: Scalar + Copy, D: Dimension>(x: &TVec<u32, D>, y: &TVec<u32, D>, carry: &TVec<u32, D>) -> TVec<u32, D> pub fn uaddCarry<N: Scalar, D: Dimension>(x: &TVec<u32, D>, y: &TVec<u32, D>, carry: &TVec<u32, D>) -> TVec<u32, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn umulExtended<N: Scalar + Copy, D: Dimension>(x: &TVec<u32, D>, y: &TVec<u32, D>, msb: &TVec<u32, D>, lsb: &TVec<u32, D>) pub fn umulExtended<N: Scalar, D: Dimension>(x: &TVec<u32, D>, y: &TVec<u32, D>, msb: &TVec<u32, D>, lsb: &TVec<u32, D>)
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }
pub fn usubBorrow<N: Scalar + Copy, D: Dimension>(x: &TVec<u32, D>, y: &TVec<u32, D>, borrow: &TVec<u32, D>) -> TVec<u32, D> pub fn usubBorrow<N: Scalar, D: Dimension>(x: &TVec<u32, D>, y: &TVec<u32, D>, borrow: &TVec<u32, D>) -> TVec<u32, D>
where DefaultAllocator: Alloc<N, D> { where DefaultAllocator: Alloc<N, D> {
unimplemented!() unimplemented!()
} }

View File

@ -40,7 +40,7 @@ where
} }
/// The transpose of the matrix `m`. /// The transpose of the matrix `m`.
pub fn transpose<N: Scalar + Copy, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, C, R> pub fn transpose<N: Scalar, R: Dimension, C: Dimension>(x: &TMat<N, R, C>) -> TMat<N, C, R>
where DefaultAllocator: Alloc<N, R, C> { where DefaultAllocator: Alloc<N, R, C> {
x.transpose() x.transpose()
} }

View File

@ -3,50 +3,50 @@ use na::Scalar;
use crate::aliases::{Vec2, Vec4, UVec2}; use crate::aliases::{Vec2, Vec4, UVec2};
pub fn packDouble2x32<N: Scalar + Copy>(v: &UVec2) -> f64 { pub fn packDouble2x32<N: Scalar>(v: &UVec2) -> f64 {
unimplemented!() unimplemented!()
} }
pub fn packHalf2x16<N: Scalar + Copy>(v: &Vec2) -> u32 { pub fn packHalf2x16<N: Scalar>(v: &Vec2) -> u32 {
unimplemented!() unimplemented!()
} }
pub fn packSnorm2x16<N: Scalar + Copy>(v: &Vec2) -> u32 { pub fn packSnorm2x16<N: Scalar>(v: &Vec2) -> u32 {
unimplemented!() unimplemented!()
} }
pub fn packSnorm4x8<N: Scalar + Copy>(v: &Vec4) -> u32 { pub fn packSnorm4x8<N: Scalar>(v: &Vec4) -> u32 {
unimplemented!() unimplemented!()
} }
pub fn packUnorm2x16<N: Scalar + Copy>(v: &Vec2) -> u32 { pub fn packUnorm2x16<N: Scalar>(v: &Vec2) -> u32 {
unimplemented!() unimplemented!()
} }
pub fn packUnorm4x8<N: Scalar + Copy>(v: &Vec4) -> u32 { pub fn packUnorm4x8<N: Scalar>(v: &Vec4) -> u32 {
unimplemented!() unimplemented!()
} }
pub fn unpackDouble2x32<N: Scalar + Copy>(v: f64) -> UVec2 { pub fn unpackDouble2x32<N: Scalar>(v: f64) -> UVec2 {
unimplemented!() unimplemented!()
} }
pub fn unpackHalf2x16<N: Scalar + Copy>(v: u32) -> Vec2 { pub fn unpackHalf2x16<N: Scalar>(v: u32) -> Vec2 {
unimplemented!() unimplemented!()
} }
pub fn unpackSnorm2x16<N: Scalar + Copy>(p: u32) -> Vec2 { pub fn unpackSnorm2x16<N: Scalar>(p: u32) -> Vec2 {
unimplemented!() unimplemented!()
} }
pub fn unpackSnorm4x8<N: Scalar + Copy>(p: u32) -> Vec4 { pub fn unpackSnorm4x8<N: Scalar>(p: u32) -> Vec4 {
unimplemented!() unimplemented!()
} }
pub fn unpackUnorm2x16<N: Scalar + Copy>(p: u32) -> Vec2 { pub fn unpackUnorm2x16<N: Scalar>(p: u32) -> Vec2 {
unimplemented!() unimplemented!()
} }
pub fn unpackUnorm4x8<N: Scalar + Copy>(p: u32) -> Vec4 { pub fn unpackUnorm4x8<N: Scalar>(p: u32) -> Vec4 {
unimplemented!() unimplemented!()
} }

View File

@ -20,7 +20,7 @@ impl<T: Scalar + Copy + Ring + Lattice + AbsDiffEq<Epsilon = Self> + Signed + Fr
{} {}
#[doc(hidden)] #[doc(hidden)]
pub trait Alloc<N: Scalar + Copy, R: Dimension, C: Dimension = U1>: pub trait Alloc<N: Scalar, R: Dimension, C: Dimension = U1>:
Allocator<N, R> Allocator<N, R>
+ Allocator<N, C> + Allocator<N, C>
+ Allocator<N, U1, R> + Allocator<N, U1, R>
@ -50,7 +50,7 @@ pub trait Alloc<N: Scalar + Copy, R: Dimension, C: Dimension = U1>:
{ {
} }
impl<N: Scalar + Copy, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where T: Allocator<N, R> impl<N: Scalar, R: Dimension, C: Dimension, T> Alloc<N, R, C> for T where T: Allocator<N, R>
+ Allocator<N, C> + Allocator<N, C>
+ Allocator<N, U1, R> + Allocator<N, U1, R>
+ Allocator<N, U1, C> + Allocator<N, U1, C>

View File

@ -28,7 +28,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct Cholesky<N: Scalar + Copy, D: Dim> pub struct Cholesky<N: Scalar, D: Dim>
where DefaultAllocator: Allocator<N, D, D> where DefaultAllocator: Allocator<N, D, D>
{ {
l: MatrixN<N, D>, l: MatrixN<N, D>,

View File

@ -33,7 +33,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct Eigen<N: Scalar + Copy, D: Dim> pub struct Eigen<N: Scalar, D: Dim>
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D> where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
{ {
/// The eigenvalues of the decomposed matrix. /// The eigenvalues of the decomposed matrix.
@ -311,7 +311,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
*/ */
/// Trait implemented by scalar type for which Lapack function exist to compute the /// Trait implemented by scalar type for which Lapack function exist to compute the
/// eigendecomposition. /// eigendecomposition.
pub trait EigenScalar: Scalar + Copy { pub trait EigenScalar: Scalar {
#[allow(missing_docs)] #[allow(missing_docs)]
fn xgeev( fn xgeev(
jobvl: u8, jobvl: u8,

View File

@ -30,7 +30,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct Hessenberg<N: Scalar + Copy, D: DimSub<U1>> pub struct Hessenberg<N: Scalar, D: DimSub<U1>>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>> where DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>
{ {
h: MatrixN<N, D>, h: MatrixN<N, D>,

View File

@ -37,7 +37,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct LU<N: Scalar + Copy, R: DimMin<C>, C: Dim> pub struct LU<N: Scalar, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C> where DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>
{ {
lu: MatrixMN<N, R, C>, lu: MatrixMN<N, R, C>,

View File

@ -33,7 +33,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct QR<N: Scalar + Copy, R: DimMin<C>, C: Dim> pub struct QR<N: Scalar, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> where DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>>
{ {
qr: MatrixMN<N, R, C>, qr: MatrixMN<N, R, C>,

View File

@ -33,7 +33,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct Schur<N: Scalar + Copy, D: Dim> pub struct Schur<N: Scalar, D: Dim>
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D> where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
{ {
re: VectorN<N, D>, re: VectorN<N, D>,
@ -162,7 +162,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
* *
*/ */
/// Trait implemented by scalars for which Lapack implements the RealField Schur decomposition. /// Trait implemented by scalars for which Lapack implements the RealField Schur decomposition.
pub trait SchurScalar: Scalar + Copy { pub trait SchurScalar: Scalar {
#[allow(missing_docs)] #[allow(missing_docs)]
fn xgees( fn xgees(
jobvs: u8, jobvs: u8,

View File

@ -36,7 +36,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct SVD<N: Scalar + Copy, R: DimMin<C>, C: Dim> pub struct SVD<N: Scalar, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C> where DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>
{ {
/// The left-singular vectors `U` of this SVD. /// The left-singular vectors `U` of this SVD.
@ -57,7 +57,7 @@ where
/// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`) /// Trait implemented by floats (`f32`, `f64`) and complex floats (`Complex<f32>`, `Complex<f64>`)
/// supported by the Singular Value Decompotition. /// supported by the Singular Value Decompotition.
pub trait SVDScalar<R: DimMin<C>, C: Dim>: Scalar + Copy pub trait SVDScalar<R: DimMin<C>, C: Dim>: Scalar
where DefaultAllocator: Allocator<Self, R, R> where DefaultAllocator: Allocator<Self, R, R>
+ Allocator<Self, R, C> + Allocator<Self, R, C>
+ Allocator<Self, DimMinimum<R, C>> + Allocator<Self, DimMinimum<R, C>>

View File

@ -35,7 +35,7 @@ use lapack;
)) ))
)] )]
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct SymmetricEigen<N: Scalar + Copy, D: Dim> pub struct SymmetricEigen<N: Scalar, D: Dim>
where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D> where DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>
{ {
/// The eigenvectors of the decomposed matrix. /// The eigenvectors of the decomposed matrix.
@ -169,7 +169,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
*/ */
/// Trait implemented by scalars for which Lapack implements the eigendecomposition of symmetric /// Trait implemented by scalars for which Lapack implements the eigendecomposition of symmetric
/// real matrices. /// real matrices.
pub trait SymmetricEigenScalar: Scalar + Copy { pub trait SymmetricEigenScalar: Scalar {
#[allow(missing_docs)] #[allow(missing_docs)]
fn xsyev( fn xsyev(
jobz: u8, jobz: u8,

View File

@ -16,7 +16,7 @@ use crate::base::{DefaultAllocator, Scalar};
/// ///
/// Every allocator must be both static and dynamic. Though not all implementations may share the /// Every allocator must be both static and dynamic. Though not all implementations may share the
/// same `Buffer` type. /// same `Buffer` type.
pub trait Allocator<N: Scalar + Copy, R: Dim, C: Dim = U1>: Any + Sized { pub trait Allocator<N: Scalar, R: Dim, C: Dim = U1>: Any + Sized {
/// The type of buffer this allocator can instanciate. /// The type of buffer this allocator can instanciate.
type Buffer: ContiguousStorageMut<N, R, C> + Clone; type Buffer: ContiguousStorageMut<N, R, C> + Clone;
@ -33,7 +33,7 @@ pub trait Allocator<N: Scalar + Copy, R: Dim, C: Dim = U1>: Any + Sized {
/// A matrix reallocator. Changes the size of the memory buffer that initially contains (RFrom × /// A matrix reallocator. Changes the size of the memory buffer that initially contains (RFrom ×
/// CFrom) elements to a smaller or larger size (RTo, CTo). /// CFrom) elements to a smaller or larger size (RTo, CTo).
pub trait Reallocator<N: Scalar + Copy, RFrom: Dim, CFrom: Dim, RTo: Dim, CTo: Dim>: pub trait Reallocator<N: Scalar, RFrom: Dim, CFrom: Dim, RTo: Dim, CTo: Dim>:
Allocator<N, RFrom, CFrom> + Allocator<N, RTo, CTo> Allocator<N, RFrom, CFrom> + Allocator<N, RTo, CTo>
{ {
/// Reallocates a buffer of shape `(RTo, CTo)`, possibly reusing a previously allocated buffer /// Reallocates a buffer of shape `(RTo, CTo)`, possibly reusing a previously allocated buffer
@ -65,7 +65,7 @@ where
R2: Dim, R2: Dim,
C1: Dim, C1: Dim,
C2: Dim, C2: Dim,
N: Scalar + Copy, N: Scalar,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{ {
} }
@ -76,7 +76,7 @@ where
R2: Dim, R2: Dim,
C1: Dim, C1: Dim,
C2: Dim, C2: Dim,
N: Scalar + Copy, N: Scalar,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>, DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, SameShapeR<R1, R2>, SameShapeC<C1, C2>>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{} {}
@ -88,7 +88,7 @@ pub trait SameShapeVectorAllocator<N, R1, R2>:
where where
R1: Dim, R1: Dim,
R2: Dim, R2: Dim,
N: Scalar + Copy, N: Scalar,
ShapeConstraint: SameNumberOfRows<R1, R2>, ShapeConstraint: SameNumberOfRows<R1, R2>,
{ {
} }
@ -97,7 +97,7 @@ impl<N, R1, R2> SameShapeVectorAllocator<N, R1, R2> for DefaultAllocator
where where
R1: Dim, R1: Dim,
R2: Dim, R2: Dim,
N: Scalar + Copy, N: Scalar,
DefaultAllocator: Allocator<N, R1, U1> + Allocator<N, SameShapeR<R1, R2>>, DefaultAllocator: Allocator<N, R1, U1> + Allocator<N, SameShapeR<R1, R2>>,
ShapeConstraint: SameNumberOfRows<R1, R2>, ShapeConstraint: SameNumberOfRows<R1, R2>,
{} {}

View File

@ -154,7 +154,7 @@ where
unsafe impl<N, R, C> Storage<N, R, C> for ArrayStorage<N, R, C> unsafe impl<N, R, C> Storage<N, R, C> for ArrayStorage<N, R, C>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -206,7 +206,7 @@ where
unsafe impl<N, R, C> StorageMut<N, R, C> for ArrayStorage<N, R, C> unsafe impl<N, R, C> StorageMut<N, R, C> for ArrayStorage<N, R, C>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -226,7 +226,7 @@ where
unsafe impl<N, R, C> ContiguousStorage<N, R, C> for ArrayStorage<N, R, C> unsafe impl<N, R, C> ContiguousStorage<N, R, C> for ArrayStorage<N, R, C>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -236,7 +236,7 @@ where
unsafe impl<N, R, C> ContiguousStorageMut<N, R, C> for ArrayStorage<N, R, C> unsafe impl<N, R, C> ContiguousStorageMut<N, R, C> for ArrayStorage<N, R, C>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -253,7 +253,7 @@ where
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<N, R, C> Serialize for ArrayStorage<N, R, C> impl<N, R, C> Serialize for ArrayStorage<N, R, C>
where where
N: Scalar + Copy + Serialize, N: Scalar + Serialize,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -274,7 +274,7 @@ where
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'a, N, R, C> Deserialize<'a> for ArrayStorage<N, R, C> impl<'a, N, R, C> Deserialize<'a> for ArrayStorage<N, R, C>
where where
N: Scalar + Copy + Deserialize<'a>, N: Scalar + Deserialize<'a>,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -295,7 +295,7 @@ struct ArrayStorageVisitor<N, R, C> {
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<N, R, C> ArrayStorageVisitor<N, R, C> impl<N, R, C> ArrayStorageVisitor<N, R, C>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -312,7 +312,7 @@ where
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'a, N, R, C> Visitor<'a> for ArrayStorageVisitor<N, R, C> impl<'a, N, R, C> Visitor<'a> for ArrayStorageVisitor<N, R, C>
where where
N: Scalar + Copy + Deserialize<'a>, N: Scalar + Deserialize<'a>,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,

View File

@ -48,7 +48,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
} }
} }
impl<N: Scalar + Copy + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> { impl<N: Scalar + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
/// Computes the index and value of the vector component with the largest value. /// Computes the index and value of the vector component with the largest value.
/// ///
/// # Examples: /// # Examples:
@ -74,7 +74,7 @@ impl<N: Scalar + Copy + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
} }
} }
(the_i, *the_max) (the_i, the_max.inlined_clone())
} }
/// Computes the index of the vector component with the largest value. /// Computes the index of the vector component with the largest value.
@ -145,7 +145,7 @@ impl<N: Scalar + Copy + PartialOrd, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
} }
} }
(the_i, *the_min) (the_i, the_min.inlined_clone())
} }
/// Computes the index of the vector component with the smallest value. /// Computes the index of the vector component with the smallest value.
@ -230,7 +230,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
impl<N: Scalar + Copy + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Computes the index of the matrix component with the largest absolute value. /// Computes the index of the matrix component with the largest absolute value.
/// ///
/// # Examples: /// # Examples:
@ -264,7 +264,7 @@ impl<N: Scalar + Copy + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>
} }
impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul where N: Scalar + Zero + ClosedAdd + ClosedMul
{ {
#[inline(always)] #[inline(always)]
fn dotx<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>, conjugate: impl Fn(N) -> N) -> N fn dotx<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>, conjugate: impl Fn(N) -> N) -> N
@ -281,27 +281,27 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
// because the `for` loop below won't be very efficient on those. // because the `for` loop below won't be very efficient on those.
if (R::is::<U2>() || R2::is::<U2>()) && (C::is::<U1>() || C2::is::<U1>()) { if (R::is::<U2>() || R2::is::<U2>()) && (C::is::<U1>() || C2::is::<U1>()) {
unsafe { unsafe {
let a = conjugate(*self.get_unchecked((0, 0))) * *rhs.get_unchecked((0, 0)); let a = conjugate(self.get_unchecked((0, 0)).inlined_clone()) * rhs.get_unchecked((0, 0)).inlined_clone();
let b = conjugate(*self.get_unchecked((1, 0))) * *rhs.get_unchecked((1, 0)); let b = conjugate(self.get_unchecked((1, 0)).inlined_clone()) * rhs.get_unchecked((1, 0)).inlined_clone();
return a + b; return a + b;
} }
} }
if (R::is::<U3>() || R2::is::<U3>()) && (C::is::<U1>() || C2::is::<U1>()) { if (R::is::<U3>() || R2::is::<U3>()) && (C::is::<U1>() || C2::is::<U1>()) {
unsafe { unsafe {
let a = conjugate(*self.get_unchecked((0, 0))) * *rhs.get_unchecked((0, 0)); let a = conjugate(self.get_unchecked((0, 0)).inlined_clone()) * rhs.get_unchecked((0, 0)).inlined_clone();
let b = conjugate(*self.get_unchecked((1, 0))) * *rhs.get_unchecked((1, 0)); let b = conjugate(self.get_unchecked((1, 0)).inlined_clone()) * rhs.get_unchecked((1, 0)).inlined_clone();
let c = conjugate(*self.get_unchecked((2, 0))) * *rhs.get_unchecked((2, 0)); let c = conjugate(self.get_unchecked((2, 0)).inlined_clone()) * rhs.get_unchecked((2, 0)).inlined_clone();
return a + b + c; return a + b + c;
} }
} }
if (R::is::<U4>() || R2::is::<U4>()) && (C::is::<U1>() || C2::is::<U1>()) { if (R::is::<U4>() || R2::is::<U4>()) && (C::is::<U1>() || C2::is::<U1>()) {
unsafe { unsafe {
let mut a = conjugate(*self.get_unchecked((0, 0))) * *rhs.get_unchecked((0, 0)); let mut a = conjugate(self.get_unchecked((0, 0)).inlined_clone()) * rhs.get_unchecked((0, 0)).inlined_clone();
let mut b = conjugate(*self.get_unchecked((1, 0))) * *rhs.get_unchecked((1, 0)); let mut b = conjugate(self.get_unchecked((1, 0)).inlined_clone()) * rhs.get_unchecked((1, 0)).inlined_clone();
let c = conjugate(*self.get_unchecked((2, 0))) * *rhs.get_unchecked((2, 0)); let c = conjugate(self.get_unchecked((2, 0)).inlined_clone()) * rhs.get_unchecked((2, 0)).inlined_clone();
let d = conjugate(*self.get_unchecked((3, 0))) * *rhs.get_unchecked((3, 0)); let d = conjugate(self.get_unchecked((3, 0)).inlined_clone()) * rhs.get_unchecked((3, 0)).inlined_clone();
a += c; a += c;
b += d; b += d;
@ -341,14 +341,14 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
acc7 = N::zero(); acc7 = N::zero();
while self.nrows() - i >= 8 { while self.nrows() - i >= 8 {
acc0 += unsafe { conjugate(*self.get_unchecked((i + 0, j))) * *rhs.get_unchecked((i + 0, j)) }; acc0 += unsafe { conjugate(self.get_unchecked((i + 0, j)).inlined_clone()) * rhs.get_unchecked((i + 0, j)).inlined_clone() };
acc1 += unsafe { conjugate(*self.get_unchecked((i + 1, j))) * *rhs.get_unchecked((i + 1, j)) }; acc1 += unsafe { conjugate(self.get_unchecked((i + 1, j)).inlined_clone()) * rhs.get_unchecked((i + 1, j)).inlined_clone() };
acc2 += unsafe { conjugate(*self.get_unchecked((i + 2, j))) * *rhs.get_unchecked((i + 2, j)) }; acc2 += unsafe { conjugate(self.get_unchecked((i + 2, j)).inlined_clone()) * rhs.get_unchecked((i + 2, j)).inlined_clone() };
acc3 += unsafe { conjugate(*self.get_unchecked((i + 3, j))) * *rhs.get_unchecked((i + 3, j)) }; acc3 += unsafe { conjugate(self.get_unchecked((i + 3, j)).inlined_clone()) * rhs.get_unchecked((i + 3, j)).inlined_clone() };
acc4 += unsafe { conjugate(*self.get_unchecked((i + 4, j))) * *rhs.get_unchecked((i + 4, j)) }; acc4 += unsafe { conjugate(self.get_unchecked((i + 4, j)).inlined_clone()) * rhs.get_unchecked((i + 4, j)).inlined_clone() };
acc5 += unsafe { conjugate(*self.get_unchecked((i + 5, j))) * *rhs.get_unchecked((i + 5, j)) }; acc5 += unsafe { conjugate(self.get_unchecked((i + 5, j)).inlined_clone()) * rhs.get_unchecked((i + 5, j)).inlined_clone() };
acc6 += unsafe { conjugate(*self.get_unchecked((i + 6, j))) * *rhs.get_unchecked((i + 6, j)) }; acc6 += unsafe { conjugate(self.get_unchecked((i + 6, j)).inlined_clone()) * rhs.get_unchecked((i + 6, j)).inlined_clone() };
acc7 += unsafe { conjugate(*self.get_unchecked((i + 7, j))) * *rhs.get_unchecked((i + 7, j)) }; acc7 += unsafe { conjugate(self.get_unchecked((i + 7, j)).inlined_clone()) * rhs.get_unchecked((i + 7, j)).inlined_clone() };
i += 8; i += 8;
} }
@ -358,7 +358,7 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
res += acc3 + acc7; res += acc3 + acc7;
for k in i..self.nrows() { for k in i..self.nrows() {
res += unsafe { conjugate(*self.get_unchecked((k, j))) * *rhs.get_unchecked((k, j)) } res += unsafe { conjugate(self.get_unchecked((k, j)).inlined_clone()) * rhs.get_unchecked((k, j)).inlined_clone() }
} }
} }
@ -460,7 +460,7 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
for j in 0..self.nrows() { for j in 0..self.nrows() {
for i in 0..self.ncols() { for i in 0..self.ncols() {
res += unsafe { *self.get_unchecked((j, i)) * *rhs.get_unchecked((i, j)) } res += unsafe { self.get_unchecked((j, i)).inlined_clone() * rhs.get_unchecked((i, j)).inlined_clone() }
} }
} }
@ -469,27 +469,27 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
} }
fn array_axcpy<N>(y: &mut [N], a: N, x: &[N], c: N, beta: N, stride1: usize, stride2: usize, len: usize) fn array_axcpy<N>(y: &mut [N], a: N, x: &[N], c: N, beta: N, stride1: usize, stride2: usize, len: usize)
where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul { where N: Scalar + Zero + ClosedAdd + ClosedMul {
for i in 0..len { for i in 0..len {
unsafe { unsafe {
let y = y.get_unchecked_mut(i * stride1); let y = y.get_unchecked_mut(i * stride1);
*y = a * *x.get_unchecked(i * stride2) * c + beta * *y; *y = a.inlined_clone() * x.get_unchecked(i * stride2).inlined_clone() * c.inlined_clone() + beta.inlined_clone() * y.inlined_clone();
} }
} }
} }
fn array_axc<N>(y: &mut [N], a: N, x: &[N], c: N, stride1: usize, stride2: usize, len: usize) fn array_axc<N>(y: &mut [N], a: N, x: &[N], c: N, stride1: usize, stride2: usize, len: usize)
where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul { where N: Scalar + Zero + ClosedAdd + ClosedMul {
for i in 0..len { for i in 0..len {
unsafe { unsafe {
*y.get_unchecked_mut(i * stride1) = a * *x.get_unchecked(i * stride2) * c; *y.get_unchecked_mut(i * stride1) = a.inlined_clone() * x.get_unchecked(i * stride2).inlined_clone() * c.inlined_clone();
} }
} }
} }
impl<N, D: Dim, S> Vector<N, D, S> impl<N, D: Dim, S> Vector<N, D, S>
where where
N: Scalar + Copy + Zero + ClosedAdd + ClosedMul, N: Scalar + Zero + ClosedAdd + ClosedMul,
S: StorageMut<N, D>, S: StorageMut<N, D>,
{ {
/// Computes `self = a * x * c + b * self`. /// Computes `self = a * x * c + b * self`.
@ -602,14 +602,14 @@ where
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
let col2 = a.column(0); let col2 = a.column(0);
let val = unsafe { *x.vget_unchecked(0) }; let val = unsafe { x.vget_unchecked(0).inlined_clone() };
self.axcpy(alpha, &col2, val, beta); self.axcpy(alpha.inlined_clone(), &col2, val, beta);
for j in 1..ncols2 { for j in 1..ncols2 {
let col2 = a.column(j); let col2 = a.column(j);
let val = unsafe { *x.vget_unchecked(j) }; let val = unsafe { x.vget_unchecked(j).inlined_clone() };
self.axcpy(alpha, &col2, val, N::one()); self.axcpy(alpha.inlined_clone(), &col2, val, N::one());
} }
} }
@ -647,9 +647,9 @@ where
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
let col2 = a.column(0); let col2 = a.column(0);
let val = unsafe { *x.vget_unchecked(0) }; let val = unsafe { x.vget_unchecked(0).inlined_clone() };
self.axpy(alpha * val, &col2, beta); self.axpy(alpha.inlined_clone() * val, &col2, beta);
self[0] += alpha * dot(&a.slice_range(1.., 0), &x.rows_range(1..)); self[0] += alpha.inlined_clone() * dot(&a.slice_range(1.., 0), &x.rows_range(1..));
for j in 1..dim2 { for j in 1..dim2 {
let col2 = a.column(j); let col2 = a.column(j);
@ -657,11 +657,11 @@ where
let val; let val;
unsafe { unsafe {
val = *x.vget_unchecked(j); val = x.vget_unchecked(j).inlined_clone();
*self.vget_unchecked_mut(j) += alpha * dot; *self.vget_unchecked_mut(j) += alpha.inlined_clone() * dot;
} }
self.rows_range_mut(j + 1..) self.rows_range_mut(j + 1..)
.axpy(alpha * val, &col2.rows_range(j + 1..), N::one()); .axpy(alpha.inlined_clone() * val, &col2.rows_range(j + 1..), N::one());
} }
} }
@ -804,12 +804,12 @@ where
if beta.is_zero() { if beta.is_zero() {
for j in 0..ncols2 { for j in 0..ncols2 {
let val = unsafe { self.vget_unchecked_mut(j) }; let val = unsafe { self.vget_unchecked_mut(j) };
*val = alpha * dot(&a.column(j), x) *val = alpha.inlined_clone() * dot(&a.column(j), x)
} }
} else { } else {
for j in 0..ncols2 { for j in 0..ncols2 {
let val = unsafe { self.vget_unchecked_mut(j) }; let val = unsafe { self.vget_unchecked_mut(j) };
*val = alpha * dot(&a.column(j), x) + beta * *val; *val = alpha.inlined_clone() * dot(&a.column(j), x) + beta.inlined_clone() * val.inlined_clone();
} }
} }
} }
@ -886,7 +886,7 @@ where
} }
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S> impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul where N: Scalar + Zero + ClosedAdd + ClosedMul
{ {
#[inline(always)] #[inline(always)]
fn gerx<D2: Dim, D3: Dim, SB, SC>( fn gerx<D2: Dim, D3: Dim, SB, SC>(
@ -913,8 +913,8 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
for j in 0..ncols1 { for j in 0..ncols1 {
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
let val = unsafe { conjugate(*y.vget_unchecked(j)) }; let val = unsafe { conjugate(y.vget_unchecked(j).inlined_clone()) };
self.column_mut(j).axpy(alpha * val, x, beta); self.column_mut(j).axpy(alpha.inlined_clone() * val, x, beta.inlined_clone());
} }
} }
@ -1128,7 +1128,7 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
for j1 in 0..ncols1 { for j1 in 0..ncols1 {
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
self.column_mut(j1).gemv(alpha, a, &b.column(j1), beta); self.column_mut(j1).gemv(alpha.inlined_clone(), a, &b.column(j1), beta.inlined_clone());
} }
} }
@ -1185,7 +1185,7 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
for j1 in 0..ncols1 { for j1 in 0..ncols1 {
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
self.column_mut(j1).gemv_tr(alpha, a, &b.column(j1), beta); self.column_mut(j1).gemv_tr(alpha.inlined_clone(), a, &b.column(j1), beta.inlined_clone());
} }
} }
@ -1249,7 +1249,7 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
} }
impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S> impl<N, R1: Dim, C1: Dim, S: StorageMut<N, R1, C1>> Matrix<N, R1, C1, S>
where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul where N: Scalar + Zero + ClosedAdd + ClosedMul
{ {
#[inline(always)] #[inline(always)]
fn xxgerx<D2: Dim, D3: Dim, SB, SC>( fn xxgerx<D2: Dim, D3: Dim, SB, SC>(
@ -1276,13 +1276,13 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
assert!(dim1 == dim2 && dim1 == dim3, "ger: dimensions mismatch."); assert!(dim1 == dim2 && dim1 == dim3, "ger: dimensions mismatch.");
for j in 0..dim1 { for j in 0..dim1 {
let val = unsafe { conjugate(*y.vget_unchecked(j)) }; let val = unsafe { conjugate(y.vget_unchecked(j).inlined_clone()) };
let subdim = Dynamic::new(dim1 - j); let subdim = Dynamic::new(dim1 - j);
// FIXME: avoid bound checks. // FIXME: avoid bound checks.
self.generic_slice_mut((j, j), (subdim, U1)).axpy( self.generic_slice_mut((j, j), (subdim, U1)).axpy(
alpha * val, alpha.inlined_clone() * val,
&x.rows_range(j..), &x.rows_range(j..),
beta, beta.inlined_clone(),
); );
} }
} }
@ -1396,7 +1396,7 @@ where N: Scalar + Copy + Zero + ClosedAdd + ClosedMul
} }
impl<N, D1: Dim, S: StorageMut<N, D1, D1>> SquareMatrix<N, D1, S> impl<N, D1: Dim, S: StorageMut<N, D1, D1>> SquareMatrix<N, D1, S>
where N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul where N: Scalar + Zero + One + ClosedAdd + ClosedMul
{ {
/// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`. /// Computes the quadratic form `self = alpha * lhs * mid * lhs.transpose() + beta * self`.
/// ///
@ -1442,11 +1442,11 @@ where N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul
ShapeConstraint: DimEq<D1, D2> + DimEq<D1, R3> + DimEq<D2, R3> + DimEq<C3, D4>, ShapeConstraint: DimEq<D1, D2> + DimEq<D1, R3> + DimEq<D2, R3> + DimEq<C3, D4>,
{ {
work.gemv(N::one(), lhs, &mid.column(0), N::zero()); work.gemv(N::one(), lhs, &mid.column(0), N::zero());
self.ger(alpha, work, &lhs.column(0), beta); self.ger(alpha.inlined_clone(), work, &lhs.column(0), beta);
for j in 1..mid.ncols() { for j in 1..mid.ncols() {
work.gemv(N::one(), lhs, &mid.column(j), N::zero()); work.gemv(N::one(), lhs, &mid.column(j), N::zero());
self.ger(alpha, work, &lhs.column(j), N::one()); self.ger(alpha.inlined_clone(), work, &lhs.column(j), N::one());
} }
} }
@ -1534,11 +1534,11 @@ where N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul
DimEq<D3, R4> + DimEq<D1, C4> + DimEq<D2, D3> + AreMultipliable<C4, R4, D2, U1>, DimEq<D3, R4> + DimEq<D1, C4> + DimEq<D2, D3> + AreMultipliable<C4, R4, D2, U1>,
{ {
work.gemv(N::one(), mid, &rhs.column(0), N::zero()); work.gemv(N::one(), mid, &rhs.column(0), N::zero());
self.column_mut(0).gemv_tr(alpha, &rhs, work, beta); self.column_mut(0).gemv_tr(alpha.inlined_clone(), &rhs, work, beta.inlined_clone());
for j in 1..rhs.ncols() { for j in 1..rhs.ncols() {
work.gemv(N::one(), mid, &rhs.column(j), N::zero()); work.gemv(N::one(), mid, &rhs.column(j), N::zero());
self.column_mut(j).gemv_tr(alpha, &rhs, work, beta); self.column_mut(j).gemv_tr(alpha.inlined_clone(), &rhs, work, beta.inlined_clone());
} }
} }

View File

@ -23,7 +23,7 @@ use alga::linear::Transformation;
impl<N, D: DimName> MatrixN<N, D> impl<N, D: DimName> MatrixN<N, D>
where where
N: Scalar + Copy + Ring, N: Scalar + Ring,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
/// Creates a new homogeneous matrix that applies the same scaling factor on each dimension. /// Creates a new homogeneous matrix that applies the same scaling factor on each dimension.
@ -44,7 +44,7 @@ where
{ {
let mut res = Self::one(); let mut res = Self::one();
for i in 0..scaling.len() { for i in 0..scaling.len() {
res[(i, i)] = scaling[i]; res[(i, i)] = scaling[i].inlined_clone();
} }
res res
@ -153,7 +153,7 @@ impl<N: RealField> Matrix4<N> {
} }
} }
impl<N: Scalar + Copy + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> { impl<N: Scalar + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// Computes the transformation equal to `self` followed by an uniform scaling factor. /// Computes the transformation equal to `self` followed by an uniform scaling factor.
#[inline] #[inline]
pub fn append_scaling(&self, scaling: N) -> MatrixN<N, D> pub fn append_scaling(&self, scaling: N) -> MatrixN<N, D>
@ -240,7 +240,7 @@ impl<N: Scalar + Copy + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D
} }
} }
impl<N: Scalar + Copy + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> { impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor. /// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
#[inline] #[inline]
pub fn append_scaling_mut(&mut self, scaling: N) pub fn append_scaling_mut(&mut self, scaling: N)
@ -266,7 +266,7 @@ impl<N: Scalar + Copy + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N
{ {
for i in 0..scaling.len() { for i in 0..scaling.len() {
let mut to_scale = self.fixed_rows_mut::<U1>(i); let mut to_scale = self.fixed_rows_mut::<U1>(i);
to_scale *= scaling[i]; to_scale *= scaling[i].inlined_clone();
} }
} }
@ -281,7 +281,7 @@ impl<N: Scalar + Copy + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N
{ {
for i in 0..scaling.len() { for i in 0..scaling.len() {
let mut to_scale = self.fixed_columns_mut::<U1>(i); let mut to_scale = self.fixed_columns_mut::<U1>(i);
to_scale *= scaling[i]; to_scale *= scaling[i].inlined_clone();
} }
} }
@ -294,7 +294,7 @@ impl<N: Scalar + Copy + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N
{ {
for i in 0..D::dim() { for i in 0..D::dim() {
for j in 0..D::dim() - 1 { for j in 0..D::dim() - 1 {
let add = shift[j] * self[(D::dim() - 1, i)]; let add = shift[j].inlined_clone() * self[(D::dim() - 1, i)].inlined_clone();
self[(j, i)] += add; self[(j, i)] += add;
} }
} }

View File

@ -14,7 +14,7 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixSum, Scalar};
/// The type of the result of a matrix component-wise operation. /// The type of the result of a matrix component-wise operation.
pub type MatrixComponentOp<N, R1, C1, R2, C2> = MatrixSum<N, R1, C1, R2, C2>; pub type MatrixComponentOp<N, R1, C1, R2, C2> = MatrixSum<N, R1, C1, R2, C2>;
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Computes the component-wise absolute value. /// Computes the component-wise absolute value.
/// ///
/// # Example /// # Example
@ -45,7 +45,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
macro_rules! component_binop_impl( macro_rules! component_binop_impl(
($($binop: ident, $binop_mut: ident, $binop_assign: ident, $cmpy: ident, $Trait: ident . $op: ident . $op_assign: ident, $desc:expr, $desc_cmpy:expr, $desc_mut:expr);* $(;)*) => {$( ($($binop: ident, $binop_mut: ident, $binop_assign: ident, $cmpy: ident, $Trait: ident . $op: ident . $op_assign: ident, $desc:expr, $desc_cmpy:expr, $desc_mut:expr);* $(;)*) => {$(
impl<N: Scalar + Copy, R1: Dim, C1: Dim, SA: Storage<N, R1, C1>> Matrix<N, R1, C1, SA> { impl<N: Scalar, R1: Dim, C1: Dim, SA: Storage<N, R1, C1>> Matrix<N, R1, C1, SA> {
#[doc = $desc] #[doc = $desc]
#[inline] #[inline]
pub fn $binop<R2, C2, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> MatrixComponentOp<N, R1, C1, R2, C2> pub fn $binop<R2, C2, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> MatrixComponentOp<N, R1, C1, R2, C2>
@ -61,7 +61,7 @@ macro_rules! component_binop_impl(
for j in 0 .. res.ncols() { for j in 0 .. res.ncols() {
for i in 0 .. res.nrows() { for i in 0 .. res.nrows() {
unsafe { unsafe {
res.get_unchecked_mut((i, j)).$op_assign(*rhs.get_unchecked((i, j))); res.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).inlined_clone());
} }
} }
} }
@ -70,7 +70,7 @@ macro_rules! component_binop_impl(
} }
} }
impl<N: Scalar + Copy, R1: Dim, C1: Dim, SA: StorageMut<N, R1, C1>> Matrix<N, R1, C1, SA> { impl<N: Scalar, R1: Dim, C1: Dim, SA: StorageMut<N, R1, C1>> Matrix<N, R1, C1, SA> {
// componentwise binop plus Y. // componentwise binop plus Y.
#[doc = $desc_cmpy] #[doc = $desc_cmpy]
#[inline] #[inline]
@ -89,7 +89,7 @@ macro_rules! component_binop_impl(
for j in 0 .. self.ncols() { for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() { for i in 0 .. self.nrows() {
unsafe { unsafe {
let res = alpha * a.get_unchecked((i, j)).$op(*b.get_unchecked((i, j))); let res = alpha.inlined_clone() * a.get_unchecked((i, j)).inlined_clone().$op(b.get_unchecked((i, j)).inlined_clone());
*self.get_unchecked_mut((i, j)) = res; *self.get_unchecked_mut((i, j)) = res;
} }
} }
@ -99,8 +99,8 @@ macro_rules! component_binop_impl(
for j in 0 .. self.ncols() { for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() { for i in 0 .. self.nrows() {
unsafe { unsafe {
let res = alpha * a.get_unchecked((i, j)).$op(*b.get_unchecked((i, j))); let res = alpha.inlined_clone() * a.get_unchecked((i, j)).inlined_clone().$op(b.get_unchecked((i, j)).inlined_clone());
*self.get_unchecked_mut((i, j)) = beta * *self.get_unchecked((i, j)) + res; *self.get_unchecked_mut((i, j)) = beta.inlined_clone() * self.get_unchecked((i, j)).inlined_clone() + res;
} }
} }
} }
@ -121,7 +121,7 @@ macro_rules! component_binop_impl(
for j in 0 .. self.ncols() { for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() { for i in 0 .. self.nrows() {
unsafe { unsafe {
self.get_unchecked_mut((i, j)).$op_assign(*rhs.get_unchecked((i, j))); self.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).inlined_clone());
} }
} }
} }

View File

@ -27,7 +27,7 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, Unit, Vec
* Generic constructors. * Generic constructors.
* *
*/ */
impl<N: Scalar + Copy, R: Dim, C: Dim> MatrixMN<N, R, C> impl<N: Scalar, R: Dim, C: Dim> MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C> where DefaultAllocator: Allocator<N, R, C>
{ {
/// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics /// Creates a new uninitialized matrix. If the matrix has a compile-time dimension, this panics
@ -84,7 +84,7 @@ where DefaultAllocator: Allocator<N, R, C>
for i in 0..nrows.value() { for i in 0..nrows.value() {
for j in 0..ncols.value() { for j in 0..ncols.value() {
unsafe { *res.get_unchecked_mut((i, j)) = *iter.next().unwrap() } unsafe { *res.get_unchecked_mut((i, j)) = iter.next().unwrap().inlined_clone() }
} }
} }
@ -134,7 +134,7 @@ where DefaultAllocator: Allocator<N, R, C>
let mut res = Self::zeros_generic(nrows, ncols); let mut res = Self::zeros_generic(nrows, ncols);
for i in 0..crate::min(nrows.value(), ncols.value()) { for i in 0..crate::min(nrows.value(), ncols.value()) {
unsafe { *res.get_unchecked_mut((i, i)) = elt } unsafe { *res.get_unchecked_mut((i, i)) = elt.inlined_clone() }
} }
res res
@ -154,7 +154,7 @@ where DefaultAllocator: Allocator<N, R, C>
); );
for (i, elt) in elts.iter().enumerate() { for (i, elt) in elts.iter().enumerate() {
unsafe { *res.get_unchecked_mut((i, i)) = *elt } unsafe { *res.get_unchecked_mut((i, i)) = elt.inlined_clone() }
} }
res res
@ -196,7 +196,7 @@ where DefaultAllocator: Allocator<N, R, C>
// FIXME: optimize that. // FIXME: optimize that.
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| { Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
rows[i][(0, j)] rows[i][(0, j)].inlined_clone()
}) })
} }
@ -236,7 +236,7 @@ where DefaultAllocator: Allocator<N, R, C>
// FIXME: optimize that. // FIXME: optimize that.
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| { Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
columns[j][i] columns[j][i].inlined_clone()
}) })
} }
@ -286,7 +286,7 @@ where DefaultAllocator: Allocator<N, R, C>
impl<N, D: Dim> MatrixN<N, D> impl<N, D: Dim> MatrixN<N, D>
where where
N: Scalar + Copy, N: Scalar,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
/// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0. /// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0.
@ -315,7 +315,7 @@ where
for i in 0..diag.len() { for i in 0..diag.len() {
unsafe { unsafe {
*res.get_unchecked_mut((i, i)) = *diag.vget_unchecked(i); *res.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).inlined_clone();
} }
} }
@ -330,7 +330,7 @@ where
*/ */
macro_rules! impl_constructors( macro_rules! impl_constructors(
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => { ($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
impl<N: Scalar + Copy, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*> impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
where DefaultAllocator: Allocator<N $(, $Dims)*> { where DefaultAllocator: Allocator<N $(, $Dims)*> {
/// Creates a new uninitialized matrix or vector. /// Creates a new uninitialized matrix or vector.
@ -559,7 +559,7 @@ macro_rules! impl_constructors(
} }
} }
impl<N: Scalar + Copy, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*> impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
where where
DefaultAllocator: Allocator<N $(, $Dims)*>, DefaultAllocator: Allocator<N $(, $Dims)*>,
Standard: Distribution<N> { Standard: Distribution<N> {
@ -603,7 +603,7 @@ impl_constructors!(Dynamic, Dynamic;
*/ */
macro_rules! impl_constructors_from_data( macro_rules! impl_constructors_from_data(
($data: ident; $($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => { ($data: ident; $($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
impl<N: Scalar + Copy, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*> impl<N: Scalar, $($DimIdent: $DimBound, )*> MatrixMN<N $(, $Dims)*>
where DefaultAllocator: Allocator<N $(, $Dims)*> { where DefaultAllocator: Allocator<N $(, $Dims)*> {
/// Creates a matrix with its elements filled with the components provided by a slice /// Creates a matrix with its elements filled with the components provided by a slice
/// in row-major order. /// in row-major order.
@ -721,7 +721,7 @@ impl_constructors_from_data!(data; Dynamic, Dynamic;
*/ */
impl<N, R: DimName, C: DimName> Zero for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> Zero for MatrixMN<N, R, C>
where where
N: Scalar + Copy + Zero + ClosedAdd, N: Scalar + Zero + ClosedAdd,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -737,7 +737,7 @@ where
impl<N, D: DimName> One for MatrixN<N, D> impl<N, D: DimName> One for MatrixN<N, D>
where where
N: Scalar + Copy + Zero + One + ClosedMul + ClosedAdd, N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
#[inline] #[inline]
@ -748,7 +748,7 @@ where
impl<N, R: DimName, C: DimName> Bounded for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> Bounded for MatrixMN<N, R, C>
where where
N: Scalar + Copy + Bounded, N: Scalar + Bounded,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -762,7 +762,7 @@ where
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim> Distribution<MatrixMN<N, R, C>> for Standard impl<N: Scalar, R: Dim, C: Dim> Distribution<MatrixMN<N, R, C>> for Standard
where where
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
Standard: Distribution<N>, Standard: Distribution<N>,
@ -781,7 +781,7 @@ impl<N, R, C> Arbitrary for MatrixMN<N, R, C>
where where
R: Dim, R: Dim,
C: Dim, C: Dim,
N: Scalar + Copy + Arbitrary + Send, N: Scalar + Arbitrary + Send,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
Owned<N, R, C>: Clone + Send, Owned<N, R, C>: Clone + Send,
{ {
@ -822,7 +822,7 @@ where
macro_rules! componentwise_constructors_impl( macro_rules! componentwise_constructors_impl(
($($R: ty, $C: ty, $($args: ident:($irow: expr,$icol: expr)),*);* $(;)*) => {$( ($($R: ty, $C: ty, $($args: ident:($irow: expr,$icol: expr)),*);* $(;)*) => {$(
impl<N> MatrixMN<N, $R, $C> impl<N> MatrixMN<N, $R, $C>
where N: Scalar + Copy, where N: Scalar,
DefaultAllocator: Allocator<N, $R, $C> { DefaultAllocator: Allocator<N, $R, $C> {
/// Initializes this matrix from its components. /// Initializes this matrix from its components.
#[inline] #[inline]
@ -990,7 +990,7 @@ componentwise_constructors_impl!(
*/ */
impl<N, R: DimName> VectorN<N, R> impl<N, R: DimName> VectorN<N, R>
where where
N: Scalar + Copy + Zero + One, N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, R>, DefaultAllocator: Allocator<N, R>,
{ {
/// The column vector with a 1 as its first component, and zero elsewhere. /// The column vector with a 1 as its first component, and zero elsewhere.

View File

@ -8,7 +8,7 @@ use num_rational::Ratio;
* Slice constructors. * Slice constructors.
* *
*/ */
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
MatrixSliceMN<'a, N, R, C, RStride, CStride> MatrixSliceMN<'a, N, R, C, RStride, CStride>
{ {
/// Creates, without bound-checking, a matrix slice from an array and with dimensions and strides specified by generic types instances. /// Creates, without bound-checking, a matrix slice from an array and with dimensions and strides specified by generic types instances.
@ -61,7 +61,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
MatrixSliceMutMN<'a, N, R, C, RStride, CStride> MatrixSliceMutMN<'a, N, R, C, RStride, CStride>
{ {
/// Creates, without bound-checking, a mutable matrix slice from an array and with dimensions and strides specified by generic types instances. /// Creates, without bound-checking, a mutable matrix slice from an array and with dimensions and strides specified by generic types instances.
@ -133,7 +133,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim>
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> { impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> {
/// Creates, without bound-checking, a matrix slice from an array and with dimensions specified by generic types instances. /// Creates, without bound-checking, a matrix slice from an array and with dimensions specified by generic types instances.
/// ///
/// This method is unsafe because the input data array is not checked to contain enough elements. /// This method is unsafe because the input data array is not checked to contain enough elements.
@ -159,7 +159,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim> MatrixSliceMN<'a, N, R, C> {
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> { impl<'a, N: Scalar, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> {
/// Creates, without bound-checking, a mutable matrix slice from an array and with dimensions specified by generic types instances. /// Creates, without bound-checking, a mutable matrix slice from an array and with dimensions specified by generic types instances.
/// ///
/// This method is unsafe because the input data array is not checked to contain enough elements. /// This method is unsafe because the input data array is not checked to contain enough elements.
@ -187,7 +187,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim> MatrixSliceMutMN<'a, N, R, C> {
macro_rules! impl_constructors( macro_rules! impl_constructors(
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => { ($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
impl<'a, N: Scalar + Copy, $($DimIdent: $DimBound),*> MatrixSliceMN<'a, N, $($Dims),*> { impl<'a, N: Scalar, $($DimIdent: $DimBound),*> MatrixSliceMN<'a, N, $($Dims),*> {
/// Creates a new matrix slice from the given data array. /// Creates a new matrix slice from the given data array.
/// ///
/// Panics if `data` does not contain enough elements. /// Panics if `data` does not contain enough elements.
@ -203,7 +203,7 @@ macro_rules! impl_constructors(
} }
} }
impl<'a, N: Scalar + Copy, $($DimIdent: $DimBound, )*> MatrixSliceMN<'a, N, $($Dims,)* Dynamic, Dynamic> { impl<'a, N: Scalar, $($DimIdent: $DimBound, )*> MatrixSliceMN<'a, N, $($Dims,)* Dynamic, Dynamic> {
/// Creates a new matrix slice with the specified strides from the given data array. /// Creates a new matrix slice with the specified strides from the given data array.
/// ///
/// Panics if `data` does not contain enough elements. /// Panics if `data` does not contain enough elements.
@ -244,7 +244,7 @@ impl_constructors!(Dynamic, Dynamic;
macro_rules! impl_constructors_mut( macro_rules! impl_constructors_mut(
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => { ($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
impl<'a, N: Scalar + Copy, $($DimIdent: $DimBound),*> MatrixSliceMutMN<'a, N, $($Dims),*> { impl<'a, N: Scalar, $($DimIdent: $DimBound),*> MatrixSliceMutMN<'a, N, $($Dims),*> {
/// Creates a new mutable matrix slice from the given data array. /// Creates a new mutable matrix slice from the given data array.
/// ///
/// Panics if `data` does not contain enough elements. /// Panics if `data` does not contain enough elements.
@ -260,7 +260,7 @@ macro_rules! impl_constructors_mut(
} }
} }
impl<'a, N: Scalar + Copy, $($DimIdent: $DimBound, )*> MatrixSliceMutMN<'a, N, $($Dims,)* Dynamic, Dynamic> { impl<'a, N: Scalar, $($DimIdent: $DimBound, )*> MatrixSliceMutMN<'a, N, $($Dims,)* Dynamic, Dynamic> {
/// Creates a new mutable matrix slice with the specified strides from the given data array. /// Creates a new mutable matrix slice with the specified strides from the given data array.
/// ///
/// Panics if `data` does not contain enough elements. /// Panics if `data` does not contain enough elements.

View File

@ -31,8 +31,8 @@ where
C1: Dim, C1: Dim,
R2: Dim, R2: Dim,
C2: Dim, C2: Dim,
N1: Scalar + Copy, N1: Scalar,
N2: Scalar + Copy + SupersetOf<N1>, N2: Scalar + SupersetOf<N1>,
DefaultAllocator: DefaultAllocator:
Allocator<N2, R2, C2> + Allocator<N1, R1, C1> + SameShapeAllocator<N1, R1, C1, R2, C2>, Allocator<N2, R2, C2> + Allocator<N1, R1, C1> + SameShapeAllocator<N1, R1, C1, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
@ -75,7 +75,7 @@ where
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> IntoIterator for &'a Matrix<N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> IntoIterator for &'a Matrix<N, R, C, S> {
type Item = &'a N; type Item = &'a N;
type IntoIter = MatrixIter<'a, N, R, C, S>; type IntoIter = MatrixIter<'a, N, R, C, S>;
@ -85,7 +85,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> IntoIterator for
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> IntoIterator impl<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> IntoIterator
for &'a mut Matrix<N, R, C, S> for &'a mut Matrix<N, R, C, S>
{ {
type Item = &'a mut N; type Item = &'a mut N;
@ -100,7 +100,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> IntoIterator
macro_rules! impl_from_into_asref_1D( macro_rules! impl_from_into_asref_1D(
($(($NRows: ident, $NCols: ident) => $SZ: expr);* $(;)*) => {$( ($(($NRows: ident, $NCols: ident) => $SZ: expr);* $(;)*) => {$(
impl<N> From<[N; $SZ]> for MatrixMN<N, $NRows, $NCols> impl<N> From<[N; $SZ]> for MatrixMN<N, $NRows, $NCols>
where N: Scalar + Copy, where N: Scalar,
DefaultAllocator: Allocator<N, $NRows, $NCols> { DefaultAllocator: Allocator<N, $NRows, $NCols> {
#[inline] #[inline]
fn from(arr: [N; $SZ]) -> Self { fn from(arr: [N; $SZ]) -> Self {
@ -114,7 +114,7 @@ macro_rules! impl_from_into_asref_1D(
} }
impl<N, S> Into<[N; $SZ]> for Matrix<N, $NRows, $NCols, S> impl<N, S> Into<[N; $SZ]> for Matrix<N, $NRows, $NCols, S>
where N: Scalar + Copy, where N: Scalar,
S: ContiguousStorage<N, $NRows, $NCols> { S: ContiguousStorage<N, $NRows, $NCols> {
#[inline] #[inline]
fn into(self) -> [N; $SZ] { fn into(self) -> [N; $SZ] {
@ -128,7 +128,7 @@ macro_rules! impl_from_into_asref_1D(
} }
impl<N, S> AsRef<[N; $SZ]> for Matrix<N, $NRows, $NCols, S> impl<N, S> AsRef<[N; $SZ]> for Matrix<N, $NRows, $NCols, S>
where N: Scalar + Copy, where N: Scalar,
S: ContiguousStorage<N, $NRows, $NCols> { S: ContiguousStorage<N, $NRows, $NCols> {
#[inline] #[inline]
fn as_ref(&self) -> &[N; $SZ] { fn as_ref(&self) -> &[N; $SZ] {
@ -139,7 +139,7 @@ macro_rules! impl_from_into_asref_1D(
} }
impl<N, S> AsMut<[N; $SZ]> for Matrix<N, $NRows, $NCols, S> impl<N, S> AsMut<[N; $SZ]> for Matrix<N, $NRows, $NCols, S>
where N: Scalar + Copy, where N: Scalar,
S: ContiguousStorageMut<N, $NRows, $NCols> { S: ContiguousStorageMut<N, $NRows, $NCols> {
#[inline] #[inline]
fn as_mut(&mut self) -> &mut [N; $SZ] { fn as_mut(&mut self) -> &mut [N; $SZ] {
@ -168,7 +168,7 @@ impl_from_into_asref_1D!(
macro_rules! impl_from_into_asref_2D( macro_rules! impl_from_into_asref_2D(
($(($NRows: ty, $NCols: ty) => ($SZRows: expr, $SZCols: expr));* $(;)*) => {$( ($(($NRows: ty, $NCols: ty) => ($SZRows: expr, $SZCols: expr));* $(;)*) => {$(
impl<N: Scalar + Copy> From<[[N; $SZRows]; $SZCols]> for MatrixMN<N, $NRows, $NCols> impl<N: Scalar> From<[[N; $SZRows]; $SZCols]> for MatrixMN<N, $NRows, $NCols>
where DefaultAllocator: Allocator<N, $NRows, $NCols> { where DefaultAllocator: Allocator<N, $NRows, $NCols> {
#[inline] #[inline]
fn from(arr: [[N; $SZRows]; $SZCols]) -> Self { fn from(arr: [[N; $SZRows]; $SZCols]) -> Self {
@ -181,7 +181,7 @@ macro_rules! impl_from_into_asref_2D(
} }
} }
impl<N: Scalar + Copy, S> Into<[[N; $SZRows]; $SZCols]> for Matrix<N, $NRows, $NCols, S> impl<N: Scalar, S> Into<[[N; $SZRows]; $SZCols]> for Matrix<N, $NRows, $NCols, S>
where S: ContiguousStorage<N, $NRows, $NCols> { where S: ContiguousStorage<N, $NRows, $NCols> {
#[inline] #[inline]
fn into(self) -> [[N; $SZRows]; $SZCols] { fn into(self) -> [[N; $SZRows]; $SZCols] {
@ -194,7 +194,7 @@ macro_rules! impl_from_into_asref_2D(
} }
} }
impl<N: Scalar + Copy, S> AsRef<[[N; $SZRows]; $SZCols]> for Matrix<N, $NRows, $NCols, S> impl<N: Scalar, S> AsRef<[[N; $SZRows]; $SZCols]> for Matrix<N, $NRows, $NCols, S>
where S: ContiguousStorage<N, $NRows, $NCols> { where S: ContiguousStorage<N, $NRows, $NCols> {
#[inline] #[inline]
fn as_ref(&self) -> &[[N; $SZRows]; $SZCols] { fn as_ref(&self) -> &[[N; $SZRows]; $SZCols] {
@ -204,7 +204,7 @@ macro_rules! impl_from_into_asref_2D(
} }
} }
impl<N: Scalar + Copy, S> AsMut<[[N; $SZRows]; $SZCols]> for Matrix<N, $NRows, $NCols, S> impl<N: Scalar, S> AsMut<[[N; $SZRows]; $SZCols]> for Matrix<N, $NRows, $NCols, S>
where S: ContiguousStorageMut<N, $NRows, $NCols> { where S: ContiguousStorageMut<N, $NRows, $NCols> {
#[inline] #[inline]
fn as_mut(&mut self) -> &mut [[N; $SZRows]; $SZCols] { fn as_mut(&mut self) -> &mut [[N; $SZRows]; $SZCols] {
@ -229,7 +229,7 @@ impl_from_into_asref_2D!(
macro_rules! impl_from_into_mint_1D( macro_rules! impl_from_into_mint_1D(
($($NRows: ident => $VT:ident [$SZ: expr]);* $(;)*) => {$( ($($NRows: ident => $VT:ident [$SZ: expr]);* $(;)*) => {$(
impl<N> From<mint::$VT<N>> for MatrixMN<N, $NRows, U1> impl<N> From<mint::$VT<N>> for MatrixMN<N, $NRows, U1>
where N: Scalar + Copy, where N: Scalar,
DefaultAllocator: Allocator<N, $NRows, U1> { DefaultAllocator: Allocator<N, $NRows, U1> {
#[inline] #[inline]
fn from(v: mint::$VT<N>) -> Self { fn from(v: mint::$VT<N>) -> Self {
@ -243,7 +243,7 @@ macro_rules! impl_from_into_mint_1D(
} }
impl<N, S> Into<mint::$VT<N>> for Matrix<N, $NRows, U1, S> impl<N, S> Into<mint::$VT<N>> for Matrix<N, $NRows, U1, S>
where N: Scalar + Copy, where N: Scalar,
S: ContiguousStorage<N, $NRows, U1> { S: ContiguousStorage<N, $NRows, U1> {
#[inline] #[inline]
fn into(self) -> mint::$VT<N> { fn into(self) -> mint::$VT<N> {
@ -257,7 +257,7 @@ macro_rules! impl_from_into_mint_1D(
} }
impl<N, S> AsRef<mint::$VT<N>> for Matrix<N, $NRows, U1, S> impl<N, S> AsRef<mint::$VT<N>> for Matrix<N, $NRows, U1, S>
where N: Scalar + Copy, where N: Scalar,
S: ContiguousStorage<N, $NRows, U1> { S: ContiguousStorage<N, $NRows, U1> {
#[inline] #[inline]
fn as_ref(&self) -> &mint::$VT<N> { fn as_ref(&self) -> &mint::$VT<N> {
@ -268,7 +268,7 @@ macro_rules! impl_from_into_mint_1D(
} }
impl<N, S> AsMut<mint::$VT<N>> for Matrix<N, $NRows, U1, S> impl<N, S> AsMut<mint::$VT<N>> for Matrix<N, $NRows, U1, S>
where N: Scalar + Copy, where N: Scalar,
S: ContiguousStorageMut<N, $NRows, U1> { S: ContiguousStorageMut<N, $NRows, U1> {
#[inline] #[inline]
fn as_mut(&mut self) -> &mut mint::$VT<N> { fn as_mut(&mut self) -> &mut mint::$VT<N> {
@ -292,7 +292,7 @@ impl_from_into_mint_1D!(
macro_rules! impl_from_into_mint_2D( macro_rules! impl_from_into_mint_2D(
($(($NRows: ty, $NCols: ty) => $MV:ident{ $($component:ident),* }[$SZRows: expr]);* $(;)*) => {$( ($(($NRows: ty, $NCols: ty) => $MV:ident{ $($component:ident),* }[$SZRows: expr]);* $(;)*) => {$(
impl<N> From<mint::$MV<N>> for MatrixMN<N, $NRows, $NCols> impl<N> From<mint::$MV<N>> for MatrixMN<N, $NRows, $NCols>
where N: Scalar + Copy, where N: Scalar,
DefaultAllocator: Allocator<N, $NRows, $NCols> { DefaultAllocator: Allocator<N, $NRows, $NCols> {
#[inline] #[inline]
fn from(m: mint::$MV<N>) -> Self { fn from(m: mint::$MV<N>) -> Self {
@ -310,7 +310,7 @@ macro_rules! impl_from_into_mint_2D(
} }
impl<N> Into<mint::$MV<N>> for MatrixMN<N, $NRows, $NCols> impl<N> Into<mint::$MV<N>> for MatrixMN<N, $NRows, $NCols>
where N: Scalar + Copy, where N: Scalar,
DefaultAllocator: Allocator<N, $NRows, $NCols> { DefaultAllocator: Allocator<N, $NRows, $NCols> {
#[inline] #[inline]
fn into(self) -> mint::$MV<N> { fn into(self) -> mint::$MV<N> {
@ -342,7 +342,7 @@ impl_from_into_mint_2D!(
impl<'a, N, R, C, RStride, CStride> From<MatrixSlice<'a, N, R, C, RStride, CStride>> impl<'a, N, R, C, RStride, CStride> From<MatrixSlice<'a, N, R, C, RStride, CStride>>
for Matrix<N, R, C, ArrayStorage<N, R, C>> for Matrix<N, R, C, ArrayStorage<N, R, C>>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
RStride: Dim, RStride: Dim,
@ -359,7 +359,7 @@ where
impl<'a, N, C, RStride, CStride> From<MatrixSlice<'a, N, Dynamic, C, RStride, CStride>> impl<'a, N, C, RStride, CStride> From<MatrixSlice<'a, N, Dynamic, C, RStride, CStride>>
for Matrix<N, Dynamic, C, VecStorage<N, Dynamic, C>> for Matrix<N, Dynamic, C, VecStorage<N, Dynamic, C>>
where where
N: Scalar + Copy, N: Scalar,
C: Dim, C: Dim,
RStride: Dim, RStride: Dim,
CStride: Dim, CStride: Dim,
@ -373,7 +373,7 @@ where
impl<'a, N, R, RStride, CStride> From<MatrixSlice<'a, N, R, Dynamic, RStride, CStride>> impl<'a, N, R, RStride, CStride> From<MatrixSlice<'a, N, R, Dynamic, RStride, CStride>>
for Matrix<N, R, Dynamic, VecStorage<N, R, Dynamic>> for Matrix<N, R, Dynamic, VecStorage<N, R, Dynamic>>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
RStride: Dim, RStride: Dim,
CStride: Dim, CStride: Dim,
@ -386,7 +386,7 @@ where
impl<'a, N, R, C, RStride, CStride> From<MatrixSliceMut<'a, N, R, C, RStride, CStride>> impl<'a, N, R, C, RStride, CStride> From<MatrixSliceMut<'a, N, R, C, RStride, CStride>>
for Matrix<N, R, C, ArrayStorage<N, R, C>> for Matrix<N, R, C, ArrayStorage<N, R, C>>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
RStride: Dim, RStride: Dim,
@ -403,7 +403,7 @@ where
impl<'a, N, C, RStride, CStride> From<MatrixSliceMut<'a, N, Dynamic, C, RStride, CStride>> impl<'a, N, C, RStride, CStride> From<MatrixSliceMut<'a, N, Dynamic, C, RStride, CStride>>
for Matrix<N, Dynamic, C, VecStorage<N, Dynamic, C>> for Matrix<N, Dynamic, C, VecStorage<N, Dynamic, C>>
where where
N: Scalar + Copy, N: Scalar,
C: Dim, C: Dim,
RStride: Dim, RStride: Dim,
CStride: Dim, CStride: Dim,
@ -417,7 +417,7 @@ where
impl<'a, N, R, RStride, CStride> From<MatrixSliceMut<'a, N, R, Dynamic, RStride, CStride>> impl<'a, N, R, RStride, CStride> From<MatrixSliceMut<'a, N, R, Dynamic, RStride, CStride>>
for Matrix<N, R, Dynamic, VecStorage<N, R, Dynamic>> for Matrix<N, R, Dynamic, VecStorage<N, R, Dynamic>>
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
RStride: Dim, RStride: Dim,
CStride: Dim, CStride: Dim,
@ -430,7 +430,7 @@ where
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a Matrix<N, R, C, S>> impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a Matrix<N, R, C, S>>
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride> for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
RSlice: Dim, RSlice: Dim,
@ -463,7 +463,7 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>> impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>>
for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride> for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
RSlice: Dim, RSlice: Dim,
@ -496,7 +496,7 @@ for MatrixSlice<'a, N, RSlice, CSlice, RStride, CStride>
impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>> impl<'a, N, R, C, RSlice, CSlice, RStride, CStride, S> From<&'a mut Matrix<N, R, C, S>>
for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride> for MatrixSliceMut<'a, N, RSlice, CSlice, RStride, CStride>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
RSlice: Dim, RSlice: Dim,

View File

@ -24,7 +24,7 @@ macro_rules! coords_impl(
#[repr(C)] #[repr(C)]
#[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)] #[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct $T<N: Scalar + Copy> { pub struct $T<N: Scalar> {
$(pub $comps: N),* $(pub $comps: N),*
} }
} }
@ -32,7 +32,7 @@ macro_rules! coords_impl(
macro_rules! deref_impl( macro_rules! deref_impl(
($R: ty, $C: ty; $Target: ident) => { ($R: ty, $C: ty; $Target: ident) => {
impl<N: Scalar + Copy, S> Deref for Matrix<N, $R, $C, S> impl<N: Scalar, S> Deref for Matrix<N, $R, $C, S>
where S: ContiguousStorage<N, $R, $C> { where S: ContiguousStorage<N, $R, $C> {
type Target = $Target<N>; type Target = $Target<N>;
@ -42,7 +42,7 @@ macro_rules! deref_impl(
} }
} }
impl<N: Scalar + Copy, S> DerefMut for Matrix<N, $R, $C, S> impl<N: Scalar, S> DerefMut for Matrix<N, $R, $C, S>
where S: ContiguousStorageMut<N, $R, $C> { where S: ContiguousStorageMut<N, $R, $C> {
#[inline] #[inline]
fn deref_mut(&mut self) -> &mut Self::Target { fn deref_mut(&mut self) -> &mut Self::Target {

View File

@ -36,7 +36,7 @@ pub struct DefaultAllocator;
// Static - Static // Static - Static
impl<N, R, C> Allocator<N, R, C> for DefaultAllocator impl<N, R, C> Allocator<N, R, C> for DefaultAllocator
where where
N: Scalar + Copy, N: Scalar,
R: DimName, R: DimName,
C: DimName, C: DimName,
R::Value: Mul<C::Value>, R::Value: Mul<C::Value>,
@ -76,7 +76,7 @@ where
// Dynamic - Static // Dynamic - Static
// Dynamic - Dynamic // Dynamic - Dynamic
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, C: Dim> Allocator<N, Dynamic, C> for DefaultAllocator { impl<N: Scalar, C: Dim> Allocator<N, Dynamic, C> for DefaultAllocator {
type Buffer = VecStorage<N, Dynamic, C>; type Buffer = VecStorage<N, Dynamic, C>;
#[inline] #[inline]
@ -107,7 +107,7 @@ impl<N: Scalar + Copy, C: Dim> Allocator<N, Dynamic, C> for DefaultAllocator {
// Static - Dynamic // Static - Dynamic
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, R: DimName> Allocator<N, R, Dynamic> for DefaultAllocator { impl<N: Scalar, R: DimName> Allocator<N, R, Dynamic> for DefaultAllocator {
type Buffer = VecStorage<N, R, Dynamic>; type Buffer = VecStorage<N, R, Dynamic>;
#[inline] #[inline]
@ -142,7 +142,7 @@ impl<N: Scalar + Copy, R: DimName> Allocator<N, R, Dynamic> for DefaultAllocator
* *
*/ */
// Anything -> Static × Static // Anything -> Static × Static
impl<N: Scalar + Copy, RFrom, CFrom, RTo, CTo> Reallocator<N, RFrom, CFrom, RTo, CTo> for DefaultAllocator impl<N: Scalar, RFrom, CFrom, RTo, CTo> Reallocator<N, RFrom, CFrom, RTo, CTo> for DefaultAllocator
where where
RFrom: Dim, RFrom: Dim,
CFrom: Dim, CFrom: Dim,
@ -173,7 +173,7 @@ where
// Static × Static -> Dynamic × Any // Static × Static -> Dynamic × Any
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, RFrom, CFrom, CTo> Reallocator<N, RFrom, CFrom, Dynamic, CTo> for DefaultAllocator impl<N: Scalar, RFrom, CFrom, CTo> Reallocator<N, RFrom, CFrom, Dynamic, CTo> for DefaultAllocator
where where
RFrom: DimName, RFrom: DimName,
CFrom: DimName, CFrom: DimName,
@ -202,7 +202,7 @@ where
// Static × Static -> Static × Dynamic // Static × Static -> Static × Dynamic
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, RFrom, CFrom, RTo> Reallocator<N, RFrom, CFrom, RTo, Dynamic> for DefaultAllocator impl<N: Scalar, RFrom, CFrom, RTo> Reallocator<N, RFrom, CFrom, RTo, Dynamic> for DefaultAllocator
where where
RFrom: DimName, RFrom: DimName,
CFrom: DimName, CFrom: DimName,
@ -231,7 +231,7 @@ where
// All conversion from a dynamic buffer to a dynamic buffer. // All conversion from a dynamic buffer to a dynamic buffer.
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, CFrom: Dim, CTo: Dim> Reallocator<N, Dynamic, CFrom, Dynamic, CTo> impl<N: Scalar, CFrom: Dim, CTo: Dim> Reallocator<N, Dynamic, CFrom, Dynamic, CTo>
for DefaultAllocator for DefaultAllocator
{ {
#[inline] #[inline]
@ -247,7 +247,7 @@ impl<N: Scalar + Copy, CFrom: Dim, CTo: Dim> Reallocator<N, Dynamic, CFrom, Dyna
} }
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, CFrom: Dim, RTo: DimName> Reallocator<N, Dynamic, CFrom, RTo, Dynamic> impl<N: Scalar, CFrom: Dim, RTo: DimName> Reallocator<N, Dynamic, CFrom, RTo, Dynamic>
for DefaultAllocator for DefaultAllocator
{ {
#[inline] #[inline]
@ -263,7 +263,7 @@ impl<N: Scalar + Copy, CFrom: Dim, RTo: DimName> Reallocator<N, Dynamic, CFrom,
} }
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, RFrom: DimName, CTo: Dim> Reallocator<N, RFrom, Dynamic, Dynamic, CTo> impl<N: Scalar, RFrom: DimName, CTo: Dim> Reallocator<N, RFrom, Dynamic, Dynamic, CTo>
for DefaultAllocator for DefaultAllocator
{ {
#[inline] #[inline]
@ -279,7 +279,7 @@ impl<N: Scalar + Copy, RFrom: DimName, CTo: Dim> Reallocator<N, RFrom, Dynamic,
} }
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, RFrom: DimName, RTo: DimName> Reallocator<N, RFrom, Dynamic, RTo, Dynamic> impl<N: Scalar, RFrom: DimName, RTo: DimName> Reallocator<N, RFrom, Dynamic, RTo, Dynamic>
for DefaultAllocator for DefaultAllocator
{ {
#[inline] #[inline]

View File

@ -18,7 +18,7 @@ use crate::base::storage::{Storage, StorageMut};
use crate::base::DMatrix; use crate::base::DMatrix;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, RowVector, Scalar, Vector}; use crate::base::{DefaultAllocator, Matrix, MatrixMN, RowVector, Scalar, Vector};
impl<N: Scalar + Copy + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Extracts the upper triangular part of this matrix (including the diagonal). /// Extracts the upper triangular part of this matrix (including the diagonal).
#[inline] #[inline]
pub fn upper_triangle(&self) -> MatrixMN<N, R, C> pub fn upper_triangle(&self) -> MatrixMN<N, R, C>
@ -64,7 +64,7 @@ impl<N: Scalar + Copy + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R,
let src = self.column(j); let src = self.column(j);
for (destination, source) in irows.clone().enumerate() { for (destination, source) in irows.clone().enumerate() {
unsafe { *res.vget_unchecked_mut(destination) = *src.vget_unchecked(*source) } unsafe { *res.vget_unchecked_mut(destination) = src.vget_unchecked(*source).inlined_clone() }
} }
} }
@ -92,12 +92,12 @@ impl<N: Scalar + Copy + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R,
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Sets all the elements of this matrix to `val`. /// Sets all the elements of this matrix to `val`.
#[inline] #[inline]
pub fn fill(&mut self, val: N) { pub fn fill(&mut self, val: N) {
for e in self.iter_mut() { for e in self.iter_mut() {
*e = val *e = val.inlined_clone()
} }
} }
@ -116,7 +116,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
let n = cmp::min(nrows, ncols); let n = cmp::min(nrows, ncols);
for i in 0..n { for i in 0..n {
unsafe { *self.get_unchecked_mut((i, i)) = val } unsafe { *self.get_unchecked_mut((i, i)) = val.inlined_clone() }
} }
} }
@ -125,7 +125,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
pub fn fill_row(&mut self, i: usize, val: N) { pub fn fill_row(&mut self, i: usize, val: N) {
assert!(i < self.nrows(), "Row index out of bounds."); assert!(i < self.nrows(), "Row index out of bounds.");
for j in 0..self.ncols() { for j in 0..self.ncols() {
unsafe { *self.get_unchecked_mut((i, j)) = val } unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
} }
} }
@ -134,7 +134,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
pub fn fill_column(&mut self, j: usize, val: N) { pub fn fill_column(&mut self, j: usize, val: N) {
assert!(j < self.ncols(), "Row index out of bounds."); assert!(j < self.ncols(), "Row index out of bounds.");
for i in 0..self.nrows() { for i in 0..self.nrows() {
unsafe { *self.get_unchecked_mut((i, j)) = val } unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
} }
} }
@ -151,7 +151,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
assert_eq!(diag.len(), min_nrows_ncols, "Mismatched dimensions."); assert_eq!(diag.len(), min_nrows_ncols, "Mismatched dimensions.");
for i in 0..min_nrows_ncols { for i in 0..min_nrows_ncols {
unsafe { *self.get_unchecked_mut((i, i)) = *diag.vget_unchecked(i) } unsafe { *self.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).inlined_clone() }
} }
} }
@ -201,7 +201,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
pub fn fill_lower_triangle(&mut self, val: N, shift: usize) { pub fn fill_lower_triangle(&mut self, val: N, shift: usize) {
for j in 0..self.ncols() { for j in 0..self.ncols() {
for i in (j + shift)..self.nrows() { for i in (j + shift)..self.nrows() {
unsafe { *self.get_unchecked_mut((i, j)) = val } unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
} }
} }
} }
@ -219,7 +219,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
// FIXME: is there a more efficient way to avoid the min ? // FIXME: is there a more efficient way to avoid the min ?
// (necessary for rectangular matrices) // (necessary for rectangular matrices)
for i in 0..cmp::min(j + 1 - shift, self.nrows()) { for i in 0..cmp::min(j + 1 - shift, self.nrows()) {
unsafe { *self.get_unchecked_mut((i, j)) = val } unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
} }
} }
} }
@ -253,7 +253,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
} }
} }
impl<N: Scalar + Copy, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> { impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
/// Copies the upper-triangle of this matrix to its lower-triangular part. /// Copies the upper-triangle of this matrix to its lower-triangular part.
/// ///
/// This makes the matrix symmetric. Panics if the matrix is not square. /// This makes the matrix symmetric. Panics if the matrix is not square.
@ -264,7 +264,7 @@ impl<N: Scalar + Copy, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
for j in 0..dim { for j in 0..dim {
for i in j + 1..dim { for i in j + 1..dim {
unsafe { unsafe {
*self.get_unchecked_mut((i, j)) = *self.get_unchecked((j, i)); *self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).inlined_clone();
} }
} }
} }
@ -279,7 +279,7 @@ impl<N: Scalar + Copy, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
for j in 1..self.ncols() { for j in 1..self.ncols() {
for i in 0..j { for i in 0..j {
unsafe { unsafe {
*self.get_unchecked_mut((i, j)) = *self.get_unchecked((j, i)); *self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).inlined_clone();
} }
} }
} }
@ -291,7 +291,7 @@ impl<N: Scalar + Copy, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
* FIXME: specialize all the following for slices. * FIXME: specialize all the following for slices.
* *
*/ */
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/* /*
* *
* Column removal. * Column removal.
@ -783,7 +783,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
if new_ncols.value() > ncols { if new_ncols.value() > ncols {
res.columns_range_mut(ncols..).fill(val); res.columns_range_mut(ncols..).fill(val.inlined_clone());
} }
if new_nrows.value() > nrows { if new_nrows.value() > nrows {
@ -797,7 +797,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy> DMatrix<N> { impl<N: Scalar> DMatrix<N> {
/// Resizes this matrix in-place. /// Resizes this matrix in-place.
/// ///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
@ -814,7 +814,7 @@ impl<N: Scalar + Copy> DMatrix<N> {
} }
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, C: Dim> MatrixMN<N, Dynamic, C> impl<N: Scalar, C: Dim> MatrixMN<N, Dynamic, C>
where DefaultAllocator: Allocator<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C>
{ {
/// Changes the number of rows of this matrix in-place. /// Changes the number of rows of this matrix in-place.
@ -835,7 +835,7 @@ where DefaultAllocator: Allocator<N, Dynamic, C>
} }
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar + Copy, R: Dim> MatrixMN<N, R, Dynamic> impl<N: Scalar, R: Dim> MatrixMN<N, R, Dynamic>
where DefaultAllocator: Allocator<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic>
{ {
/// Changes the number of column of this matrix in-place. /// Changes the number of column of this matrix in-place.
@ -855,7 +855,7 @@ where DefaultAllocator: Allocator<N, R, Dynamic>
} }
} }
unsafe fn compress_rows<N: Scalar + Copy>( unsafe fn compress_rows<N: Scalar>(
data: &mut [N], data: &mut [N],
nrows: usize, nrows: usize,
ncols: usize, ncols: usize,
@ -895,7 +895,7 @@ unsafe fn compress_rows<N: Scalar + Copy>(
// Moves entries of a matrix buffer to make place for `ninsert` emty rows starting at the `i-th` row index. // Moves entries of a matrix buffer to make place for `ninsert` emty rows starting at the `i-th` row index.
// The `data` buffer is assumed to contained at least `(nrows + ninsert) * ncols` elements. // The `data` buffer is assumed to contained at least `(nrows + ninsert) * ncols` elements.
unsafe fn extend_rows<N: Scalar + Copy>( unsafe fn extend_rows<N: Scalar>(
data: &mut [N], data: &mut [N],
nrows: usize, nrows: usize,
ncols: usize, ncols: usize,
@ -938,7 +938,7 @@ unsafe fn extend_rows<N: Scalar + Copy>(
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N, R, S> Extend<N> for Matrix<N, R, Dynamic, S> impl<N, R, S> Extend<N> for Matrix<N, R, Dynamic, S>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
S: Extend<N>, S: Extend<N>,
{ {
@ -986,7 +986,7 @@ where
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N, S> Extend<N> for Matrix<N, Dynamic, U1, S> impl<N, S> Extend<N> for Matrix<N, Dynamic, U1, S>
where where
N: Scalar + Copy, N: Scalar,
S: Extend<N>, S: Extend<N>,
{ {
/// Extend the number of rows of a `Vector` with elements /// Extend the number of rows of a `Vector` with elements
@ -1007,7 +1007,7 @@ where
#[cfg(any(feature = "std", feature = "alloc"))] #[cfg(any(feature = "std", feature = "alloc"))]
impl<N, R, S, RV, SV> Extend<Vector<N, RV, SV>> for Matrix<N, R, Dynamic, S> impl<N, R, S, RV, SV> Extend<Vector<N, RV, SV>> for Matrix<N, R, Dynamic, S>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
S: Extend<Vector<N, RV, SV>>, S: Extend<Vector<N, RV, SV>>,
RV: Dim, RV: Dim,

View File

@ -267,7 +267,7 @@ fn dimrange_rangetoinclusive_usize() {
} }
/// A helper trait used for indexing operations. /// A helper trait used for indexing operations.
pub trait MatrixIndex<'a, N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>>: Sized { pub trait MatrixIndex<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>>: Sized {
/// The output type returned by methods. /// The output type returned by methods.
type Output : 'a; type Output : 'a;
@ -303,7 +303,7 @@ pub trait MatrixIndex<'a, N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>>
} }
/// A helper trait used for indexing operations. /// A helper trait used for indexing operations.
pub trait MatrixIndexMut<'a, N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>>: MatrixIndex<'a, N, R, C, S> { pub trait MatrixIndexMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>>: MatrixIndex<'a, N, R, C, S> {
/// The output type returned by methods. /// The output type returned by methods.
type OutputMut : 'a; type OutputMut : 'a;
@ -432,7 +432,7 @@ pub trait MatrixIndexMut<'a, N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N,
/// 4, 7, /// 4, 7,
/// 5, 8))); /// 5, 8)));
/// ``` /// ```
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
{ {
/// Produces a view of the data at the given index, or /// Produces a view of the data at the given index, or
/// `None` if the index is out of bounds. /// `None` if the index is out of bounds.
@ -502,7 +502,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
impl<'a, N, R, C, S> MatrixIndex<'a, N, R, C, S> for usize impl<'a, N, R, C, S> MatrixIndex<'a, N, R, C, S> for usize
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: Storage<N, R, C> S: Storage<N, R, C>
@ -524,7 +524,7 @@ where
impl<'a, N, R, C, S> MatrixIndexMut<'a, N, R, C, S> for usize impl<'a, N, R, C, S> MatrixIndexMut<'a, N, R, C, S> for usize
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: StorageMut<N, R, C> S: StorageMut<N, R, C>
@ -544,7 +544,7 @@ where
impl<'a, N, R, C, S> MatrixIndex<'a, N, R, C, S> for (usize, usize) impl<'a, N, R, C, S> MatrixIndex<'a, N, R, C, S> for (usize, usize)
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: Storage<N, R, C> S: Storage<N, R, C>
@ -569,7 +569,7 @@ where
impl<'a, N, R, C, S> MatrixIndexMut<'a, N, R, C, S> for (usize, usize) impl<'a, N, R, C, S> MatrixIndexMut<'a, N, R, C, S> for (usize, usize)
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: StorageMut<N, R, C> S: StorageMut<N, R, C>
@ -607,7 +607,7 @@ macro_rules! impl_index_pair {
{ {
impl<'a, N, $R, $C, S, $($RTyP : $RTyPB,)* $($CTyP : $CTyPB),*> MatrixIndex<'a, N, $R, $C, S> for ($RIdx, $CIdx) impl<'a, N, $R, $C, S, $($RTyP : $RTyPB,)* $($CTyP : $CTyPB),*> MatrixIndex<'a, N, $R, $C, S> for ($RIdx, $CIdx)
where where
N: Scalar + Copy, N: Scalar,
$R: Dim, $R: Dim,
$C: Dim, $C: Dim,
S: Storage<N, R, C>, S: Storage<N, R, C>,
@ -643,7 +643,7 @@ macro_rules! impl_index_pair {
impl<'a, N, $R, $C, S, $($RTyP : $RTyPB,)* $($CTyP : $CTyPB),*> MatrixIndexMut<'a, N, $R, $C, S> for ($RIdx, $CIdx) impl<'a, N, $R, $C, S, $($RTyP : $RTyPB,)* $($CTyP : $CTyPB),*> MatrixIndexMut<'a, N, $R, $C, S> for ($RIdx, $CIdx)
where where
N: Scalar + Copy, N: Scalar,
$R: Dim, $R: Dim,
$C: Dim, $C: Dim,
S: StorageMut<N, R, C>, S: StorageMut<N, R, C>,

View File

@ -10,7 +10,7 @@ use crate::base::{Scalar, Matrix, MatrixSlice, MatrixSliceMut};
macro_rules! iterator { macro_rules! iterator {
(struct $Name:ident for $Storage:ident.$ptr: ident -> $Ptr:ty, $Ref:ty, $SRef: ty) => { (struct $Name:ident for $Storage:ident.$ptr: ident -> $Ptr:ty, $Ref:ty, $SRef: ty) => {
/// An iterator through a dense matrix with arbitrary strides matrix. /// An iterator through a dense matrix with arbitrary strides matrix.
pub struct $Name<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> { pub struct $Name<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> {
ptr: $Ptr, ptr: $Ptr,
inner_ptr: $Ptr, inner_ptr: $Ptr,
inner_end: $Ptr, inner_end: $Ptr,
@ -21,7 +21,7 @@ macro_rules! iterator {
// FIXME: we need to specialize for the case where the matrix storage is owned (in which // FIXME: we need to specialize for the case where the matrix storage is owned (in which
// case the iterator is trivial because it does not have any stride). // case the iterator is trivial because it does not have any stride).
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> $Name<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> $Name<'a, N, R, C, S> {
/// Creates a new iterator for the given matrix storage. /// Creates a new iterator for the given matrix storage.
pub fn new(storage: $SRef) -> $Name<'a, N, R, C, S> { pub fn new(storage: $SRef) -> $Name<'a, N, R, C, S> {
let shape = storage.shape(); let shape = storage.shape();
@ -58,7 +58,7 @@ macro_rules! iterator {
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> Iterator impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> Iterator
for $Name<'a, N, R, C, S> for $Name<'a, N, R, C, S>
{ {
type Item = $Ref; type Item = $Ref;
@ -111,7 +111,7 @@ macro_rules! iterator {
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> ExactSizeIterator impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + $Storage<N, R, C>> ExactSizeIterator
for $Name<'a, N, R, C, S> for $Name<'a, N, R, C, S>
{ {
#[inline] #[inline]
@ -133,12 +133,12 @@ iterator!(struct MatrixIterMut for StorageMut.ptr_mut -> *mut N, &'a mut N, &'a
*/ */
#[derive(Clone)] #[derive(Clone)]
/// An iterator through the rows of a matrix. /// An iterator through the rows of a matrix.
pub struct RowIter<'a, N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> { pub struct RowIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
mat: &'a Matrix<N, R, C, S>, mat: &'a Matrix<N, R, C, S>,
curr: usize curr: usize
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> RowIter<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> RowIter<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self { pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
RowIter { RowIter {
mat, curr: 0 mat, curr: 0
@ -147,7 +147,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> RowIter<'a,
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIter<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for RowIter<'a, N, R, C, S> {
type Item = MatrixSlice<'a, N, U1, C, S::RStride, S::CStride>; type Item = MatrixSlice<'a, N, U1, C, S::RStride, S::CStride>;
#[inline] #[inline]
@ -172,7 +172,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator fo
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for RowIter<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for RowIter<'a, N, R, C, S> {
#[inline] #[inline]
fn len(&self) -> usize { fn len(&self) -> usize {
self.mat.nrows() - self.curr self.mat.nrows() - self.curr
@ -181,13 +181,13 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIt
/// An iterator through the mutable rows of a matrix. /// An iterator through the mutable rows of a matrix.
pub struct RowIterMut<'a, N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> { pub struct RowIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
mat: *mut Matrix<N, R, C, S>, mat: *mut Matrix<N, R, C, S>,
curr: usize, curr: usize,
phantom: PhantomData<&'a mut Matrix<N, R, C, S>> phantom: PhantomData<&'a mut Matrix<N, R, C, S>>
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterMut<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self { pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self {
RowIterMut { RowIterMut {
mat, mat,
@ -204,7 +204,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> RowIterM
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for RowIterMut<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for RowIterMut<'a, N, R, C, S> {
type Item = MatrixSliceMut<'a, N, U1, C, S::RStride, S::CStride>; type Item = MatrixSliceMut<'a, N, U1, C, S::RStride, S::CStride>;
#[inline] #[inline]
@ -229,7 +229,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for RowIterMut<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for RowIterMut<'a, N, R, C, S> {
#[inline] #[inline]
fn len(&self) -> usize { fn len(&self) -> usize {
self.nrows() - self.curr self.nrows() - self.curr
@ -244,12 +244,12 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSiz
*/ */
#[derive(Clone)] #[derive(Clone)]
/// An iterator through the columns of a matrix. /// An iterator through the columns of a matrix.
pub struct ColumnIter<'a, N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> { pub struct ColumnIter<'a, N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> {
mat: &'a Matrix<N, R, C, S>, mat: &'a Matrix<N, R, C, S>,
curr: usize curr: usize
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ColumnIter<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ColumnIter<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self { pub(crate) fn new(mat: &'a Matrix<N, R, C, S>) -> Self {
ColumnIter { ColumnIter {
mat, curr: 0 mat, curr: 0
@ -258,7 +258,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ColumnIter<
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for ColumnIter<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for ColumnIter<'a, N, R, C, S> {
type Item = MatrixSlice<'a, N, R, U1, S::RStride, S::CStride>; type Item = MatrixSlice<'a, N, R, U1, S::RStride, S::CStride>;
#[inline] #[inline]
@ -283,7 +283,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator fo
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for ColumnIter<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIterator for ColumnIter<'a, N, R, C, S> {
#[inline] #[inline]
fn len(&self) -> usize { fn len(&self) -> usize {
self.mat.ncols() - self.curr self.mat.ncols() - self.curr
@ -292,13 +292,13 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> ExactSizeIt
/// An iterator through the mutable columns of a matrix. /// An iterator through the mutable columns of a matrix.
pub struct ColumnIterMut<'a, N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> { pub struct ColumnIterMut<'a, N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> {
mat: *mut Matrix<N, R, C, S>, mat: *mut Matrix<N, R, C, S>,
curr: usize, curr: usize,
phantom: PhantomData<&'a mut Matrix<N, R, C, S>> phantom: PhantomData<&'a mut Matrix<N, R, C, S>>
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIterMut<'a, N, R, C, S> {
pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self { pub(crate) fn new(mat: &'a mut Matrix<N, R, C, S>) -> Self {
ColumnIterMut { ColumnIterMut {
mat, mat,
@ -315,7 +315,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ColumnIt
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for ColumnIterMut<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for ColumnIterMut<'a, N, R, C, S> {
type Item = MatrixSliceMut<'a, N, R, U1, S::RStride, S::CStride>; type Item = MatrixSliceMut<'a, N, R, U1, S::RStride, S::CStride>;
#[inline] #[inline]
@ -340,7 +340,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for ColumnIterMut<'a, N, R, C, S> { impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> ExactSizeIterator for ColumnIterMut<'a, N, R, C, S> {
#[inline] #[inline]
fn len(&self) -> usize { fn len(&self) -> usize {
self.ncols() - self.curr self.ncols() - self.curr

View File

@ -73,7 +73,7 @@ pub type MatrixCross<N, R1, C1, R2, C2> =
/// some concrete types for `N` and a compatible data storage type `S`). /// some concrete types for `N` and a compatible data storage type `S`).
#[repr(C)] #[repr(C)]
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
pub struct Matrix<N: Scalar + Copy, R: Dim, C: Dim, S> { pub struct Matrix<N: Scalar, R: Dim, C: Dim, S> {
/// The data storage that contains all the matrix components and informations about its number /// The data storage that contains all the matrix components and informations about its number
/// of rows and column (if needed). /// of rows and column (if needed).
pub data: S, pub data: S,
@ -81,7 +81,7 @@ pub struct Matrix<N: Scalar + Copy, R: Dim, C: Dim, S> {
_phantoms: PhantomData<(N, R, C)>, _phantoms: PhantomData<(N, R, C)>,
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: fmt::Debug> fmt::Debug for Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: fmt::Debug> fmt::Debug for Matrix<N, R, C, S> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> { fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter formatter
.debug_struct("Matrix") .debug_struct("Matrix")
@ -93,7 +93,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: fmt::Debug> fmt::Debug for Matrix<N, R
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<N, R, C, S> Serialize for Matrix<N, R, C, S> impl<N, R, C, S> Serialize for Matrix<N, R, C, S>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: Serialize, S: Serialize,
@ -107,7 +107,7 @@ where
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'de, N, R, C, S> Deserialize<'de> for Matrix<N, R, C, S> impl<'de, N, R, C, S> Deserialize<'de> for Matrix<N, R, C, S>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: Deserialize<'de>, S: Deserialize<'de>,
@ -122,7 +122,7 @@ where
} }
#[cfg(feature = "abomonation-serialize")] #[cfg(feature = "abomonation-serialize")]
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Abomonation> Abomonation for Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Abomonation> Abomonation for Matrix<N, R, C, S> {
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> { unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.data.entomb(writer) self.data.entomb(writer)
} }
@ -136,7 +136,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Abomonation> Abomonation for Matrix<N,
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S> Matrix<N, R, C, S> {
/// Creates a new matrix with the given data without statically checking that the matrix /// Creates a new matrix with the given data without statically checking that the matrix
/// dimension matches the storage dimension. /// dimension matches the storage dimension.
#[inline] #[inline]
@ -148,7 +148,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S> Matrix<N, R, C, S> {
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Creates a new matrix with the given data. /// Creates a new matrix with the given data.
#[inline] #[inline]
pub fn from_data(data: S) -> Self { pub fn from_data(data: S) -> Self {
@ -403,7 +403,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for j in 0..res.ncols() { for j in 0..res.ncols() {
for i in 0..res.nrows() { for i in 0..res.nrows() {
unsafe { unsafe {
*res.get_unchecked_mut((i, j)) = *self.get_unchecked((i, j)); *res.get_unchecked_mut((i, j)) = self.get_unchecked((i, j)).inlined_clone();
} }
} }
} }
@ -413,7 +413,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns a matrix containing the result of `f` applied to each of its entries. /// Returns a matrix containing the result of `f` applied to each of its entries.
#[inline] #[inline]
pub fn map<N2: Scalar + Copy, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C> pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, mut f: F) -> MatrixMN<N2, R, C>
where DefaultAllocator: Allocator<N2, R, C> { where DefaultAllocator: Allocator<N2, R, C> {
let (nrows, ncols) = self.data.shape(); let (nrows, ncols) = self.data.shape();
@ -422,7 +422,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for j in 0..ncols.value() { for j in 0..ncols.value() {
for i in 0..nrows.value() { for i in 0..nrows.value() {
unsafe { unsafe {
let a = *self.data.get_unchecked(i, j); let a = self.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(a) *res.data.get_unchecked_mut(i, j) = f(a)
} }
} }
@ -434,7 +434,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns a matrix containing the result of `f` applied to each of its entries. Unlike `map`, /// Returns a matrix containing the result of `f` applied to each of its entries. Unlike `map`,
/// `f` also gets passed the row and column index, i.e. `f(row, col, value)`. /// `f` also gets passed the row and column index, i.e. `f(row, col, value)`.
#[inline] #[inline]
pub fn map_with_location<N2: Scalar + Copy, F: FnMut(usize, usize, N) -> N2>( pub fn map_with_location<N2: Scalar, F: FnMut(usize, usize, N) -> N2>(
&self, &self,
mut f: F, mut f: F,
) -> MatrixMN<N2, R, C> ) -> MatrixMN<N2, R, C>
@ -448,7 +448,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for j in 0..ncols.value() { for j in 0..ncols.value() {
for i in 0..nrows.value() { for i in 0..nrows.value() {
unsafe { unsafe {
let a = *self.data.get_unchecked(i, j); let a = self.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(i, j, a) *res.data.get_unchecked_mut(i, j) = f(i, j, a)
} }
} }
@ -462,8 +462,8 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
#[inline] #[inline]
pub fn zip_map<N2, N3, S2, F>(&self, rhs: &Matrix<N2, R, C, S2>, mut f: F) -> MatrixMN<N3, R, C> pub fn zip_map<N2, N3, S2, F>(&self, rhs: &Matrix<N2, R, C, S2>, mut f: F) -> MatrixMN<N3, R, C>
where where
N2: Scalar + Copy, N2: Scalar,
N3: Scalar + Copy, N3: Scalar,
S2: Storage<N2, R, C>, S2: Storage<N2, R, C>,
F: FnMut(N, N2) -> N3, F: FnMut(N, N2) -> N3,
DefaultAllocator: Allocator<N3, R, C>, DefaultAllocator: Allocator<N3, R, C>,
@ -480,8 +480,8 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for j in 0..ncols.value() { for j in 0..ncols.value() {
for i in 0..nrows.value() { for i in 0..nrows.value() {
unsafe { unsafe {
let a = *self.data.get_unchecked(i, j); let a = self.data.get_unchecked(i, j).inlined_clone();
let b = *rhs.data.get_unchecked(i, j); let b = rhs.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(a, b) *res.data.get_unchecked_mut(i, j) = f(a, b)
} }
} }
@ -500,9 +500,9 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
mut f: F, mut f: F,
) -> MatrixMN<N4, R, C> ) -> MatrixMN<N4, R, C>
where where
N2: Scalar + Copy, N2: Scalar,
N3: Scalar + Copy, N3: Scalar,
N4: Scalar + Copy, N4: Scalar,
S2: Storage<N2, R, C>, S2: Storage<N2, R, C>,
S3: Storage<N3, R, C>, S3: Storage<N3, R, C>,
F: FnMut(N, N2, N3) -> N4, F: FnMut(N, N2, N3) -> N4,
@ -521,9 +521,9 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for j in 0..ncols.value() { for j in 0..ncols.value() {
for i in 0..nrows.value() { for i in 0..nrows.value() {
unsafe { unsafe {
let a = *self.data.get_unchecked(i, j); let a = self.data.get_unchecked(i, j).inlined_clone();
let b = *b.data.get_unchecked(i, j); let b = b.data.get_unchecked(i, j).inlined_clone();
let c = *c.data.get_unchecked(i, j); let c = c.data.get_unchecked(i, j).inlined_clone();
*res.data.get_unchecked_mut(i, j) = f(a, b, c) *res.data.get_unchecked_mut(i, j) = f(a, b, c)
} }
} }
@ -542,7 +542,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for j in 0..ncols.value() { for j in 0..ncols.value() {
for i in 0..nrows.value() { for i in 0..nrows.value() {
unsafe { unsafe {
let a = *self.data.get_unchecked(i, j); let a = self.data.get_unchecked(i, j).inlined_clone();
res = f(res, a) res = f(res, a)
} }
} }
@ -555,7 +555,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
#[inline] #[inline]
pub fn zip_fold<N2, R2, C2, S2, Acc>(&self, rhs: &Matrix<N2, R2, C2, S2>, init: Acc, mut f: impl FnMut(Acc, N, N2) -> Acc) -> Acc pub fn zip_fold<N2, R2, C2, S2, Acc>(&self, rhs: &Matrix<N2, R2, C2, S2>, init: Acc, mut f: impl FnMut(Acc, N, N2) -> Acc) -> Acc
where where
N2: Scalar + Copy, N2: Scalar,
R2: Dim, R2: Dim,
C2: Dim, C2: Dim,
S2: Storage<N2, R2, C2>, S2: Storage<N2, R2, C2>,
@ -573,8 +573,8 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for j in 0..ncols.value() { for j in 0..ncols.value() {
for i in 0..nrows.value() { for i in 0..nrows.value() {
unsafe { unsafe {
let a = *self.data.get_unchecked(i, j); let a = self.data.get_unchecked(i, j).inlined_clone();
let b = *rhs.data.get_unchecked(i, j); let b = rhs.data.get_unchecked(i, j).inlined_clone();
res = f(res, a, b) res = f(res, a, b)
} }
} }
@ -602,7 +602,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
for i in 0..nrows { for i in 0..nrows {
for j in 0..ncols { for j in 0..ncols {
unsafe { unsafe {
*out.get_unchecked_mut((j, i)) = *self.get_unchecked((i, j)); *out.get_unchecked_mut((j, i)) = self.get_unchecked((i, j)).inlined_clone();
} }
} }
} }
@ -623,7 +623,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Mutably iterates through this matrix coordinates. /// Mutably iterates through this matrix coordinates.
#[inline] #[inline]
pub fn iter_mut(&mut self) -> MatrixIterMut<N, R, C, S> { pub fn iter_mut(&mut self) -> MatrixIterMut<N, R, C, S> {
@ -717,7 +717,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
for j in 0..ncols { for j in 0..ncols {
for i in 0..nrows { for i in 0..nrows {
unsafe { unsafe {
*self.get_unchecked_mut((i, j)) = *slice.get_unchecked(i + j * nrows); *self.get_unchecked_mut((i, j)) = slice.get_unchecked(i + j * nrows).inlined_clone();
} }
} }
} }
@ -740,7 +740,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
for j in 0..self.ncols() { for j in 0..self.ncols() {
for i in 0..self.nrows() { for i in 0..self.nrows() {
unsafe { unsafe {
*self.get_unchecked_mut((i, j)) = *other.get_unchecked((i, j)); *self.get_unchecked_mut((i, j)) = other.get_unchecked((i, j)).inlined_clone();
} }
} }
} }
@ -764,7 +764,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
for j in 0..ncols { for j in 0..ncols {
for i in 0..nrows { for i in 0..nrows {
unsafe { unsafe {
*self.get_unchecked_mut((i, j)) = *other.get_unchecked((j, i)); *self.get_unchecked_mut((i, j)) = other.get_unchecked((j, i)).inlined_clone();
} }
} }
} }
@ -787,7 +787,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
for i in 0..nrows { for i in 0..nrows {
unsafe { unsafe {
let e = self.data.get_unchecked_mut(i, j); let e = self.data.get_unchecked_mut(i, j);
*e = f(*e) *e = f(e.inlined_clone())
} }
} }
} }
@ -797,7 +797,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
/// joined with the components from `rhs`. /// joined with the components from `rhs`.
#[inline] #[inline]
pub fn zip_apply<N2, R2, C2, S2>(&mut self, rhs: &Matrix<N2, R2, C2, S2>, mut f: impl FnMut(N, N2) -> N) pub fn zip_apply<N2, R2, C2, S2>(&mut self, rhs: &Matrix<N2, R2, C2, S2>, mut f: impl FnMut(N, N2) -> N)
where N2: Scalar + Copy, where N2: Scalar,
R2: Dim, R2: Dim,
C2: Dim, C2: Dim,
S2: Storage<N2, R2, C2>, S2: Storage<N2, R2, C2>,
@ -813,8 +813,8 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
for i in 0..nrows { for i in 0..nrows {
unsafe { unsafe {
let e = self.data.get_unchecked_mut(i, j); let e = self.data.get_unchecked_mut(i, j);
let rhs = rhs.get_unchecked((i, j)); let rhs = rhs.get_unchecked((i, j)).inlined_clone();
*e = f(*e, *rhs) *e = f(e.inlined_clone(), rhs)
} }
} }
} }
@ -825,11 +825,11 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
/// joined with the components from `b` and `c`. /// joined with the components from `b` and `c`.
#[inline] #[inline]
pub fn zip_zip_apply<N2, R2, C2, S2, N3, R3, C3, S3>(&mut self, b: &Matrix<N2, R2, C2, S2>, c: &Matrix<N3, R3, C3, S3>, mut f: impl FnMut(N, N2, N3) -> N) pub fn zip_zip_apply<N2, R2, C2, S2, N3, R3, C3, S3>(&mut self, b: &Matrix<N2, R2, C2, S2>, c: &Matrix<N3, R3, C3, S3>, mut f: impl FnMut(N, N2, N3) -> N)
where N2: Scalar + Copy, where N2: Scalar,
R2: Dim, R2: Dim,
C2: Dim, C2: Dim,
S2: Storage<N2, R2, C2>, S2: Storage<N2, R2, C2>,
N3: Scalar + Copy, N3: Scalar,
R3: Dim, R3: Dim,
C3: Dim, C3: Dim,
S3: Storage<N3, R3, C3>, S3: Storage<N3, R3, C3>,
@ -850,16 +850,16 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
for i in 0..nrows { for i in 0..nrows {
unsafe { unsafe {
let e = self.data.get_unchecked_mut(i, j); let e = self.data.get_unchecked_mut(i, j);
let b = b.get_unchecked((i, j)); let b = b.get_unchecked((i, j)).inlined_clone();
let c = c.get_unchecked((i, j)); let c = c.get_unchecked((i, j)).inlined_clone();
*e = f(*e, *b, *c) *e = f(e.inlined_clone(), b, c)
} }
} }
} }
} }
} }
impl<N: Scalar + Copy, D: Dim, S: Storage<N, D>> Vector<N, D, S> { impl<N: Scalar, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
/// Gets a reference to the i-th element of this column vector without bound checking. /// Gets a reference to the i-th element of this column vector without bound checking.
#[inline] #[inline]
pub unsafe fn vget_unchecked(&self, i: usize) -> &N { pub unsafe fn vget_unchecked(&self, i: usize) -> &N {
@ -869,7 +869,7 @@ impl<N: Scalar + Copy, D: Dim, S: Storage<N, D>> Vector<N, D, S> {
} }
} }
impl<N: Scalar + Copy, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> { impl<N: Scalar, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
/// Gets a mutable reference to the i-th element of this column vector without bound checking. /// Gets a mutable reference to the i-th element of this column vector without bound checking.
#[inline] #[inline]
pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut N { pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut N {
@ -879,7 +879,7 @@ impl<N: Scalar + Copy, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Matrix<N, R, C, S> {
/// Extracts a slice containing the entire matrix entries ordered column-by-columns. /// Extracts a slice containing the entire matrix entries ordered column-by-columns.
#[inline] #[inline]
pub fn as_slice(&self) -> &[N] { pub fn as_slice(&self) -> &[N] {
@ -887,7 +887,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorage<N, R, C>> Matrix<N,
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Extracts a mutable slice containing the entire matrix entries ordered column-by-columns. /// Extracts a mutable slice containing the entire matrix entries ordered column-by-columns.
#[inline] #[inline]
pub fn as_mut_slice(&mut self) -> &mut [N] { pub fn as_mut_slice(&mut self) -> &mut [N] {
@ -895,7 +895,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: ContiguousStorageMut<N, R, C>> Matrix<
} }
} }
impl<N: Scalar + Copy, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> { impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
/// Transposes the square matrix `self` in-place. /// Transposes the square matrix `self` in-place.
pub fn transpose_mut(&mut self) { pub fn transpose_mut(&mut self) {
assert!( assert!(
@ -1052,7 +1052,7 @@ impl<N: ComplexField, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
} }
} }
impl<N: Scalar + Copy, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> { impl<N: Scalar, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// The diagonal of this matrix. /// The diagonal of this matrix.
#[inline] #[inline]
pub fn diagonal(&self) -> VectorN<N, D> pub fn diagonal(&self) -> VectorN<N, D>
@ -1064,7 +1064,7 @@ impl<N: Scalar + Copy, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
/// ///
/// This is a more efficient version of `self.diagonal().map(f)` since this /// This is a more efficient version of `self.diagonal().map(f)` since this
/// allocates only once. /// allocates only once.
pub fn map_diagonal<N2: Scalar + Copy>(&self, mut f: impl FnMut(N) -> N2) -> VectorN<N2, D> pub fn map_diagonal<N2: Scalar>(&self, mut f: impl FnMut(N) -> N2) -> VectorN<N2, D>
where DefaultAllocator: Allocator<N2, D> { where DefaultAllocator: Allocator<N2, D> {
assert!( assert!(
self.is_square(), self.is_square(),
@ -1076,7 +1076,7 @@ impl<N: Scalar + Copy, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
for i in 0..dim.value() { for i in 0..dim.value() {
unsafe { unsafe {
*res.vget_unchecked_mut(i) = f(*self.get_unchecked((i, i))); *res.vget_unchecked_mut(i) = f(self.get_unchecked((i, i)).inlined_clone());
} }
} }
@ -1096,7 +1096,7 @@ impl<N: Scalar + Copy, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
let mut res = N::zero(); let mut res = N::zero();
for i in 0..dim.value() { for i in 0..dim.value() {
res += unsafe { *self.get_unchecked((i, i)) }; res += unsafe { self.get_unchecked((i, i)).inlined_clone() };
} }
res res
@ -1128,7 +1128,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
} }
} }
impl<N: Scalar + Copy + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: Storage<N, D, D>> Matrix<N, D, D, S> { impl<N: Scalar + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: Storage<N, D, D>> Matrix<N, D, D, S> {
/// Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and /// Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and
/// and setting the diagonal element to `1`. /// and setting the diagonal element to `1`.
@ -1144,7 +1144,7 @@ impl<N: Scalar + Copy + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: Storage<N
} }
impl<N: Scalar + Copy + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> { impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
/// Computes the coordinates in projective space of this vector, i.e., appends a `0` to its /// Computes the coordinates in projective space of this vector, i.e., appends a `0` to its
/// coordinates. /// coordinates.
#[inline] #[inline]
@ -1170,7 +1170,7 @@ impl<N: Scalar + Copy + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
} }
} }
impl<N: Scalar + Copy + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> { impl<N: Scalar + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
/// Constructs a new vector of higher dimension by appending `element` to the end of `self`. /// Constructs a new vector of higher dimension by appending `element` to the end of `self`.
#[inline] #[inline]
pub fn push(&self, element: N) -> VectorN<N, DimSum<D, U1>> pub fn push(&self, element: N) -> VectorN<N, DimSum<D, U1>>
@ -1188,7 +1188,7 @@ impl<N: Scalar + Copy + Zero, D: DimAdd<U1>, S: Storage<N, D>> Vector<N, D, S> {
impl<N, R: Dim, C: Dim, S> AbsDiffEq for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> AbsDiffEq for Matrix<N, R, C, S>
where where
N: Scalar + Copy + AbsDiffEq, N: Scalar + AbsDiffEq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -1209,7 +1209,7 @@ where
impl<N, R: Dim, C: Dim, S> RelativeEq for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> RelativeEq for Matrix<N, R, C, S>
where where
N: Scalar + Copy + RelativeEq, N: Scalar + RelativeEq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -1232,7 +1232,7 @@ where
impl<N, R: Dim, C: Dim, S> UlpsEq for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> UlpsEq for Matrix<N, R, C, S>
where where
N: Scalar + Copy + UlpsEq, N: Scalar + UlpsEq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -1252,7 +1252,7 @@ where
impl<N, R: Dim, C: Dim, S> PartialOrd for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> PartialOrd for Matrix<N, R, C, S>
where where
N: Scalar + Copy + PartialOrd, N: Scalar + PartialOrd,
S: Storage<N, R, C>, S: Storage<N, R, C>,
{ {
#[inline] #[inline]
@ -1340,13 +1340,13 @@ where
impl<N, R: Dim, C: Dim, S> Eq for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> Eq for Matrix<N, R, C, S>
where where
N: Scalar + Copy + Eq, N: Scalar + Eq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
{} {}
impl<N, R: Dim, C: Dim, S> PartialEq for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> PartialEq for Matrix<N, R, C, S>
where where
N: Scalar + Copy, N: Scalar,
S: Storage<N, R, C>, S: Storage<N, R, C>,
{ {
#[inline] #[inline]
@ -1363,13 +1363,13 @@ macro_rules! impl_fmt {
($trait: path, $fmt_str_without_precision: expr, $fmt_str_with_precision: expr) => { ($trait: path, $fmt_str_without_precision: expr, $fmt_str_with_precision: expr) => {
impl<N, R: Dim, C: Dim, S> $trait for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> $trait for Matrix<N, R, C, S>
where where
N: Scalar + Copy + $trait, N: Scalar + $trait,
S: Storage<N, R, C>, S: Storage<N, R, C>,
DefaultAllocator: Allocator<usize, R, C>, DefaultAllocator: Allocator<usize, R, C>,
{ {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
#[cfg(feature = "std")] #[cfg(feature = "std")]
fn val_width<N: Scalar + Copy + $trait>(val: N, f: &mut fmt::Formatter) -> usize { fn val_width<N: Scalar + $trait>(val: &N, f: &mut fmt::Formatter) -> usize {
match f.precision() { match f.precision() {
Some(precision) => format!($fmt_str_with_precision, val, precision).chars().count(), Some(precision) => format!($fmt_str_with_precision, val, precision).chars().count(),
None => format!($fmt_str_without_precision, val).chars().count(), None => format!($fmt_str_without_precision, val).chars().count(),
@ -1377,7 +1377,7 @@ macro_rules! impl_fmt {
} }
#[cfg(not(feature = "std"))] #[cfg(not(feature = "std"))]
fn val_width<N: Scalar + Copy + $trait>(_: N, _: &mut fmt::Formatter) -> usize { fn val_width<N: Scalar + $trait>(_: &N, _: &mut fmt::Formatter) -> usize {
4 4
} }
@ -1393,7 +1393,7 @@ macro_rules! impl_fmt {
for i in 0..nrows { for i in 0..nrows {
for j in 0..ncols { for j in 0..ncols {
lengths[(i, j)] = val_width(self[(i, j)], f); lengths[(i, j)] = val_width(&self[(i, j)], f);
max_length = crate::max(max_length, lengths[(i, j)]); max_length = crate::max(max_length, lengths[(i, j)]);
} }
} }
@ -1454,7 +1454,7 @@ fn lower_exp() {
") ")
} }
impl<N: Scalar + Copy + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// The perpendicular product between two 2D column vectors, i.e. `a.x * b.y - a.y * b.x`. /// The perpendicular product between two 2D column vectors, i.e. `a.x * b.y - a.y * b.x`.
#[inline] #[inline]
pub fn perp<R2, C2, SB>(&self, b: &Matrix<N, R2, C2, SB>) -> N pub fn perp<R2, C2, SB>(&self, b: &Matrix<N, R2, C2, SB>) -> N
@ -1470,8 +1470,8 @@ impl<N: Scalar + Copy + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R,
assert!(self.shape() == (2, 1), "2D perpendicular product "); assert!(self.shape() == (2, 1), "2D perpendicular product ");
unsafe { unsafe {
*self.get_unchecked((0, 0)) * *b.get_unchecked((1, 0)) self.get_unchecked((0, 0)).inlined_clone() * b.get_unchecked((1, 0)).inlined_clone()
- *self.get_unchecked((1, 0)) * *b.get_unchecked((0, 0)) - self.get_unchecked((1, 0)).inlined_clone() * b.get_unchecked((0, 0)).inlined_clone()
} }
} }
@ -1506,17 +1506,17 @@ impl<N: Scalar + Copy + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R,
let ncols = SameShapeC::<C, C2>::from_usize(1); let ncols = SameShapeC::<C, C2>::from_usize(1);
let mut res = Matrix::new_uninitialized_generic(nrows, ncols); let mut res = Matrix::new_uninitialized_generic(nrows, ncols);
let ax = *self.get_unchecked((0, 0)); let ax = self.get_unchecked((0, 0));
let ay = *self.get_unchecked((1, 0)); let ay = self.get_unchecked((1, 0));
let az = *self.get_unchecked((2, 0)); let az = self.get_unchecked((2, 0));
let bx = *b.get_unchecked((0, 0)); let bx = b.get_unchecked((0, 0));
let by = *b.get_unchecked((1, 0)); let by = b.get_unchecked((1, 0));
let bz = *b.get_unchecked((2, 0)); let bz = b.get_unchecked((2, 0));
*res.get_unchecked_mut((0, 0)) = ay * bz - az * by; *res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone() - az.inlined_clone() * by.inlined_clone();
*res.get_unchecked_mut((1, 0)) = az * bx - ax * bz; *res.get_unchecked_mut((1, 0)) = az.inlined_clone() * bx.inlined_clone() - ax.inlined_clone() * bz.inlined_clone();
*res.get_unchecked_mut((2, 0)) = ax * by - ay * bx; *res.get_unchecked_mut((2, 0)) = ax.inlined_clone() * by.inlined_clone() - ay.inlined_clone() * bx.inlined_clone();
res res
} }
@ -1527,17 +1527,17 @@ impl<N: Scalar + Copy + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R,
let ncols = SameShapeC::<C, C2>::from_usize(3); let ncols = SameShapeC::<C, C2>::from_usize(3);
let mut res = Matrix::new_uninitialized_generic(nrows, ncols); let mut res = Matrix::new_uninitialized_generic(nrows, ncols);
let ax = *self.get_unchecked((0, 0)); let ax = self.get_unchecked((0, 0));
let ay = *self.get_unchecked((0, 1)); let ay = self.get_unchecked((0, 1));
let az = *self.get_unchecked((0, 2)); let az = self.get_unchecked((0, 2));
let bx = *b.get_unchecked((0, 0)); let bx = b.get_unchecked((0, 0));
let by = *b.get_unchecked((0, 1)); let by = b.get_unchecked((0, 1));
let bz = *b.get_unchecked((0, 2)); let bz = b.get_unchecked((0, 2));
*res.get_unchecked_mut((0, 0)) = ay * bz - az * by; *res.get_unchecked_mut((0, 0)) = ay.inlined_clone() * bz.inlined_clone() - az.inlined_clone() * by.inlined_clone();
*res.get_unchecked_mut((0, 1)) = az * bx - ax * bz; *res.get_unchecked_mut((0, 1)) = az.inlined_clone() * bx.inlined_clone() - ax.inlined_clone() * bz.inlined_clone();
*res.get_unchecked_mut((0, 2)) = ax * by - ay * bx; *res.get_unchecked_mut((0, 2)) = ax.inlined_clone() * by.inlined_clone() - ay.inlined_clone() * bx.inlined_clone();
res res
} }
@ -1545,7 +1545,7 @@ impl<N: Scalar + Copy + Ring, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R,
} }
} }
impl<N: Scalar + Copy + Field, S: Storage<N, U3>> Vector<N, U3, S> impl<N: Scalar + Field, S: Storage<N, U3>> Vector<N, U3, S>
where DefaultAllocator: Allocator<N, U3> where DefaultAllocator: Allocator<N, U3>
{ {
/// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`. /// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`.
@ -1553,13 +1553,13 @@ where DefaultAllocator: Allocator<N, U3>
pub fn cross_matrix(&self) -> MatrixN<N, U3> { pub fn cross_matrix(&self) -> MatrixN<N, U3> {
MatrixN::<N, U3>::new( MatrixN::<N, U3>::new(
N::zero(), N::zero(),
-self[2], -self[2].inlined_clone(),
self[1], self[1].inlined_clone(),
self[2], self[2].inlined_clone(),
N::zero(), N::zero(),
-self[0], -self[0].inlined_clone(),
-self[1], -self[1].inlined_clone(),
self[0], self[0].inlined_clone(),
N::zero(), N::zero(),
) )
} }
@ -1593,7 +1593,7 @@ impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
} }
impl<N: Scalar + Copy + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<N, D>> impl<N: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<N, D>>
Vector<N, D, S> Vector<N, D, S>
{ {
/// Returns `self * (1.0 - t) + rhs * t`, i.e., the linear blend of the vectors x and y using the scalar value a. /// Returns `self * (1.0 - t) + rhs * t`, i.e., the linear blend of the vectors x and y using the scalar value a.
@ -1611,7 +1611,7 @@ impl<N: Scalar + Copy + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim,
pub fn lerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D> pub fn lerp<S2: Storage<N, D>>(&self, rhs: &Vector<N, D, S2>, t: N) -> VectorN<N, D>
where DefaultAllocator: Allocator<N, D> { where DefaultAllocator: Allocator<N, D> {
let mut res = self.clone_owned(); let mut res = self.clone_owned();
res.axpy(t, rhs, N::one() - t); res.axpy(t.inlined_clone(), rhs, N::one() - t);
res res
} }
} }
@ -1683,7 +1683,7 @@ impl<N: ComplexField, D: Dim, S: Storage<N, D>> Unit<Vector<N, D, S>> {
impl<N, R: Dim, C: Dim, S> AbsDiffEq for Unit<Matrix<N, R, C, S>> impl<N, R: Dim, C: Dim, S> AbsDiffEq for Unit<Matrix<N, R, C, S>>
where where
N: Scalar + Copy + AbsDiffEq, N: Scalar + AbsDiffEq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -1702,7 +1702,7 @@ where
impl<N, R: Dim, C: Dim, S> RelativeEq for Unit<Matrix<N, R, C, S>> impl<N, R: Dim, C: Dim, S> RelativeEq for Unit<Matrix<N, R, C, S>>
where where
N: Scalar + Copy + RelativeEq, N: Scalar + RelativeEq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -1726,7 +1726,7 @@ where
impl<N, R: Dim, C: Dim, S> UlpsEq for Unit<Matrix<N, R, C, S>> impl<N, R: Dim, C: Dim, S> UlpsEq for Unit<Matrix<N, R, C, S>>
where where
N: Scalar + Copy + UlpsEq, N: Scalar + UlpsEq,
S: Storage<N, R, C>, S: Storage<N, R, C>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -1743,7 +1743,7 @@ where
impl<N, R, C, S> Hash for Matrix<N, R, C, S> impl<N, R, C, S> Hash for Matrix<N, R, C, S>
where where
N: Scalar + Copy + Hash, N: Scalar + Hash,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: Storage<N, R, C>, S: Storage<N, R, C>,

View File

@ -25,7 +25,7 @@ use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Scalar};
*/ */
impl<N, R: DimName, C: DimName> Identity<Additive> for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> Identity<Additive> for MatrixMN<N, R, C>
where where
N: Scalar + Copy + Zero, N: Scalar + Zero,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -36,7 +36,7 @@ where
impl<N, R: DimName, C: DimName> AbstractMagma<Additive> for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> AbstractMagma<Additive> for MatrixMN<N, R, C>
where where
N: Scalar + Copy + ClosedAdd, N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -47,7 +47,7 @@ where
impl<N, R: DimName, C: DimName> TwoSidedInverse<Additive> for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> TwoSidedInverse<Additive> for MatrixMN<N, R, C>
where where
N: Scalar + Copy + ClosedNeg, N: Scalar + ClosedNeg,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -64,7 +64,7 @@ where
macro_rules! inherit_additive_structure( macro_rules! inherit_additive_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$( ($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, R: DimName, C: DimName> $marker<$operator> for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> $marker<$operator> for MatrixMN<N, R, C>
where N: Scalar + Copy + $marker<$operator> $(+ $bounds)*, where N: Scalar + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, R, C> { } DefaultAllocator: Allocator<N, R, C> { }
)*} )*}
); );
@ -80,7 +80,7 @@ inherit_additive_structure!(
impl<N, R: DimName, C: DimName> AbstractModule for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> AbstractModule for MatrixMN<N, R, C>
where where
N: Scalar + Copy + RingCommutative, N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
type AbstractRing = N; type AbstractRing = N;
@ -93,7 +93,7 @@ where
impl<N, R: DimName, C: DimName> Module for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> Module for MatrixMN<N, R, C>
where where
N: Scalar + Copy + RingCommutative, N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
type Ring = N; type Ring = N;
@ -101,7 +101,7 @@ where
impl<N, R: DimName, C: DimName> VectorSpace for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> VectorSpace for MatrixMN<N, R, C>
where where
N: Scalar + Copy + Field, N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
type Field = N; type Field = N;
@ -109,7 +109,7 @@ where
impl<N, R: DimName, C: DimName> FiniteDimVectorSpace for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> FiniteDimVectorSpace for MatrixMN<N, R, C>
where where
N: Scalar + Copy + Field, N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -329,7 +329,7 @@ where DefaultAllocator: Allocator<N, R, C>
*/ */
impl<N, D: DimName> Identity<Multiplicative> for MatrixN<N, D> impl<N, D: DimName> Identity<Multiplicative> for MatrixN<N, D>
where where
N: Scalar + Copy + Zero + One, N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
#[inline] #[inline]
@ -340,7 +340,7 @@ where
impl<N, D: DimName> AbstractMagma<Multiplicative> for MatrixN<N, D> impl<N, D: DimName> AbstractMagma<Multiplicative> for MatrixN<N, D>
where where
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
#[inline] #[inline]
@ -352,7 +352,7 @@ where
macro_rules! impl_multiplicative_structure( macro_rules! impl_multiplicative_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$( ($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, D: DimName> $marker<$operator> for MatrixN<N, D> impl<N, D: DimName> $marker<$operator> for MatrixN<N, D>
where N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul + $marker<$operator> $(+ $bounds)*, where N: Scalar + Zero + One + ClosedAdd + ClosedMul + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, D, D> { } DefaultAllocator: Allocator<N, D, D> { }
)*} )*}
); );
@ -369,7 +369,7 @@ impl_multiplicative_structure!(
*/ */
impl<N, R: Dim, C: Dim> MeetSemilattice for MatrixMN<N, R, C> impl<N, R: Dim, C: Dim> MeetSemilattice for MatrixMN<N, R, C>
where where
N: Scalar + Copy + MeetSemilattice, N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -380,7 +380,7 @@ where
impl<N, R: Dim, C: Dim> JoinSemilattice for MatrixMN<N, R, C> impl<N, R: Dim, C: Dim> JoinSemilattice for MatrixMN<N, R, C>
where where
N: Scalar + Copy + JoinSemilattice, N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]
@ -391,7 +391,7 @@ where
impl<N, R: Dim, C: Dim> Lattice for MatrixMN<N, R, C> impl<N, R: Dim, C: Dim> Lattice for MatrixMN<N, R, C>
where where
N: Scalar + Copy + Lattice, N: Scalar + Lattice,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
#[inline] #[inline]

View File

@ -13,22 +13,22 @@ macro_rules! slice_storage_impl(
($doc: expr; $Storage: ident as $SRef: ty; $T: ident.$get_addr: ident ($Ptr: ty as $Ref: ty)) => { ($doc: expr; $Storage: ident as $SRef: ty; $T: ident.$get_addr: ident ($Ptr: ty as $Ref: ty)) => {
#[doc = $doc] #[doc = $doc]
#[derive(Debug)] #[derive(Debug)]
pub struct $T<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> { pub struct $T<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> {
ptr: $Ptr, ptr: $Ptr,
shape: (R, C), shape: (R, C),
strides: (RStride, CStride), strides: (RStride, CStride),
_phantoms: PhantomData<$Ref>, _phantoms: PhantomData<$Ref>,
} }
unsafe impl<'a, N: Scalar + Copy + Send, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Send unsafe impl<'a, N: Scalar + Send, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Send
for $T<'a, N, R, C, RStride, CStride> for $T<'a, N, R, C, RStride, CStride>
{} {}
unsafe impl<'a, N: Scalar + Copy + Sync, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Sync unsafe impl<'a, N: Scalar + Sync, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Sync
for $T<'a, N, R, C, RStride, CStride> for $T<'a, N, R, C, RStride, CStride>
{} {}
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> $T<'a, N, R, C, RStride, CStride> { impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> $T<'a, N, R, C, RStride, CStride> {
/// Create a new matrix slice without bound checking and from a raw pointer. /// Create a new matrix slice without bound checking and from a raw pointer.
#[inline] #[inline]
pub unsafe fn from_raw_parts(ptr: $Ptr, pub unsafe fn from_raw_parts(ptr: $Ptr,
@ -48,7 +48,7 @@ macro_rules! slice_storage_impl(
} }
// Dynamic is arbitrary. It's just to be able to call the constructors with `Slice::` // Dynamic is arbitrary. It's just to be able to call the constructors with `Slice::`
impl<'a, N: Scalar + Copy, R: Dim, C: Dim> $T<'a, N, R, C, Dynamic, Dynamic> { impl<'a, N: Scalar, R: Dim, C: Dim> $T<'a, N, R, C, Dynamic, Dynamic> {
/// Create a new matrix slice without bound checking. /// Create a new matrix slice without bound checking.
#[inline] #[inline]
pub unsafe fn new_unchecked<RStor, CStor, S>(storage: $SRef, start: (usize, usize), shape: (R, C)) pub unsafe fn new_unchecked<RStor, CStor, S>(storage: $SRef, start: (usize, usize), shape: (R, C))
@ -89,12 +89,12 @@ slice_storage_impl!("A mutable matrix data storage for mutable matrix slice. Onl
StorageMut as &'a mut S; SliceStorageMut.get_address_unchecked_mut(*mut N as &'a mut N) StorageMut as &'a mut S; SliceStorageMut.get_address_unchecked_mut(*mut N as &'a mut N)
); );
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Copy impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Copy
for SliceStorage<'a, N, R, C, RStride, CStride> for SliceStorage<'a, N, R, C, RStride, CStride>
{ {
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Clone impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Clone
for SliceStorage<'a, N, R, C, RStride, CStride> for SliceStorage<'a, N, R, C, RStride, CStride>
{ {
#[inline] #[inline]
@ -110,7 +110,7 @@ impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Clone
macro_rules! storage_impl( macro_rules! storage_impl(
($($T: ident),* $(,)*) => {$( ($($T: ident),* $(,)*) => {$(
unsafe impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Storage<N, R, C> unsafe impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> Storage<N, R, C>
for $T<'a, N, R, C, RStride, CStride> { for $T<'a, N, R, C, RStride, CStride> {
type RStride = RStride; type RStride = RStride;
@ -178,7 +178,7 @@ macro_rules! storage_impl(
storage_impl!(SliceStorage, SliceStorageMut); storage_impl!(SliceStorage, SliceStorageMut);
unsafe impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> StorageMut<N, R, C> unsafe impl<'a, N: Scalar, R: Dim, C: Dim, RStride: Dim, CStride: Dim> StorageMut<N, R, C>
for SliceStorageMut<'a, N, R, C, RStride, CStride> for SliceStorageMut<'a, N, R, C, RStride, CStride>
{ {
#[inline] #[inline]
@ -198,15 +198,15 @@ unsafe impl<'a, N: Scalar + Copy, R: Dim, C: Dim, RStride: Dim, CStride: Dim> St
} }
} }
unsafe impl<'a, N: Scalar + Copy, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorage<'a, N, R, U1, U1, CStride> { } unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorage<'a, N, R, U1, U1, CStride> { }
unsafe impl<'a, N: Scalar + Copy, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { } unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorage<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
unsafe impl<'a, N: Scalar + Copy, R: Dim, CStride: Dim> ContiguousStorageMut<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { } unsafe impl<'a, N: Scalar, R: Dim, CStride: Dim> ContiguousStorageMut<N, R, U1> for SliceStorageMut<'a, N, R, U1, U1, CStride> { }
unsafe impl<'a, N: Scalar + Copy, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorage<'a, N, R, C, U1, R> { } unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorage<'a, N, R, C, U1, R> { }
unsafe impl<'a, N: Scalar + Copy, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { } unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorage<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
unsafe impl<'a, N: Scalar + Copy, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorageMut<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { } unsafe impl<'a, N: Scalar, R: DimName, C: Dim + IsNotStaticOne> ContiguousStorageMut<N, R, C> for SliceStorageMut<'a, N, R, C, U1, R> { }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
#[inline] #[inline]
fn assert_slice_index( fn assert_slice_index(
&self, &self,
@ -261,7 +261,7 @@ macro_rules! matrix_slice_impl(
pub type $MatrixSlice<'a, N, R, C, RStride, CStride> pub type $MatrixSlice<'a, N, R, C, RStride, CStride>
= Matrix<N, R, C, $SliceStorage<'a, N, R, C, RStride, CStride>>; = Matrix<N, R, C, $SliceStorage<'a, N, R, C, RStride, CStride>>;
impl<N: Scalar + Copy, R: Dim, C: Dim, S: $Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: $Storage<N, R, C>> Matrix<N, R, C, S> {
/* /*
* *
* Row slicing. * Row slicing.
@ -786,7 +786,7 @@ impl<D: Dim> SliceRange<D> for RangeFull {
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Slices a sub-matrix containing the rows indexed by the range `rows` and the columns indexed /// Slices a sub-matrix containing the rows indexed by the range `rows` and the columns indexed
/// by the range `cols`. /// by the range `cols`.
#[inline] #[inline]
@ -827,7 +827,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Slices a mutable sub-matrix containing the rows indexed by the range `rows` and the columns /// Slices a mutable sub-matrix containing the rows indexed by the range `rows` and the columns
/// indexed by the range `cols`. /// indexed by the range `cols`.
pub fn slice_range_mut<RowRange, ColRange>( pub fn slice_range_mut<RowRange, ColRange>(
@ -871,7 +871,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S
impl<'a, N, R, C, RStride, CStride> From<MatrixSliceMut<'a, N, R, C, RStride, CStride>> impl<'a, N, R, C, RStride, CStride> From<MatrixSliceMut<'a, N, R, C, RStride, CStride>>
for MatrixSlice<'a, N, R, C, RStride, CStride> for MatrixSlice<'a, N, R, C, RStride, CStride>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
C: Dim, C: Dim,
RStride: Dim, RStride: Dim,

View File

@ -20,7 +20,7 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, MatrixSum, Scalar
* Indexing. * Indexing.
* *
*/ */
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Index<usize> for Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Index<usize> for Matrix<N, R, C, S> {
type Output = N; type Output = N;
#[inline] #[inline]
@ -32,7 +32,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Index<usize> for Mat
impl<N, R: Dim, C: Dim, S> Index<(usize, usize)> for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> Index<(usize, usize)> for Matrix<N, R, C, S>
where where
N: Scalar + Copy, N: Scalar,
S: Storage<N, R, C>, S: Storage<N, R, C>,
{ {
type Output = N; type Output = N;
@ -50,7 +50,7 @@ where
} }
// Mutable versions. // Mutable versions.
impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> IndexMut<usize> for Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> IndexMut<usize> for Matrix<N, R, C, S> {
#[inline] #[inline]
fn index_mut(&mut self, i: usize) -> &mut N { fn index_mut(&mut self, i: usize) -> &mut N {
let ij = self.vector_to_matrix_index(i); let ij = self.vector_to_matrix_index(i);
@ -60,7 +60,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: StorageMut<N, R, C>> IndexMut<usize> f
impl<N, R: Dim, C: Dim, S> IndexMut<(usize, usize)> for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> IndexMut<(usize, usize)> for Matrix<N, R, C, S>
where where
N: Scalar + Copy, N: Scalar,
S: StorageMut<N, R, C>, S: StorageMut<N, R, C>,
{ {
#[inline] #[inline]
@ -82,7 +82,7 @@ where
*/ */
impl<N, R: Dim, C: Dim, S> Neg for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> Neg for Matrix<N, R, C, S>
where where
N: Scalar + Copy + ClosedNeg, N: Scalar + ClosedNeg,
S: Storage<N, R, C>, S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
@ -98,7 +98,7 @@ where
impl<'a, N, R: Dim, C: Dim, S> Neg for &'a Matrix<N, R, C, S> impl<'a, N, R: Dim, C: Dim, S> Neg for &'a Matrix<N, R, C, S>
where where
N: Scalar + Copy + ClosedNeg, N: Scalar + ClosedNeg,
S: Storage<N, R, C>, S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
@ -112,14 +112,14 @@ where
impl<N, R: Dim, C: Dim, S> Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> Matrix<N, R, C, S>
where where
N: Scalar + Copy + ClosedNeg, N: Scalar + ClosedNeg,
S: StorageMut<N, R, C>, S: StorageMut<N, R, C>,
{ {
/// Negates `self` in-place. /// Negates `self` in-place.
#[inline] #[inline]
pub fn neg_mut(&mut self) { pub fn neg_mut(&mut self) {
for e in self.iter_mut() { for e in self.iter_mut() {
*e = -*e *e = -e.inlined_clone()
} }
} }
} }
@ -137,7 +137,7 @@ macro_rules! componentwise_binop_impl(
$method_to: ident, $method_to_statically_unchecked: ident) => { $method_to: ident, $method_to_statically_unchecked: ident) => {
impl<N, R1: Dim, C1: Dim, SA: Storage<N, R1, C1>> Matrix<N, R1, C1, SA> impl<N, R1: Dim, C1: Dim, SA: Storage<N, R1, C1>> Matrix<N, R1, C1, SA>
where N: Scalar + Copy + $bound { where N: Scalar + $bound {
/* /*
* *
@ -164,7 +164,7 @@ macro_rules! componentwise_binop_impl(
let out = out.data.as_mut_slice(); let out = out.data.as_mut_slice();
for i in 0 .. arr1.len() { for i in 0 .. arr1.len() {
unsafe { unsafe {
*out.get_unchecked_mut(i) = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i)); *out.get_unchecked_mut(i) = arr1.get_unchecked(i).inlined_clone().$method(arr2.get_unchecked(i).inlined_clone());
} }
} }
} }
@ -172,7 +172,7 @@ macro_rules! componentwise_binop_impl(
for j in 0 .. self.ncols() { for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() { for i in 0 .. self.nrows() {
unsafe { unsafe {
let val = self.get_unchecked((i, j)).$method(*rhs.get_unchecked((i, j))); let val = self.get_unchecked((i, j)).inlined_clone().$method(rhs.get_unchecked((i, j)).inlined_clone());
*out.get_unchecked_mut((i, j)) = val; *out.get_unchecked_mut((i, j)) = val;
} }
} }
@ -196,7 +196,7 @@ macro_rules! componentwise_binop_impl(
let arr2 = rhs.data.as_slice(); let arr2 = rhs.data.as_slice();
for i in 0 .. arr2.len() { for i in 0 .. arr2.len() {
unsafe { unsafe {
arr1.get_unchecked_mut(i).$method_assign(*arr2.get_unchecked(i)); arr1.get_unchecked_mut(i).$method_assign(arr2.get_unchecked(i).inlined_clone());
} }
} }
} }
@ -204,7 +204,7 @@ macro_rules! componentwise_binop_impl(
for j in 0 .. rhs.ncols() { for j in 0 .. rhs.ncols() {
for i in 0 .. rhs.nrows() { for i in 0 .. rhs.nrows() {
unsafe { unsafe {
self.get_unchecked_mut((i, j)).$method_assign(*rhs.get_unchecked((i, j))) self.get_unchecked_mut((i, j)).$method_assign(rhs.get_unchecked((i, j)).inlined_clone())
} }
} }
} }
@ -226,7 +226,7 @@ macro_rules! componentwise_binop_impl(
let arr2 = rhs.data.as_mut_slice(); let arr2 = rhs.data.as_mut_slice();
for i in 0 .. arr1.len() { for i in 0 .. arr1.len() {
unsafe { unsafe {
let res = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i)); let res = arr1.get_unchecked(i).inlined_clone().$method(arr2.get_unchecked(i).inlined_clone());
*arr2.get_unchecked_mut(i) = res; *arr2.get_unchecked_mut(i) = res;
} }
} }
@ -236,7 +236,7 @@ macro_rules! componentwise_binop_impl(
for i in 0 .. self.nrows() { for i in 0 .. self.nrows() {
unsafe { unsafe {
let r = rhs.get_unchecked_mut((i, j)); let r = rhs.get_unchecked_mut((i, j));
*r = self.get_unchecked((i, j)).$method(*r) *r = self.get_unchecked((i, j)).inlined_clone().$method(r.inlined_clone())
} }
} }
} }
@ -267,7 +267,7 @@ macro_rules! componentwise_binop_impl(
impl<'b, N, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA> impl<'b, N, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim, where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + Copy + $bound, N: Scalar + $bound,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>, DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>,
@ -285,7 +285,7 @@ macro_rules! componentwise_binop_impl(
impl<'a, N, R1, C1, R2, C2, SA, SB> $Trait<Matrix<N, R2, C2, SB>> for &'a Matrix<N, R1, C1, SA> impl<'a, N, R1, C1, R2, C2, SA, SB> $Trait<Matrix<N, R2, C2, SB>> for &'a Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim, where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + Copy + $bound, N: Scalar + $bound,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R2, C2, R1, C1>, DefaultAllocator: SameShapeAllocator<N, R2, C2, R1, C1>,
@ -303,7 +303,7 @@ macro_rules! componentwise_binop_impl(
impl<N, R1, C1, R2, C2, SA, SB> $Trait<Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA> impl<N, R1, C1, R2, C2, SA, SB> $Trait<Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim, where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + Copy + $bound, N: Scalar + $bound,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>, DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>,
@ -318,7 +318,7 @@ macro_rules! componentwise_binop_impl(
impl<'a, 'b, N, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<N, R2, C2, SB>> for &'a Matrix<N, R1, C1, SA> impl<'a, 'b, N, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<N, R2, C2, SB>> for &'a Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim, where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + Copy + $bound, N: Scalar + $bound,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>, DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>,
@ -341,7 +341,7 @@ macro_rules! componentwise_binop_impl(
impl<'b, N, R1, C1, R2, C2, SA, SB> $TraitAssign<&'b Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA> impl<'b, N, R1, C1, R2, C2, SA, SB> $TraitAssign<&'b Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim, where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + Copy + $bound, N: Scalar + $bound,
SA: StorageMut<N, R1, C1>, SA: StorageMut<N, R1, C1>,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> { ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
@ -354,7 +354,7 @@ macro_rules! componentwise_binop_impl(
impl<N, R1, C1, R2, C2, SA, SB> $TraitAssign<Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA> impl<N, R1, C1, R2, C2, SA, SB> $TraitAssign<Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim, where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + Copy + $bound, N: Scalar + $bound,
SA: StorageMut<N, R1, C1>, SA: StorageMut<N, R1, C1>,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> { ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
@ -376,7 +376,7 @@ componentwise_binop_impl!(Sub, sub, ClosedSub;
impl<N, R: DimName, C: DimName> iter::Sum for MatrixMN<N, R, C> impl<N, R: DimName, C: DimName> iter::Sum for MatrixMN<N, R, C>
where where
N: Scalar + Copy + ClosedAdd + Zero, N: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
fn sum<I: Iterator<Item = MatrixMN<N, R, C>>>(iter: I) -> MatrixMN<N, R, C> { fn sum<I: Iterator<Item = MatrixMN<N, R, C>>>(iter: I) -> MatrixMN<N, R, C> {
@ -386,7 +386,7 @@ where
impl<N, C: Dim> iter::Sum for MatrixMN<N, Dynamic, C> impl<N, C: Dim> iter::Sum for MatrixMN<N, Dynamic, C>
where where
N: Scalar + Copy + ClosedAdd + Zero, N: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<N, Dynamic, C>, DefaultAllocator: Allocator<N, Dynamic, C>,
{ {
/// # Example /// # Example
@ -416,7 +416,7 @@ where
impl<'a, N, R: DimName, C: DimName> iter::Sum<&'a MatrixMN<N, R, C>> for MatrixMN<N, R, C> impl<'a, N, R: DimName, C: DimName> iter::Sum<&'a MatrixMN<N, R, C>> for MatrixMN<N, R, C>
where where
N: Scalar + Copy + ClosedAdd + Zero, N: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
{ {
fn sum<I: Iterator<Item = &'a MatrixMN<N, R, C>>>(iter: I) -> MatrixMN<N, R, C> { fn sum<I: Iterator<Item = &'a MatrixMN<N, R, C>>>(iter: I) -> MatrixMN<N, R, C> {
@ -426,7 +426,7 @@ where
impl<'a, N, C: Dim> iter::Sum<&'a MatrixMN<N, Dynamic, C>> for MatrixMN<N, Dynamic, C> impl<'a, N, C: Dim> iter::Sum<&'a MatrixMN<N, Dynamic, C>> for MatrixMN<N, Dynamic, C>
where where
N: Scalar + Copy + ClosedAdd + Zero, N: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<N, Dynamic, C>, DefaultAllocator: Allocator<N, Dynamic, C>,
{ {
/// # Example /// # Example
@ -466,7 +466,7 @@ macro_rules! componentwise_scalarop_impl(
($Trait: ident, $method: ident, $bound: ident; ($Trait: ident, $method: ident, $bound: ident;
$TraitAssign: ident, $method_assign: ident) => { $TraitAssign: ident, $method_assign: ident) => {
impl<N, R: Dim, C: Dim, S> $Trait<N> for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> $Trait<N> for Matrix<N, R, C, S>
where N: Scalar + Copy + $bound, where N: Scalar + $bound,
S: Storage<N, R, C>, S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> { DefaultAllocator: Allocator<N, R, C> {
type Output = MatrixMN<N, R, C>; type Output = MatrixMN<N, R, C>;
@ -482,7 +482,7 @@ macro_rules! componentwise_scalarop_impl(
// for left in res.iter_mut() { // for left in res.iter_mut() {
for left in res.as_mut_slice().iter_mut() { for left in res.as_mut_slice().iter_mut() {
*left = left.$method(rhs) *left = left.inlined_clone().$method(rhs.inlined_clone())
} }
res res
@ -490,7 +490,7 @@ macro_rules! componentwise_scalarop_impl(
} }
impl<'a, N, R: Dim, C: Dim, S> $Trait<N> for &'a Matrix<N, R, C, S> impl<'a, N, R: Dim, C: Dim, S> $Trait<N> for &'a Matrix<N, R, C, S>
where N: Scalar + Copy + $bound, where N: Scalar + $bound,
S: Storage<N, R, C>, S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> { DefaultAllocator: Allocator<N, R, C> {
type Output = MatrixMN<N, R, C>; type Output = MatrixMN<N, R, C>;
@ -502,13 +502,13 @@ macro_rules! componentwise_scalarop_impl(
} }
impl<N, R: Dim, C: Dim, S> $TraitAssign<N> for Matrix<N, R, C, S> impl<N, R: Dim, C: Dim, S> $TraitAssign<N> for Matrix<N, R, C, S>
where N: Scalar + Copy + $bound, where N: Scalar + $bound,
S: StorageMut<N, R, C> { S: StorageMut<N, R, C> {
#[inline] #[inline]
fn $method_assign(&mut self, rhs: N) { fn $method_assign(&mut self, rhs: N) {
for j in 0 .. self.ncols() { for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() { for i in 0 .. self.nrows() {
unsafe { self.get_unchecked_mut((i, j)).$method_assign(rhs) }; unsafe { self.get_unchecked_mut((i, j)).$method_assign(rhs.inlined_clone()) };
} }
} }
} }
@ -561,7 +561,7 @@ left_scalar_mul_impl!(u8, u16, u32, u64, usize, i8, i16, i32, i64, isize, f32, f
impl<'a, 'b, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>> impl<'a, 'b, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>>
for &'a Matrix<N, R1, C1, SA> for &'a Matrix<N, R1, C1, SA>
where where
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R1, C2>, DefaultAllocator: Allocator<N, R1, C2>,
@ -582,7 +582,7 @@ where
impl<'a, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>> impl<'a, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>>
for &'a Matrix<N, R1, C1, SA> for &'a Matrix<N, R1, C1, SA>
where where
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
DefaultAllocator: Allocator<N, R1, C2>, DefaultAllocator: Allocator<N, R1, C2>,
@ -599,7 +599,7 @@ where
impl<'b, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>> impl<'b, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>>
for Matrix<N, R1, C1, SA> for Matrix<N, R1, C1, SA>
where where
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
DefaultAllocator: Allocator<N, R1, C2>, DefaultAllocator: Allocator<N, R1, C2>,
@ -616,7 +616,7 @@ where
impl<N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>> impl<N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>>
for Matrix<N, R1, C1, SA> for Matrix<N, R1, C1, SA>
where where
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C2>, SB: Storage<N, R2, C2>,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
DefaultAllocator: Allocator<N, R1, C2>, DefaultAllocator: Allocator<N, R1, C2>,
@ -638,7 +638,7 @@ where
R1: Dim, R1: Dim,
C1: Dim, C1: Dim,
R2: Dim, R2: Dim,
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C1>, SB: Storage<N, R2, C1>,
SA: ContiguousStorageMut<N, R1, C1> + Clone, SA: ContiguousStorageMut<N, R1, C1> + Clone,
ShapeConstraint: AreMultipliable<R1, C1, R2, C1>, ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
@ -655,7 +655,7 @@ where
R1: Dim, R1: Dim,
C1: Dim, C1: Dim,
R2: Dim, R2: Dim,
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C1>, SB: Storage<N, R2, C1>,
SA: ContiguousStorageMut<N, R1, C1> + Clone, SA: ContiguousStorageMut<N, R1, C1> + Clone,
ShapeConstraint: AreMultipliable<R1, C1, R2, C1>, ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
@ -671,7 +671,7 @@ where
// Transpose-multiplication. // Transpose-multiplication.
impl<N, R1: Dim, C1: Dim, SA> Matrix<N, R1, C1, SA> impl<N, R1: Dim, C1: Dim, SA> Matrix<N, R1, C1, SA>
where where
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SA: Storage<N, R1, C1>, SA: Storage<N, R1, C1>,
{ {
/// Equivalent to `self.transpose() * rhs`. /// Equivalent to `self.transpose() * rhs`.
@ -810,10 +810,10 @@ where
for j2 in 0..ncols2.value() { for j2 in 0..ncols2.value() {
for i1 in 0..nrows1.value() { for i1 in 0..nrows1.value() {
unsafe { unsafe {
let coeff = *self.get_unchecked((i1, j1)); let coeff = self.get_unchecked((i1, j1)).inlined_clone();
for i2 in 0..nrows2.value() { for i2 in 0..nrows2.value() {
*data_res = coeff * *rhs.get_unchecked((i2, j2)); *data_res = coeff.inlined_clone() * rhs.get_unchecked((i2, j2)).inlined_clone();
data_res = data_res.offset(1); data_res = data_res.offset(1);
} }
} }
@ -826,7 +826,7 @@ where
} }
} }
impl<N: Scalar + Copy + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Adds a scalar to `self`. /// Adds a scalar to `self`.
#[inline] #[inline]
pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C> pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C>
@ -841,14 +841,14 @@ impl<N: Scalar + Copy + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N
pub fn add_scalar_mut(&mut self, rhs: N) pub fn add_scalar_mut(&mut self, rhs: N)
where S: StorageMut<N, R, C> { where S: StorageMut<N, R, C> {
for e in self.iter_mut() { for e in self.iter_mut() {
*e += rhs *e += rhs.inlined_clone()
} }
} }
} }
impl<N, D: DimName> iter::Product for MatrixN<N, D> impl<N, D: DimName> iter::Product for MatrixN<N, D>
where where
N: Scalar + Copy + Zero + One + ClosedMul + ClosedAdd, N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
fn product<I: Iterator<Item = MatrixN<N, D>>>(iter: I) -> MatrixN<N, D> { fn product<I: Iterator<Item = MatrixN<N, D>>>(iter: I) -> MatrixN<N, D> {
@ -858,7 +858,7 @@ where
impl<'a, N, D: DimName> iter::Product<&'a MatrixN<N, D>> for MatrixN<N, D> impl<'a, N, D: DimName> iter::Product<&'a MatrixN<N, D>> for MatrixN<N, D>
where where
N: Scalar + Copy + Zero + One + ClosedMul + ClosedAdd, N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
fn product<I: Iterator<Item = &'a MatrixN<N, D>>>(iter: I) -> MatrixN<N, D> { fn product<I: Iterator<Item = &'a MatrixN<N, D>>>(iter: I) -> MatrixN<N, D> {
@ -866,7 +866,7 @@ where
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
#[inline(always)] #[inline(always)]
fn xcmp<N2>(&self, abs: impl Fn(N) -> N2, ordering: Ordering) -> N2 fn xcmp<N2>(&self, abs: impl Fn(N) -> N2, ordering: Ordering) -> N2
where N2: Scalar + PartialOrd + Zero { where N2: Scalar + PartialOrd + Zero {
@ -874,7 +874,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
let mut max = iter.next().cloned().map_or(N2::zero(), &abs); let mut max = iter.next().cloned().map_or(N2::zero(), &abs);
for e in iter { for e in iter {
let ae = abs(*e); let ae = abs(e.inlined_clone());
if ae.partial_cmp(&max) == Some(ordering) { if ae.partial_cmp(&max) == Some(ordering) {
max = ae; max = ae;

View File

@ -9,7 +9,7 @@ use crate::base::dimension::{Dim, DimMin};
use crate::base::storage::Storage; use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix}; use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix};
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Indicates if this is an empty matrix. /// Indicates if this is an empty matrix.
#[inline] #[inline]
pub fn is_empty(&self) -> bool { pub fn is_empty(&self) -> bool {

View File

@ -5,7 +5,7 @@ use std::fmt::Debug;
/// The basic scalar type for all structures of `nalgebra`. /// The basic scalar type for all structures of `nalgebra`.
/// ///
/// This does not make any assumption on the algebraic properties of `Self`. /// This does not make any assumption on the algebraic properties of `Self`.
pub trait Scalar: PartialEq + Debug + Any { pub trait Scalar: Clone + PartialEq + Debug + Any {
#[inline] #[inline]
/// Tests if `Self` the same as the type `T` /// Tests if `Self` the same as the type `T`
/// ///
@ -13,5 +13,17 @@ pub trait Scalar: PartialEq + Debug + Any {
fn is<T: Scalar>() -> bool { fn is<T: Scalar>() -> bool {
TypeId::of::<Self>() == TypeId::of::<T>() TypeId::of::<Self>() == TypeId::of::<T>()
} }
#[inline(always)]
/// Performance hack: Clone doesn't get inlined for Copy types in debug mode, so make it inline anyway.
fn inlined_clone(&self) -> Self {
self.clone()
}
}
impl<T: Copy + PartialEq + Debug + Any> Scalar for T {
#[inline(always)]
fn inlined_clone(&self) -> T {
*self
}
} }
impl<T: Copy + PartialEq + Debug + Any> Scalar for T {}

View File

@ -3,7 +3,7 @@ use alga::general::{Field, SupersetOf};
use crate::storage::Storage; use crate::storage::Storage;
use crate::allocator::Allocator; use crate::allocator::Allocator;
impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns a row vector where each element is the result of the application of `f` on the /// Returns a row vector where each element is the result of the application of `f` on the
/// corresponding column of the original matrix. /// corresponding column of the original matrix.
#[inline] #[inline]
@ -54,7 +54,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
} }
} }
impl<N: Scalar + Copy + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> { impl<N: Scalar + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/* /*
* *
* Sum computation. * Sum computation.
@ -154,9 +154,10 @@ impl<N: Scalar + Copy + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R
if self.len() == 0 { if self.len() == 0 {
N::zero() N::zero()
} else { } else {
let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| (a.0 + b * b, a.1 + b)); let val = self.iter().cloned().fold((N::zero(), N::zero()), |a, b| (a.0 + b.inlined_clone() * b.inlined_clone(), a.1 + b));
let denom = N::one() / crate::convert::<_, N>(self.len() as f64); let denom = N::one() / crate::convert::<_, N>(self.len() as f64);
val.0 * denom - (val.1 * denom) * (val.1 * denom) let vd = val.1 * denom.inlined_clone();
val.0 * denom - vd.inlined_clone() * vd
} }
} }
@ -213,14 +214,14 @@ impl<N: Scalar + Copy + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R
let (nrows, ncols) = self.data.shape(); let (nrows, ncols) = self.data.shape();
let mut mean = self.column_mean(); let mut mean = self.column_mean();
mean.apply(|e| -(e * e)); mean.apply(|e| -(e.inlined_clone() * e));
let denom = N::one() / crate::convert::<_, N>(ncols.value() as f64); let denom = N::one() / crate::convert::<_, N>(ncols.value() as f64);
self.compress_columns(mean, |out, col| { self.compress_columns(mean, |out, col| {
for i in 0..nrows.value() { for i in 0..nrows.value() {
unsafe { unsafe {
let val = col.vget_unchecked(i); let val = col.vget_unchecked(i);
*out.vget_unchecked_mut(i) += denom * *val * *val *out.vget_unchecked_mut(i) += denom.inlined_clone() * val.inlined_clone() * val.inlined_clone()
} }
} }
}) })
@ -304,7 +305,7 @@ impl<N: Scalar + Copy + Field + SupersetOf<f64>, R: Dim, C: Dim, S: Storage<N, R
let (nrows, ncols) = self.data.shape(); let (nrows, ncols) = self.data.shape();
let denom = N::one() / crate::convert::<_, N>(ncols.value() as f64); let denom = N::one() / crate::convert::<_, N>(ncols.value() as f64);
self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| { self.compress_columns(VectorN::zeros_generic(nrows, U1), |out, col| {
out.axpy(denom, &col, N::one()) out.axpy(denom.inlined_clone(), &col, N::one())
}) })
} }
} }

View File

@ -36,7 +36,7 @@ pub type CStride<N, R, C = U1> =
/// should **not** allow the user to modify the size of the underlying buffer with safe methods /// should **not** allow the user to modify the size of the underlying buffer with safe methods
/// (for example the `VecStorage::data_mut` method is unsafe because the user could change the /// (for example the `VecStorage::data_mut` method is unsafe because the user could change the
/// vector's size so that it no longer contains enough elements: this will lead to UB. /// vector's size so that it no longer contains enough elements: this will lead to UB.
pub unsafe trait Storage<N: Scalar + Copy, R: Dim, C: Dim = U1>: Debug + Sized { pub unsafe trait Storage<N: Scalar, R: Dim, C: Dim = U1>: Debug + Sized {
/// The static stride of this storage's rows. /// The static stride of this storage's rows.
type RStride: Dim; type RStride: Dim;
@ -117,7 +117,7 @@ pub unsafe trait Storage<N: Scalar + Copy, R: Dim, C: Dim = U1>: Debug + Sized {
/// Note that a mutable access does not mean that the matrix owns its data. For example, a mutable /// Note that a mutable access does not mean that the matrix owns its data. For example, a mutable
/// matrix slice can provide mutable access to its elements even if it does not own its data (it /// matrix slice can provide mutable access to its elements even if it does not own its data (it
/// contains only an internal reference to them). /// contains only an internal reference to them).
pub unsafe trait StorageMut<N: Scalar + Copy, R: Dim, C: Dim = U1>: Storage<N, R, C> { pub unsafe trait StorageMut<N: Scalar, R: Dim, C: Dim = U1>: Storage<N, R, C> {
/// The matrix mutable data pointer. /// The matrix mutable data pointer.
fn ptr_mut(&mut self) -> *mut N; fn ptr_mut(&mut self) -> *mut N;
@ -175,7 +175,7 @@ pub unsafe trait StorageMut<N: Scalar + Copy, R: Dim, C: Dim = U1>: Storage<N, R
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols[`, the value /// The storage requirement means that for any value of `i` in `[0, nrows * ncols[`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because /// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors. /// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorage<N: Scalar + Copy, R: Dim, C: Dim = U1>: pub unsafe trait ContiguousStorage<N: Scalar, R: Dim, C: Dim = U1>:
Storage<N, R, C> Storage<N, R, C>
{ {
} }
@ -185,7 +185,7 @@ pub unsafe trait ContiguousStorage<N: Scalar + Copy, R: Dim, C: Dim = U1>:
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols[`, the value /// The storage requirement means that for any value of `i` in `[0, nrows * ncols[`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because /// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors. /// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorageMut<N: Scalar + Copy, R: Dim, C: Dim = U1>: pub unsafe trait ContiguousStorageMut<N: Scalar, R: Dim, C: Dim = U1>:
ContiguousStorage<N, R, C> + StorageMut<N, R, C> ContiguousStorage<N, R, C> + StorageMut<N, R, C>
{ {
} }

View File

@ -5,14 +5,14 @@ use typenum::{self, Cmp, Greater};
macro_rules! impl_swizzle { macro_rules! impl_swizzle {
($( where $BaseDim: ident: $( $name: ident() -> $Result: ident[$($i: expr),+] ),+ ;)* ) => { ($( where $BaseDim: ident: $( $name: ident() -> $Result: ident[$($i: expr),+] ),+ ;)* ) => {
$( $(
impl<N: Scalar + Copy, D: DimName, S: Storage<N, D>> Vector<N, D, S> impl<N: Scalar, D: DimName, S: Storage<N, D>> Vector<N, D, S>
where D::Value: Cmp<typenum::$BaseDim, Output=Greater> where D::Value: Cmp<typenum::$BaseDim, Output=Greater>
{ {
$( $(
/// Builds a new vector from components of `self`. /// Builds a new vector from components of `self`.
#[inline] #[inline]
pub fn $name(&self) -> $Result<N> { pub fn $name(&self) -> $Result<N> {
$Result::new($(self[$i]),*) $Result::new($(self[$i].inlined_clone()),*)
} }
)* )*
} }

View File

@ -102,7 +102,7 @@ impl<N, R: Dim, C: Dim> Into<Vec<N>> for VecStorage<N, R, C>
* Dynamic Dynamic * Dynamic Dynamic
* *
*/ */
unsafe impl<N: Scalar + Copy, C: Dim> Storage<N, Dynamic, C> for VecStorage<N, Dynamic, C> unsafe impl<N: Scalar, C: Dim> Storage<N, Dynamic, C> for VecStorage<N, Dynamic, C>
where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
{ {
type RStride = U1; type RStride = U1;
@ -146,7 +146,7 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
} }
} }
unsafe impl<N: Scalar + Copy, R: DimName> Storage<N, R, Dynamic> for VecStorage<N, R, Dynamic> unsafe impl<N: Scalar, R: DimName> Storage<N, R, Dynamic> for VecStorage<N, R, Dynamic>
where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
{ {
type RStride = U1; type RStride = U1;
@ -195,7 +195,7 @@ where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
* StorageMut, ContiguousStorage. * StorageMut, ContiguousStorage.
* *
*/ */
unsafe impl<N: Scalar + Copy, C: Dim> StorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C> unsafe impl<N: Scalar, C: Dim> StorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C>
where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
{ {
#[inline] #[inline]
@ -209,13 +209,13 @@ where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
} }
} }
unsafe impl<N: Scalar + Copy, C: Dim> ContiguousStorage<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self> unsafe impl<N: Scalar, C: Dim> ContiguousStorage<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
{} {}
unsafe impl<N: Scalar + Copy, C: Dim> ContiguousStorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self> unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for VecStorage<N, Dynamic, C> where DefaultAllocator: Allocator<N, Dynamic, C, Buffer = Self>
{} {}
unsafe impl<N: Scalar + Copy, R: DimName> StorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic> unsafe impl<N: Scalar, R: DimName> StorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic>
where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
{ {
#[inline] #[inline]
@ -244,10 +244,10 @@ impl<N: Abomonation, R: Dim, C: Dim> Abomonation for VecStorage<N, R, C> {
} }
} }
unsafe impl<N: Scalar + Copy, R: DimName> ContiguousStorage<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self> unsafe impl<N: Scalar, R: DimName> ContiguousStorage<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
{} {}
unsafe impl<N: Scalar + Copy, R: DimName> ContiguousStorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self> unsafe impl<N: Scalar, R: DimName> ContiguousStorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic> where DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>
{} {}
impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic> impl<N, R: Dim> Extend<N> for VecStorage<N, R, Dynamic>
@ -285,7 +285,7 @@ impl<'a, N: 'a + Copy, R: Dim> Extend<&'a N> for VecStorage<N, R, Dynamic>
impl<N, R, RV, SV> Extend<Vector<N, RV, SV>> for VecStorage<N, R, Dynamic> impl<N, R, RV, SV> Extend<Vector<N, RV, SV>> for VecStorage<N, R, Dynamic>
where where
N: Scalar + Copy, N: Scalar,
R: Dim, R: Dim,
RV: Dim, RV: Dim,
SV: Storage<N, RV>, SV: Storage<N, RV>,
@ -306,7 +306,7 @@ where
self.data.reserve(nrows * lower); self.data.reserve(nrows * lower);
for vector in iter { for vector in iter {
assert_eq!(nrows, vector.shape().0); assert_eq!(nrows, vector.shape().0);
self.data.extend(vector.iter()); self.data.extend(vector.iter().cloned());
} }
self.ncols = Dynamic::new(self.data.len() / nrows); self.ncols = Dynamic::new(self.data.len() / nrows);
} }

View File

@ -12,7 +12,7 @@ use crate::linalg::givens::GivensRotation;
/// A random orthogonal matrix. /// A random orthogonal matrix.
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct RandomOrthogonal<N: Scalar + Copy, D: Dim = Dynamic> pub struct RandomOrthogonal<N: Scalar, D: Dim = Dynamic>
where DefaultAllocator: Allocator<N, D, D> where DefaultAllocator: Allocator<N, D, D>
{ {
m: MatrixN<N, D>, m: MatrixN<N, D>,

View File

@ -13,7 +13,7 @@ use crate::debug::RandomOrthogonal;
/// A random, well-conditioned, symmetric definite-positive matrix. /// A random, well-conditioned, symmetric definite-positive matrix.
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub struct RandomSDP<N: Scalar + Copy, D: Dim = Dynamic> pub struct RandomSDP<N: Scalar, D: Dim = Dynamic>
where DefaultAllocator: Allocator<N, D, D> where DefaultAllocator: Allocator<N, D, D>
{ {
m: MatrixN<N, D>, m: MatrixN<N, D>,

View File

@ -18,7 +18,7 @@ macro_rules! md_impl(
// Lifetime. // Lifetime.
$($lives: tt),*) => { $($lives: tt),*) => {
impl<$($lives ,)* N $(, $Dims: $DimsBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs impl<$($lives ,)* N $(, $Dims: $DimsBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
where N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul $($(+ $ScalarBounds)*)*, where N: Scalar + Zero + One + ClosedAdd + ClosedMul $($(+ $ScalarBounds)*)*,
DefaultAllocator: Allocator<N, $R1, $C1> + DefaultAllocator: Allocator<N, $R1, $C1> +
Allocator<N, $R2, $C2> + Allocator<N, $R2, $C2> +
Allocator<N, $R1, $C2>, Allocator<N, $R1, $C2>,
@ -96,7 +96,7 @@ macro_rules! md_assign_impl(
// Actual implementation and lifetimes. // Actual implementation and lifetimes.
$action: expr; $($lives: tt),*) => { $action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N $(, $Dims: $DimsBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs impl<$($lives ,)* N $(, $Dims: $DimsBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
where N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul $($(+ $ScalarBounds)*)*, where N: Scalar + Zero + One + ClosedAdd + ClosedMul $($(+ $ScalarBounds)*)*,
DefaultAllocator: Allocator<N, $R1, $C1> + DefaultAllocator: Allocator<N, $R1, $C1> +
Allocator<N, $R2, $C2>, Allocator<N, $R2, $C2>,
$( $ConstraintType: $ConstraintBound $(<$( $ConstraintBoundParams $( = $EqBound )*),*>)* ),* $( $ConstraintType: $ConstraintBound $(<$( $ConstraintBoundParams $( = $EqBound )*),*>)* ),*
@ -148,7 +148,7 @@ macro_rules! add_sub_impl(
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Result: ty;
$action: expr; $($lives: tt),*) => { $action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N $(, $Dims: $DimsBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs impl<$($lives ,)* N $(, $Dims: $DimsBound $(<$($BoundParam),*>)*)*> $Op<$Rhs> for $Lhs
where N: Scalar + Copy + $bound, where N: Scalar + $bound,
DefaultAllocator: Allocator<N, $R1, $C1> + DefaultAllocator: Allocator<N, $R1, $C1> +
Allocator<N, $R2, $C2> + Allocator<N, $R2, $C2> +
SameShapeAllocator<N, $R1, $C1, $R2, $C2>, SameShapeAllocator<N, $R1, $C1, $R2, $C2>,
@ -172,7 +172,7 @@ macro_rules! add_sub_assign_impl(
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty; $lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty;
$action: expr; $($lives: tt),*) => { $action: expr; $($lives: tt),*) => {
impl<$($lives ,)* N $(, $Dims: $DimsBound)*> $Op<$Rhs> for $Lhs impl<$($lives ,)* N $(, $Dims: $DimsBound)*> $Op<$Rhs> for $Lhs
where N: Scalar + Copy + $bound, where N: Scalar + $bound,
DefaultAllocator: Allocator<N, $R1, $C1> + DefaultAllocator: Allocator<N, $R1, $C1> +
Allocator<N, $R2, $C2>, Allocator<N, $R2, $C2>,
ShapeConstraint: SameNumberOfRows<$R1, $R2> + SameNumberOfColumns<$C1, $C2> { ShapeConstraint: SameNumberOfRows<$R1, $R2> + SameNumberOfColumns<$C1, $C2> {

View File

@ -18,7 +18,7 @@ use crate::base::{Matrix4, Scalar, Vector, Vector3};
use crate::geometry::{Point3, Projective3}; use crate::geometry::{Point3, Projective3};
/// A 3D perspective projection stored as an homogeneous 4x4 matrix. /// A 3D perspective projection stored as an homogeneous 4x4 matrix.
pub struct Perspective3<N: Scalar + Copy> { pub struct Perspective3<N: Scalar> {
matrix: Matrix4<N>, matrix: Matrix4<N>,
} }

View File

@ -20,14 +20,14 @@ use crate::base::{DefaultAllocator, Scalar, VectorN};
/// A point in a n-dimensional euclidean space. /// A point in a n-dimensional euclidean space.
#[repr(C)] #[repr(C)]
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct Point<N: Scalar + Copy, D: DimName> pub struct Point<N: Scalar, D: DimName>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// The coordinates of this point, i.e., the shift from the origin. /// The coordinates of this point, i.e., the shift from the origin.
pub coords: VectorN<N, D>, pub coords: VectorN<N, D>,
} }
impl<N: Scalar + Copy + hash::Hash, D: DimName + hash::Hash> hash::Hash for Point<N, D> impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: hash::Hash, <DefaultAllocator as Allocator<N, D>>::Buffer: hash::Hash,
@ -45,7 +45,7 @@ where
} }
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<N: Scalar + Copy, D: DimName> Serialize for Point<N, D> impl<N: Scalar, D: DimName> Serialize for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Serialize, <DefaultAllocator as Allocator<N, D>>::Buffer: Serialize,
@ -57,7 +57,7 @@ where
} }
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar + Copy, D: DimName> Deserialize<'a> for Point<N, D> impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Deserialize<'a>, <DefaultAllocator as Allocator<N, D>>::Buffer: Deserialize<'a>,
@ -73,7 +73,7 @@ where
#[cfg(feature = "abomonation-serialize")] #[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Point<N, D> impl<N, D> Abomonation for Point<N, D>
where where
N: Scalar + Copy, N: Scalar,
D: DimName, D: DimName,
VectorN<N, D>: Abomonation, VectorN<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
@ -91,7 +91,7 @@ where
} }
} }
impl<N: Scalar + Copy, D: DimName> Point<N, D> impl<N: Scalar, D: DimName> Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the /// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
@ -210,7 +210,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + AbsDiffEq, D: DimName> AbsDiffEq for Point<N, D> impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
@ -228,7 +228,7 @@ where
} }
} }
impl<N: Scalar + Copy + RelativeEq, D: DimName> RelativeEq for Point<N, D> impl<N: Scalar + RelativeEq, D: DimName> RelativeEq for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
@ -251,7 +251,7 @@ where
} }
} }
impl<N: Scalar + Copy + UlpsEq, D: DimName> UlpsEq for Point<N, D> impl<N: Scalar + UlpsEq, D: DimName> UlpsEq for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
@ -267,9 +267,9 @@ where
} }
} }
impl<N: Scalar + Copy + Eq, D: DimName> Eq for Point<N, D> where DefaultAllocator: Allocator<N, D> {} impl<N: Scalar + Eq, D: DimName> Eq for Point<N, D> where DefaultAllocator: Allocator<N, D> {}
impl<N: Scalar + Copy, D: DimName> PartialEq for Point<N, D> impl<N: Scalar, D: DimName> PartialEq for Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
#[inline] #[inline]
@ -278,7 +278,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + PartialOrd, D: DimName> PartialOrd for Point<N, D> impl<N: Scalar + PartialOrd, D: DimName> PartialOrd for Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
#[inline] #[inline]
@ -312,7 +312,7 @@ where DefaultAllocator: Allocator<N, D>
* Display * Display
* *
*/ */
impl<N: Scalar + Copy + fmt::Display, D: DimName> fmt::Display for Point<N, D> impl<N: Scalar + fmt::Display, D: DimName> fmt::Display for Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

View File

@ -7,9 +7,9 @@ use crate::base::{DefaultAllocator, Scalar, VectorN};
use crate::geometry::Point; use crate::geometry::Point;
impl<N: Scalar + Copy + Field, D: DimName> AffineSpace for Point<N, D> impl<N: Scalar + Field, D: DimName> AffineSpace for Point<N, D>
where where
N: Scalar + Copy + Field, N: Scalar + Field,
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
{ {
type Translation = VectorN<N, D>; type Translation = VectorN<N, D>;
@ -49,7 +49,7 @@ where DefaultAllocator: Allocator<N, D>
*/ */
impl<N, D: DimName> MeetSemilattice for Point<N, D> impl<N, D: DimName> MeetSemilattice for Point<N, D>
where where
N: Scalar + Copy + MeetSemilattice, N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
{ {
#[inline] #[inline]
@ -60,7 +60,7 @@ where
impl<N, D: DimName> JoinSemilattice for Point<N, D> impl<N, D: DimName> JoinSemilattice for Point<N, D>
where where
N: Scalar + Copy + JoinSemilattice, N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
{ {
#[inline] #[inline]
@ -71,7 +71,7 @@ where
impl<N, D: DimName> Lattice for Point<N, D> impl<N, D: DimName> Lattice for Point<N, D>
where where
N: Scalar + Copy + Lattice, N: Scalar + Lattice,
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
{ {
#[inline] #[inline]

View File

@ -12,7 +12,7 @@ use crate::base::{DefaultAllocator, Scalar, VectorN};
use crate::geometry::Point; use crate::geometry::Point;
impl<N: Scalar + Copy, D: DimName> Point<N, D> impl<N: Scalar, D: DimName> Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// Creates a new point with uninitialized coordinates. /// Creates a new point with uninitialized coordinates.
@ -94,12 +94,12 @@ where DefaultAllocator: Allocator<N, D>
#[inline] #[inline]
pub fn from_homogeneous(v: VectorN<N, DimNameSum<D, U1>>) -> Option<Self> pub fn from_homogeneous(v: VectorN<N, DimNameSum<D, U1>>) -> Option<Self>
where where
N: Scalar + Copy + Zero + One + ClosedDiv, N: Scalar + Zero + One + ClosedDiv,
D: DimNameAdd<U1>, D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>>, DefaultAllocator: Allocator<N, DimNameSum<D, U1>>,
{ {
if !v[D::dim()].is_zero() { if !v[D::dim()].is_zero() {
let coords = v.fixed_slice::<D, U1>(0, 0) / v[D::dim()]; let coords = v.fixed_slice::<D, U1>(0, 0) / v[D::dim()].inlined_clone();
Some(Self::from(coords)) Some(Self::from(coords))
} else { } else {
None None
@ -112,7 +112,7 @@ where DefaultAllocator: Allocator<N, D>
* Traits that build points. * Traits that build points.
* *
*/ */
impl<N: Scalar + Copy + Bounded, D: DimName> Bounded for Point<N, D> impl<N: Scalar + Bounded, D: DimName> Bounded for Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
#[inline] #[inline]
@ -126,7 +126,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy, D: DimName> Distribution<Point<N, D>> for Standard impl<N: Scalar, D: DimName> Distribution<Point<N, D>> for Standard
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N>, Standard: Distribution<N>,
@ -138,7 +138,7 @@ where
} }
#[cfg(feature = "arbitrary")] #[cfg(feature = "arbitrary")]
impl<N: Scalar + Copy + Arbitrary + Send, D: DimName> Arbitrary for Point<N, D> impl<N: Scalar + Arbitrary + Send, D: DimName> Arbitrary for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Send, <DefaultAllocator as Allocator<N, D>>::Buffer: Send,
@ -156,7 +156,7 @@ where
*/ */
macro_rules! componentwise_constructors_impl( macro_rules! componentwise_constructors_impl(
($($doc: expr; $D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$( ($($doc: expr; $D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$(
impl<N: Scalar + Copy> Point<N, $D> impl<N: Scalar> Point<N, $D>
where DefaultAllocator: Allocator<N, $D> { where DefaultAllocator: Allocator<N, $D> {
#[doc = "Initializes this point from its components."] #[doc = "Initializes this point from its components."]
#[doc = "# Example\n```"] #[doc = "# Example\n```"]
@ -192,7 +192,7 @@ componentwise_constructors_impl!(
macro_rules! from_array_impl( macro_rules! from_array_impl(
($($D: ty, $len: expr);*) => {$( ($($D: ty, $len: expr);*) => {$(
impl <N: Scalar + Copy> From<[N; $len]> for Point<N, $D> { impl <N: Scalar> From<[N; $len]> for Point<N, $D> {
fn from (coords: [N; $len]) -> Self { fn from (coords: [N; $len]) -> Self {
Self { Self {
coords: coords.into() coords: coords.into()

View File

@ -27,8 +27,8 @@ use std::convert::{AsMut, AsRef, From, Into};
impl<N1, N2, D> SubsetOf<Point<N2, D>> for Point<N1, D> impl<N1, N2, D> SubsetOf<Point<N2, D>> for Point<N1, D>
where where
D: DimName, D: DimName,
N1: Scalar + Copy, N1: Scalar,
N2: Scalar + Copy + SupersetOf<N1>, N2: Scalar + SupersetOf<N1>,
DefaultAllocator: Allocator<N2, D> + Allocator<N1, D>, DefaultAllocator: Allocator<N2, D> + Allocator<N1, D>,
{ {
#[inline] #[inline]
@ -52,8 +52,8 @@ where
impl<N1, N2, D> SubsetOf<VectorN<N2, DimNameSum<D, U1>>> for Point<N1, D> impl<N1, N2, D> SubsetOf<VectorN<N2, DimNameSum<D, U1>>> for Point<N1, D>
where where
D: DimNameAdd<U1>, D: DimNameAdd<U1>,
N1: Scalar + Copy, N1: Scalar,
N2: Scalar + Copy + Zero + One + ClosedDiv + SupersetOf<N1>, N2: Scalar + Zero + One + ClosedDiv + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D> DefaultAllocator: Allocator<N1, D>
+ Allocator<N1, DimNameSum<D, U1>> + Allocator<N1, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>>
@ -72,7 +72,7 @@ where
#[inline] #[inline]
unsafe fn from_superset_unchecked(v: &VectorN<N2, DimNameSum<D, U1>>) -> Self { unsafe fn from_superset_unchecked(v: &VectorN<N2, DimNameSum<D, U1>>) -> Self {
let coords = v.fixed_slice::<D, U1>(0, 0) / v[D::dim()]; let coords = v.fixed_slice::<D, U1>(0, 0) / v[D::dim()].inlined_clone();
Self { Self {
coords: crate::convert_unchecked(coords) coords: crate::convert_unchecked(coords)
} }
@ -83,7 +83,7 @@ where
macro_rules! impl_from_into_mint_1D( macro_rules! impl_from_into_mint_1D(
($($NRows: ident => $PT:ident, $VT:ident [$SZ: expr]);* $(;)*) => {$( ($($NRows: ident => $PT:ident, $VT:ident [$SZ: expr]);* $(;)*) => {$(
impl<N> From<mint::$PT<N>> for Point<N, $NRows> impl<N> From<mint::$PT<N>> for Point<N, $NRows>
where N: Scalar + Copy { where N: Scalar {
#[inline] #[inline]
fn from(p: mint::$PT<N>) -> Self { fn from(p: mint::$PT<N>) -> Self {
Self { Self {
@ -93,7 +93,7 @@ macro_rules! impl_from_into_mint_1D(
} }
impl<N> Into<mint::$PT<N>> for Point<N, $NRows> impl<N> Into<mint::$PT<N>> for Point<N, $NRows>
where N: Scalar + Copy { where N: Scalar {
#[inline] #[inline]
fn into(self) -> mint::$PT<N> { fn into(self) -> mint::$PT<N> {
let mint_vec: mint::$VT<N> = self.coords.into(); let mint_vec: mint::$VT<N> = self.coords.into();
@ -102,7 +102,7 @@ macro_rules! impl_from_into_mint_1D(
} }
impl<N> AsRef<mint::$PT<N>> for Point<N, $NRows> impl<N> AsRef<mint::$PT<N>> for Point<N, $NRows>
where N: Scalar + Copy { where N: Scalar {
#[inline] #[inline]
fn as_ref(&self) -> &mint::$PT<N> { fn as_ref(&self) -> &mint::$PT<N> {
unsafe { unsafe {
@ -112,7 +112,7 @@ macro_rules! impl_from_into_mint_1D(
} }
impl<N> AsMut<mint::$PT<N>> for Point<N, $NRows> impl<N> AsMut<mint::$PT<N>> for Point<N, $NRows>
where N: Scalar + Copy { where N: Scalar {
#[inline] #[inline]
fn as_mut(&mut self) -> &mut mint::$PT<N> { fn as_mut(&mut self) -> &mut mint::$PT<N> {
unsafe { unsafe {
@ -130,7 +130,7 @@ impl_from_into_mint_1D!(
U3 => Point3, Vector3[3]; U3 => Point3, Vector3[3];
); );
impl<N: Scalar + Copy + Zero + One, D: DimName> From<Point<N, D>> for VectorN<N, DimNameSum<D, U1>> impl<N: Scalar + Zero + One, D: DimName> From<Point<N, D>> for VectorN<N, DimNameSum<D, U1>>
where where
D: DimNameAdd<U1>, D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>>, DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>>,
@ -141,7 +141,7 @@ where
} }
} }
impl<N: Scalar + Copy, D: DimName> From<VectorN<N, D>> for Point<N, D> impl<N: Scalar, D: DimName> From<VectorN<N, D>> for Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
{ {

View File

@ -16,7 +16,7 @@ use crate::geometry::Point;
macro_rules! deref_impl( macro_rules! deref_impl(
($D: ty, $Target: ident $(, $comps: ident)*) => { ($D: ty, $Target: ident $(, $comps: ident)*) => {
impl<N: Scalar + Copy> Deref for Point<N, $D> impl<N: Scalar> Deref for Point<N, $D>
where DefaultAllocator: Allocator<N, $D> { where DefaultAllocator: Allocator<N, $D> {
type Target = $Target<N>; type Target = $Target<N>;
@ -26,7 +26,7 @@ macro_rules! deref_impl(
} }
} }
impl<N: Scalar + Copy> DerefMut for Point<N, $D> impl<N: Scalar> DerefMut for Point<N, $D>
where DefaultAllocator: Allocator<N, $D> { where DefaultAllocator: Allocator<N, $D> {
#[inline] #[inline]
fn deref_mut(&mut self) -> &mut Self::Target { fn deref_mut(&mut self) -> &mut Self::Target {

View File

@ -18,7 +18,7 @@ use crate::geometry::Point;
* Indexing. * Indexing.
* *
*/ */
impl<N: Scalar + Copy, D: DimName> Index<usize> for Point<N, D> impl<N: Scalar, D: DimName> Index<usize> for Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
type Output = N; type Output = N;
@ -29,7 +29,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy, D: DimName> IndexMut<usize> for Point<N, D> impl<N: Scalar, D: DimName> IndexMut<usize> for Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
#[inline] #[inline]
@ -43,7 +43,7 @@ where DefaultAllocator: Allocator<N, D>
* Neg. * Neg.
* *
*/ */
impl<N: Scalar + Copy + ClosedNeg, D: DimName> Neg for Point<N, D> impl<N: Scalar + ClosedNeg, D: DimName> Neg for Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
type Output = Self; type Output = Self;
@ -54,7 +54,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<'a, N: Scalar + Copy + ClosedNeg, D: DimName> Neg for &'a Point<N, D> impl<'a, N: Scalar + ClosedNeg, D: DimName> Neg for &'a Point<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
type Output = Point<N, D>; type Output = Point<N, D>;
@ -138,7 +138,7 @@ add_sub_impl!(Add, add, ClosedAdd;
macro_rules! op_assign_impl( macro_rules! op_assign_impl(
($($TraitAssign: ident, $method_assign: ident, $bound: ident);* $(;)*) => {$( ($($TraitAssign: ident, $method_assign: ident, $bound: ident);* $(;)*) => {$(
impl<'b, N, D1: DimName, D2: Dim, SB> $TraitAssign<&'b Vector<N, D2, SB>> for Point<N, D1> impl<'b, N, D1: DimName, D2: Dim, SB> $TraitAssign<&'b Vector<N, D2, SB>> for Point<N, D1>
where N: Scalar + Copy + $bound, where N: Scalar + $bound,
SB: Storage<N, D2>, SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>, DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2> { ShapeConstraint: SameNumberOfRows<D1, D2> {
@ -150,7 +150,7 @@ macro_rules! op_assign_impl(
} }
impl<N, D1: DimName, D2: Dim, SB> $TraitAssign<Vector<N, D2, SB>> for Point<N, D1> impl<N, D1: DimName, D2: Dim, SB> $TraitAssign<Vector<N, D2, SB>> for Point<N, D1>
where N: Scalar + Copy + $bound, where N: Scalar + $bound,
SB: Storage<N, D2>, SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>, DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2> { ShapeConstraint: SameNumberOfRows<D1, D2> {
@ -192,7 +192,7 @@ md_impl_all!(
macro_rules! componentwise_scalarop_impl( macro_rules! componentwise_scalarop_impl(
($Trait: ident, $method: ident, $bound: ident; ($Trait: ident, $method: ident, $bound: ident;
$TraitAssign: ident, $method_assign: ident) => { $TraitAssign: ident, $method_assign: ident) => {
impl<N: Scalar + Copy + $bound, D: DimName> $Trait<N> for Point<N, D> impl<N: Scalar + $bound, D: DimName> $Trait<N> for Point<N, D>
where DefaultAllocator: Allocator<N, D> { where DefaultAllocator: Allocator<N, D> {
type Output = Point<N, D>; type Output = Point<N, D>;
@ -202,7 +202,7 @@ macro_rules! componentwise_scalarop_impl(
} }
} }
impl<'a, N: Scalar + Copy + $bound, D: DimName> $Trait<N> for &'a Point<N, D> impl<'a, N: Scalar + $bound, D: DimName> $Trait<N> for &'a Point<N, D>
where DefaultAllocator: Allocator<N, D> { where DefaultAllocator: Allocator<N, D> {
type Output = Point<N, D>; type Output = Point<N, D>;
@ -212,7 +212,7 @@ macro_rules! componentwise_scalarop_impl(
} }
} }
impl<N: Scalar + Copy + $bound, D: DimName> $TraitAssign<N> for Point<N, D> impl<N: Scalar + $bound, D: DimName> $TraitAssign<N> for Point<N, D>
where DefaultAllocator: Allocator<N, D> { where DefaultAllocator: Allocator<N, D> {
#[inline] #[inline]
fn $method_assign(&mut self, right: N) { fn $method_assign(&mut self, right: N) {

View File

@ -8,7 +8,7 @@ use crate::storage::{Storage, StorageMut};
use crate::geometry::Point; use crate::geometry::Point;
/// A reflection wrt. a plane. /// A reflection wrt. a plane.
pub struct Reflection<N: Scalar + Copy, D: Dim, S: Storage<N, D>> { pub struct Reflection<N: Scalar, D: Dim, S: Storage<N, D>> {
axis: Vector<N, D, S>, axis: Vector<N, D, S>,
bias: N, bias: N,
} }

View File

@ -24,13 +24,13 @@ use crate::geometry::Point;
/// A rotation matrix. /// A rotation matrix.
#[repr(C)] #[repr(C)]
#[derive(Debug)] #[derive(Debug)]
pub struct Rotation<N: Scalar + Copy, D: DimName> pub struct Rotation<N: Scalar, D: DimName>
where DefaultAllocator: Allocator<N, D, D> where DefaultAllocator: Allocator<N, D, D>
{ {
matrix: MatrixN<N, D>, matrix: MatrixN<N, D>,
} }
impl<N: Scalar + Copy + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D> impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D>
where where
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash, <DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash,
@ -47,7 +47,7 @@ where
{ {
} }
impl<N: Scalar + Copy, D: DimName> Clone for Rotation<N, D> impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
where where
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone, <DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
@ -61,7 +61,7 @@ where
#[cfg(feature = "abomonation-serialize")] #[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Rotation<N, D> impl<N, D> Abomonation for Rotation<N, D>
where where
N: Scalar + Copy, N: Scalar,
D: DimName, D: DimName,
MatrixN<N, D>: Abomonation, MatrixN<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
@ -80,7 +80,7 @@ where
} }
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<N: Scalar + Copy, D: DimName> Serialize for Rotation<N, D> impl<N: Scalar, D: DimName> Serialize for Rotation<N, D>
where where
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Serialize, Owned<N, D, D>: Serialize,
@ -92,7 +92,7 @@ where
} }
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar + Copy, D: DimName> Deserialize<'a> for Rotation<N, D> impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D>
where where
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Deserialize<'a>, Owned<N, D, D>: Deserialize<'a>,
@ -105,7 +105,7 @@ where
} }
} }
impl<N: Scalar + Copy, D: DimName> Rotation<N, D> impl<N: Scalar, D: DimName> Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> where DefaultAllocator: Allocator<N, D, D>
{ {
/// A reference to the underlying matrix representation of this rotation. /// A reference to the underlying matrix representation of this rotation.
@ -432,9 +432,9 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + Eq, D: DimName> Eq for Rotation<N, D> where DefaultAllocator: Allocator<N, D, D> {} impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D> where DefaultAllocator: Allocator<N, D, D> {}
impl<N: Scalar + Copy + PartialEq, D: DimName> PartialEq for Rotation<N, D> impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> where DefaultAllocator: Allocator<N, D, D>
{ {
#[inline] #[inline]
@ -445,7 +445,7 @@ where DefaultAllocator: Allocator<N, D, D>
impl<N, D: DimName> AbsDiffEq for Rotation<N, D> impl<N, D: DimName> AbsDiffEq for Rotation<N, D>
where where
N: Scalar + Copy + AbsDiffEq, N: Scalar + AbsDiffEq,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -464,7 +464,7 @@ where
impl<N, D: DimName> RelativeEq for Rotation<N, D> impl<N, D: DimName> RelativeEq for Rotation<N, D>
where where
N: Scalar + Copy + RelativeEq, N: Scalar + RelativeEq,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {
@ -488,7 +488,7 @@ where
impl<N, D: DimName> UlpsEq for Rotation<N, D> impl<N, D: DimName> UlpsEq for Rotation<N, D>
where where
N: Scalar + Copy + UlpsEq, N: Scalar + UlpsEq,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
{ {

View File

@ -10,7 +10,7 @@ use crate::geometry::Rotation;
impl<N, D: DimName> Rotation<N, D> impl<N, D: DimName> Rotation<N, D>
where where
N: Scalar + Copy + Zero + One, N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
/// Creates a new square identity rotation of the given `dimension`. /// Creates a new square identity rotation of the given `dimension`.
@ -32,7 +32,7 @@ where
impl<N, D: DimName> One for Rotation<N, D> impl<N, D: DimName> One for Rotation<N, D>
where where
N: Scalar + Copy + Zero + One + ClosedAdd + ClosedMul, N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>, DefaultAllocator: Allocator<N, D, D>,
{ {
#[inline] #[inline]

View File

@ -30,7 +30,7 @@ use crate::base::{DefaultAllocator, Matrix, MatrixMN, Scalar, Unit, Vector, Vect
use crate::geometry::{Point, Rotation}; use crate::geometry::{Point, Rotation};
impl<N: Scalar + Copy, D: DimName> Index<(usize, usize)> for Rotation<N, D> impl<N: Scalar, D: DimName> Index<(usize, usize)> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> where DefaultAllocator: Allocator<N, D, D>
{ {
type Output = N; type Output = N;

View File

@ -6,7 +6,7 @@ use typenum::{self, Cmp, Greater};
macro_rules! impl_swizzle { macro_rules! impl_swizzle {
($( where $BaseDim: ident: $( $name: ident() -> $Result: ident[$($i: expr),+] ),+ ;)* ) => { ($( where $BaseDim: ident: $( $name: ident() -> $Result: ident[$($i: expr),+] ),+ ;)* ) => {
$( $(
impl<N: Scalar + Copy, D: DimName> Point<N, D> impl<N: Scalar, D: DimName> Point<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
D::Value: Cmp<typenum::$BaseDim, Output=Greater> D::Value: Cmp<typenum::$BaseDim, Output=Greater>
@ -15,7 +15,7 @@ macro_rules! impl_swizzle {
/// Builds a new point from components of `self`. /// Builds a new point from components of `self`.
#[inline] #[inline]
pub fn $name(&self) -> $Result<N> { pub fn $name(&self) -> $Result<N> {
$Result::new($(self[$i]),*) $Result::new($(self[$i].inlined_clone()),*)
} }
)* )*
} }

View File

@ -23,7 +23,7 @@ use crate::geometry::Point;
/// A translation. /// A translation.
#[repr(C)] #[repr(C)]
#[derive(Debug)] #[derive(Debug)]
pub struct Translation<N: Scalar + Copy, D: DimName> pub struct Translation<N: Scalar, D: DimName>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// The translation coordinates, i.e., how much is added to a point's coordinates when it is /// The translation coordinates, i.e., how much is added to a point's coordinates when it is
@ -31,7 +31,7 @@ where DefaultAllocator: Allocator<N, D>
pub vector: VectorN<N, D>, pub vector: VectorN<N, D>,
} }
impl<N: Scalar + Copy + hash::Hash, D: DimName + hash::Hash> hash::Hash for Translation<N, D> impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
Owned<N, D>: hash::Hash, Owned<N, D>: hash::Hash,
@ -47,7 +47,7 @@ where
Owned<N, D>: Copy, Owned<N, D>: Copy,
{} {}
impl<N: Scalar + Copy, D: DimName> Clone for Translation<N, D> impl<N: Scalar, D: DimName> Clone for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Clone, Owned<N, D>: Clone,
@ -61,7 +61,7 @@ where
#[cfg(feature = "abomonation-serialize")] #[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Translation<N, D> impl<N, D> Abomonation for Translation<N, D>
where where
N: Scalar + Copy, N: Scalar,
D: DimName, D: DimName,
VectorN<N, D>: Abomonation, VectorN<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
@ -80,7 +80,7 @@ where
} }
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<N: Scalar + Copy, D: DimName> Serialize for Translation<N, D> impl<N: Scalar, D: DimName> Serialize for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Serialize, Owned<N, D>: Serialize,
@ -92,7 +92,7 @@ where
} }
#[cfg(feature = "serde-serialize")] #[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar + Copy, D: DimName> Deserialize<'a> for Translation<N, D> impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Deserialize<'a>, Owned<N, D>: Deserialize<'a>,
@ -105,7 +105,7 @@ where
} }
} }
impl<N: Scalar + Copy, D: DimName> Translation<N, D> impl<N: Scalar, D: DimName> Translation<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// Creates a new translation from the given vector. /// Creates a new translation from the given vector.
@ -192,7 +192,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + ClosedAdd, D: DimName> Translation<N, D> impl<N: Scalar + ClosedAdd, D: DimName> Translation<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// Translate the given point. /// Translate the given point.
@ -211,7 +211,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + ClosedSub, D: DimName> Translation<N, D> impl<N: Scalar + ClosedSub, D: DimName> Translation<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// Translate the given point by the inverse of this translation. /// Translate the given point by the inverse of this translation.
@ -228,9 +228,9 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + Eq, D: DimName> Eq for Translation<N, D> where DefaultAllocator: Allocator<N, D> {} impl<N: Scalar + Eq, D: DimName> Eq for Translation<N, D> where DefaultAllocator: Allocator<N, D> {}
impl<N: Scalar + Copy + PartialEq, D: DimName> PartialEq for Translation<N, D> impl<N: Scalar + PartialEq, D: DimName> PartialEq for Translation<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
#[inline] #[inline]
@ -239,7 +239,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + AbsDiffEq, D: DimName> AbsDiffEq for Translation<N, D> impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
@ -257,7 +257,7 @@ where
} }
} }
impl<N: Scalar + Copy + RelativeEq, D: DimName> RelativeEq for Translation<N, D> impl<N: Scalar + RelativeEq, D: DimName> RelativeEq for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy, N::Epsilon: Copy,
@ -280,7 +280,7 @@ where
} }
} }
impl<N: Scalar + Copy + UlpsEq, D: DimName> UlpsEq for Translation<N, D> impl<N: Scalar + UlpsEq, D: DimName> UlpsEq for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy, N::Epsilon: Copy,

View File

@ -15,7 +15,7 @@ use crate::base::{DefaultAllocator, Scalar, VectorN};
use crate::geometry::Translation; use crate::geometry::Translation;
impl<N: Scalar + Copy + Zero, D: DimName> Translation<N, D> impl<N: Scalar + Zero, D: DimName> Translation<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
/// Creates a new identity translation. /// Creates a new identity translation.
@ -38,7 +38,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy + Zero + ClosedAdd, D: DimName> One for Translation<N, D> impl<N: Scalar + Zero + ClosedAdd, D: DimName> One for Translation<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
#[inline] #[inline]
@ -47,7 +47,7 @@ where DefaultAllocator: Allocator<N, D>
} }
} }
impl<N: Scalar + Copy, D: DimName> Distribution<Translation<N, D>> for Standard impl<N: Scalar, D: DimName> Distribution<Translation<N, D>> for Standard
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N>, Standard: Distribution<N>,
@ -59,7 +59,7 @@ where
} }
#[cfg(feature = "arbitrary")] #[cfg(feature = "arbitrary")]
impl<N: Scalar + Copy + Arbitrary, D: DimName> Arbitrary for Translation<N, D> impl<N: Scalar + Arbitrary, D: DimName> Arbitrary for Translation<N, D>
where where
DefaultAllocator: Allocator<N, D>, DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Send, Owned<N, D>: Send,
@ -78,7 +78,7 @@ where
*/ */
macro_rules! componentwise_constructors_impl( macro_rules! componentwise_constructors_impl(
($($doc: expr; $D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$( ($($doc: expr; $D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$(
impl<N: Scalar + Copy> Translation<N, $D> impl<N: Scalar> Translation<N, $D>
where DefaultAllocator: Allocator<N, $D> { where DefaultAllocator: Allocator<N, $D> {
#[doc = "Initializes this translation from its components."] #[doc = "Initializes this translation from its components."]
#[doc = "# Example\n```"] #[doc = "# Example\n```"]

View File

@ -22,8 +22,8 @@ use crate::geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Tr
impl<N1, N2, D: DimName> SubsetOf<Translation<N2, D>> for Translation<N1, D> impl<N1, N2, D: DimName> SubsetOf<Translation<N2, D>> for Translation<N1, D>
where where
N1: Scalar + Copy, N1: Scalar,
N2: Scalar + Copy + SupersetOf<N1>, N2: Scalar + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>, DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{ {
#[inline] #[inline]
@ -153,7 +153,7 @@ where
} }
} }
impl<N: Scalar + Copy + Zero + One, D: DimName> From<Translation<N, D>> for MatrixN<N, DimNameSum<D, U1>> impl<N: Scalar + Zero + One, D: DimName> From<Translation<N, D>> for MatrixN<N, DimNameSum<D, U1>>
where where
D: DimNameAdd<U1>, D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
@ -164,7 +164,7 @@ where
} }
} }
impl<N: Scalar + Copy, D: DimName> From<VectorN<N, D>> for Translation<N, D> impl<N: Scalar, D: DimName> From<VectorN<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D> where DefaultAllocator: Allocator<N, D>
{ {
#[inline] #[inline]

View File

@ -16,7 +16,7 @@ use crate::geometry::Translation;
macro_rules! deref_impl( macro_rules! deref_impl(
($D: ty, $Target: ident $(, $comps: ident)*) => { ($D: ty, $Target: ident $(, $comps: ident)*) => {
impl<N: Scalar + Copy> Deref for Translation<N, $D> impl<N: Scalar> Deref for Translation<N, $D>
where DefaultAllocator: Allocator<N, $D> { where DefaultAllocator: Allocator<N, $D> {
type Target = $Target<N>; type Target = $Target<N>;
@ -26,7 +26,7 @@ macro_rules! deref_impl(
} }
} }
impl<N: Scalar + Copy> DerefMut for Translation<N, $D> impl<N: Scalar> DerefMut for Translation<N, $D>
where DefaultAllocator: Allocator<N, $D> { where DefaultAllocator: Allocator<N, $D> {
#[inline] #[inline]
fn deref_mut(&mut self) -> &mut Self::Target { fn deref_mut(&mut self) -> &mut Self::Target {

View File

@ -318,7 +318,7 @@ where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
/// element `matrix[(i, i)]` is provided as argument. /// element `matrix[(i, i)]` is provided as argument.
pub fn gauss_step<N, R: Dim, C: Dim, S>(matrix: &mut Matrix<N, R, C, S>, diag: N, i: usize) pub fn gauss_step<N, R: Dim, C: Dim, S>(matrix: &mut Matrix<N, R, C, S>, diag: N, i: usize)
where where
N: Scalar + Copy + Field, N: Scalar + Field,
S: StorageMut<N, R, C>, S: StorageMut<N, R, C>,
{ {
let mut submat = matrix.slice_range_mut(i.., i..); let mut submat = matrix.slice_range_mut(i.., i..);
@ -333,7 +333,7 @@ where
let (pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..); let (pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
for k in 0..pivot_row.ncols() { for k in 0..pivot_row.ncols() {
down.column_mut(k).axpy(-pivot_row[k], &coeffs, N::one()); down.column_mut(k).axpy(-pivot_row[k].inlined_clone(), &coeffs, N::one());
} }
} }
@ -346,7 +346,7 @@ pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(
i: usize, i: usize,
piv: usize, piv: usize,
) where ) where
N: Scalar + Copy + Field, N: Scalar + Field,
S: StorageMut<N, R, C>, S: StorageMut<N, R, C>,
{ {
let piv = piv - i; let piv = piv - i;
@ -364,7 +364,7 @@ pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(
for k in 0..pivot_row.ncols() { for k in 0..pivot_row.ncols() {
mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]); mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]);
down.column_mut(k).axpy(-pivot_row[k], &coeffs, N::one()); down.column_mut(k).axpy(-pivot_row[k].inlined_clone(), &coeffs, N::one());
} }
} }

View File

@ -92,7 +92,7 @@ where DefaultAllocator: Allocator<(usize, usize), D>
/// Applies this sequence of permutations to the rows of `rhs`. /// Applies this sequence of permutations to the rows of `rhs`.
#[inline] #[inline]
pub fn permute_rows<N: Scalar + Copy, R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>) pub fn permute_rows<N: Scalar, R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
where S2: StorageMut<N, R2, C2> { where S2: StorageMut<N, R2, C2> {
for i in self.ipiv.rows_range(..self.len).iter() { for i in self.ipiv.rows_range(..self.len).iter() {
rhs.swap_rows(i.0, i.1) rhs.swap_rows(i.0, i.1)
@ -101,7 +101,7 @@ where DefaultAllocator: Allocator<(usize, usize), D>
/// Applies this sequence of permutations in reverse to the rows of `rhs`. /// Applies this sequence of permutations in reverse to the rows of `rhs`.
#[inline] #[inline]
pub fn inv_permute_rows<N: Scalar + Copy, R2: Dim, C2: Dim, S2>( pub fn inv_permute_rows<N: Scalar, R2: Dim, C2: Dim, S2>(
&self, &self,
rhs: &mut Matrix<N, R2, C2, S2>, rhs: &mut Matrix<N, R2, C2, S2>,
) where ) where
@ -115,7 +115,7 @@ where DefaultAllocator: Allocator<(usize, usize), D>
/// Applies this sequence of permutations to the columns of `rhs`. /// Applies this sequence of permutations to the columns of `rhs`.
#[inline] #[inline]
pub fn permute_columns<N: Scalar + Copy, R2: Dim, C2: Dim, S2>( pub fn permute_columns<N: Scalar, R2: Dim, C2: Dim, S2>(
&self, &self,
rhs: &mut Matrix<N, R2, C2, S2>, rhs: &mut Matrix<N, R2, C2, S2>,
) where ) where
@ -128,7 +128,7 @@ where DefaultAllocator: Allocator<(usize, usize), D>
/// Applies this sequence of permutations in reverse to the columns of `rhs`. /// Applies this sequence of permutations in reverse to the columns of `rhs`.
#[inline] #[inline]
pub fn inv_permute_columns<N: Scalar + Copy, R2: Dim, C2: Dim, S2>( pub fn inv_permute_columns<N: Scalar, R2: Dim, C2: Dim, S2>(
&self, &self,
rhs: &mut Matrix<N, R2, C2, S2>, rhs: &mut Matrix<N, R2, C2, S2>,
) where ) where

View File

@ -25,7 +25,7 @@ impl<'a, N> ColumnEntries<'a, N> {
} }
} }
impl<'a, N: Copy> Iterator for ColumnEntries<'a, N> { impl<'a, N: Clone> Iterator for ColumnEntries<'a, N> {
type Item = (usize, N); type Item = (usize, N);
#[inline] #[inline]
@ -33,8 +33,8 @@ impl<'a, N: Copy> Iterator for ColumnEntries<'a, N> {
if self.curr >= self.i.len() { if self.curr >= self.i.len() {
None None
} else { } else {
let res = Some((unsafe { *self.i.get_unchecked(self.curr) }, unsafe { let res = Some((unsafe { self.i.get_unchecked(self.curr).clone() }, unsafe {
*self.v.get_unchecked(self.curr) self.v.get_unchecked(self.curr).clone()
})); }));
self.curr += 1; self.curr += 1;
res res
@ -105,7 +105,7 @@ pub trait CsStorageMut<N, R, C = U1>:
/// A storage of column-compressed sparse matrix based on a Vec. /// A storage of column-compressed sparse matrix based on a Vec.
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
pub struct CsVecStorage<N: Scalar + Copy, R: Dim, C: Dim> pub struct CsVecStorage<N: Scalar, R: Dim, C: Dim>
where DefaultAllocator: Allocator<usize, C> where DefaultAllocator: Allocator<usize, C>
{ {
pub(crate) shape: (R, C), pub(crate) shape: (R, C),
@ -114,7 +114,7 @@ where DefaultAllocator: Allocator<usize, C>
pub(crate) vals: Vec<N>, pub(crate) vals: Vec<N>,
} }
impl<N: Scalar + Copy, R: Dim, C: Dim> CsVecStorage<N, R, C> impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C>
where DefaultAllocator: Allocator<usize, C> where DefaultAllocator: Allocator<usize, C>
{ {
/// The value buffer of this storage. /// The value buffer of this storage.
@ -133,9 +133,9 @@ where DefaultAllocator: Allocator<usize, C>
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim> CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C> {} impl<N: Scalar, R: Dim, C: Dim> CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C> {}
impl<'a, N: Scalar + Copy, R: Dim, C: Dim> CsStorageIter<'a, N, R, C> for CsVecStorage<N, R, C> impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIter<'a, N, R, C> for CsVecStorage<N, R, C>
where DefaultAllocator: Allocator<usize, C> where DefaultAllocator: Allocator<usize, C>
{ {
type ColumnEntries = ColumnEntries<'a, N>; type ColumnEntries = ColumnEntries<'a, N>;
@ -154,7 +154,7 @@ where DefaultAllocator: Allocator<usize, C>
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim> CsStorage<N, R, C> for CsVecStorage<N, R, C> impl<N: Scalar, R: Dim, C: Dim> CsStorage<N, R, C> for CsVecStorage<N, R, C>
where DefaultAllocator: Allocator<usize, C> where DefaultAllocator: Allocator<usize, C>
{ {
#[inline] #[inline]
@ -199,7 +199,7 @@ where DefaultAllocator: Allocator<usize, C>
} }
} }
impl<'a, N: Scalar + Copy, R: Dim, C: Dim> CsStorageIterMut<'a, N, R, C> for CsVecStorage<N, R, C> impl<'a, N: Scalar, R: Dim, C: Dim> CsStorageIterMut<'a, N, R, C> for CsVecStorage<N, R, C>
where DefaultAllocator: Allocator<usize, C> where DefaultAllocator: Allocator<usize, C>
{ {
type ValuesMut = slice::IterMut<'a, N>; type ValuesMut = slice::IterMut<'a, N>;
@ -220,11 +220,11 @@ where DefaultAllocator: Allocator<usize, C>
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim> CsStorageMut<N, R, C> for CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C> impl<N: Scalar, R: Dim, C: Dim> CsStorageMut<N, R, C> for CsVecStorage<N, R, C> where DefaultAllocator: Allocator<usize, C>
{} {}
/* /*
pub struct CsSliceStorage<'a, N: Scalar + Copy, R: Dim, C: DimAdd<U1>> { pub struct CsSliceStorage<'a, N: Scalar, R: Dim, C: DimAdd<U1>> {
shape: (R, C), shape: (R, C),
p: VectorSlice<usize, DimSum<C, U1>>, p: VectorSlice<usize, DimSum<C, U1>>,
i: VectorSlice<usize, Dynamic>, i: VectorSlice<usize, Dynamic>,
@ -234,7 +234,7 @@ pub struct CsSliceStorage<'a, N: Scalar + Copy, R: Dim, C: DimAdd<U1>> {
/// A compressed sparse column matrix. /// A compressed sparse column matrix.
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
pub struct CsMatrix< pub struct CsMatrix<
N: Scalar + Copy, N: Scalar,
R: Dim = Dynamic, R: Dim = Dynamic,
C: Dim = Dynamic, C: Dim = Dynamic,
S: CsStorage<N, R, C> = CsVecStorage<N, R, C>, S: CsStorage<N, R, C> = CsVecStorage<N, R, C>,
@ -246,7 +246,7 @@ pub struct CsMatrix<
/// A column compressed sparse vector. /// A column compressed sparse vector.
pub type CsVector<N, R = Dynamic, S = CsVecStorage<N, R, U1>> = CsMatrix<N, R, U1, S>; pub type CsVector<N, R = Dynamic, S = CsVecStorage<N, R, U1>> = CsMatrix<N, R, U1, S>;
impl<N: Scalar + Copy, R: Dim, C: Dim> CsMatrix<N, R, C> impl<N: Scalar, R: Dim, C: Dim> CsMatrix<N, R, C>
where DefaultAllocator: Allocator<usize, C> where DefaultAllocator: Allocator<usize, C>
{ {
/// Creates a new compressed sparse column matrix with the specified dimension and /// Creates a new compressed sparse column matrix with the specified dimension and
@ -323,7 +323,7 @@ where DefaultAllocator: Allocator<usize, C>
} }
/* /*
impl<N: Scalar + Copy + Zero + ClosedAdd> CsMatrix<N> { impl<N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
pub(crate) fn from_parts( pub(crate) fn from_parts(
nrows: usize, nrows: usize,
ncols: usize, ncols: usize,
@ -340,7 +340,7 @@ impl<N: Scalar + Copy + Zero + ClosedAdd> CsMatrix<N> {
} }
*/ */
impl<N: Scalar + Copy, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
pub(crate) fn from_data(data: S) -> Self { pub(crate) fn from_data(data: S) -> Self {
CsMatrix { CsMatrix {
data, data,
@ -433,7 +433,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C,
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim, S: CsStorageMut<N, R, C>> CsMatrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: CsStorageMut<N, R, C>> CsMatrix<N, R, C, S> {
/// Iterator through all the mutable values of this sparse matrix. /// Iterator through all the mutable values of this sparse matrix.
#[inline] #[inline]
pub fn values_mut(&mut self) -> impl Iterator<Item = &mut N> { pub fn values_mut(&mut self) -> impl Iterator<Item = &mut N> {
@ -441,7 +441,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: CsStorageMut<N, R, C>> CsMatrix<N, R,
} }
} }
impl<N: Scalar + Copy, R: Dim, C: Dim> CsMatrix<N, R, C> impl<N: Scalar, R: Dim, C: Dim> CsMatrix<N, R, C>
where DefaultAllocator: Allocator<usize, C> where DefaultAllocator: Allocator<usize, C>
{ {
pub(crate) fn sort(&mut self) pub(crate) fn sort(&mut self)
@ -470,7 +470,7 @@ where DefaultAllocator: Allocator<usize, C>
// Permute the values too. // Permute the values too.
for (i, irow) in range.clone().zip(self.data.i[range].iter().cloned()) { for (i, irow) in range.clone().zip(self.data.i[range].iter().cloned()) {
self.data.vals[i] = workspace[irow]; self.data.vals[i] = workspace[irow].inlined_clone();
} }
} }
} }
@ -492,11 +492,11 @@ where DefaultAllocator: Allocator<usize, C>
let curr_irow = self.data.i[idx]; let curr_irow = self.data.i[idx];
if curr_irow == irow { if curr_irow == irow {
value += self.data.vals[idx]; value += self.data.vals[idx].inlined_clone();
} else { } else {
self.data.i[curr_i] = irow; self.data.i[curr_i] = irow;
self.data.vals[curr_i] = value; self.data.vals[curr_i] = value;
value = self.data.vals[idx]; value = self.data.vals[idx].inlined_clone();
irow = curr_irow; irow = curr_irow;
curr_i += 1; curr_i += 1;
} }

View File

@ -7,7 +7,7 @@ use crate::sparse::{CsMatrix, CsStorage};
use crate::storage::Storage; use crate::storage::Storage;
use crate::{DefaultAllocator, Dim, Dynamic, Matrix, MatrixMN, Scalar}; use crate::{DefaultAllocator, Dim, Dynamic, Matrix, MatrixMN, Scalar};
impl<'a, N: Scalar + Copy + Zero + ClosedAdd> CsMatrix<N> { impl<'a, N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form. /// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
pub fn from_triplet( pub fn from_triplet(
nrows: usize, nrows: usize,
@ -21,7 +21,7 @@ impl<'a, N: Scalar + Copy + Zero + ClosedAdd> CsMatrix<N> {
} }
} }
impl<'a, N: Scalar + Copy + Zero + ClosedAdd, R: Dim, C: Dim> CsMatrix<N, R, C> impl<'a, N: Scalar + Zero + ClosedAdd, R: Dim, C: Dim> CsMatrix<N, R, C>
where DefaultAllocator: Allocator<usize, C> + Allocator<N, R> where DefaultAllocator: Allocator<usize, C> + Allocator<N, R>
{ {
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form. /// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
@ -66,7 +66,7 @@ where DefaultAllocator: Allocator<usize, C> + Allocator<N, R>
} }
} }
impl<'a, N: Scalar + Copy + Zero, R: Dim, C: Dim, S> From<CsMatrix<N, R, C, S>> for MatrixMN<N, R, C> impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<CsMatrix<N, R, C, S>> for MatrixMN<N, R, C>
where where
S: CsStorage<N, R, C>, S: CsStorage<N, R, C>,
DefaultAllocator: Allocator<N, R, C>, DefaultAllocator: Allocator<N, R, C>,
@ -85,7 +85,7 @@ where
} }
} }
impl<'a, N: Scalar + Copy + Zero, R: Dim, C: Dim, S> From<Matrix<N, R, C, S>> for CsMatrix<N, R, C> impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<Matrix<N, R, C, S>> for CsMatrix<N, R, C>
where where
S: Storage<N, R, C>, S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> + Allocator<usize, C>, DefaultAllocator: Allocator<N, R, C> + Allocator<usize, C>,
@ -103,7 +103,7 @@ where
for i in 0..nrows.value() { for i in 0..nrows.value() {
if !column[i].is_zero() { if !column[i].is_zero() {
res.data.i[nz] = i; res.data.i[nz] = i;
res.data.vals[nz] = column[i]; res.data.vals[nz] = column[i].inlined_clone();
nz += 1; nz += 1;
} }
} }

View File

@ -8,7 +8,7 @@ use crate::sparse::{CsMatrix, CsStorage, CsStorageMut, CsVector};
use crate::storage::StorageMut; use crate::storage::StorageMut;
use crate::{DefaultAllocator, Dim, Scalar, Vector, VectorN, U1}; use crate::{DefaultAllocator, Dim, Scalar, Vector, VectorN, U1};
impl<N: Scalar + Copy, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> { impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
fn scatter<R2: Dim, C2: Dim>( fn scatter<R2: Dim, C2: Dim>(
&self, &self,
j: usize, j: usize,
@ -28,9 +28,9 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C,
timestamps[i] = timestamp; timestamps[i] = timestamp;
res.data.i[nz] = i; res.data.i[nz] = i;
nz += 1; nz += 1;
workspace[i] = val * beta; workspace[i] = val * beta.inlined_clone();
} else { } else {
workspace[i] += val * beta; workspace[i] += val * beta.inlined_clone();
} }
} }
@ -39,7 +39,7 @@ impl<N: Scalar + Copy, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C,
} }
/* /*
impl<N: Scalar + Copy, R, S> CsVector<N, R, S> { impl<N: Scalar, R, S> CsVector<N, R, S> {
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) { pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
// First, compute the number of non-zero entries. // First, compute the number of non-zero entries.
let mut nnzero = 0; let mut nnzero = 0;
@ -76,7 +76,7 @@ impl<N: Scalar + Copy, R, S> CsVector<N, R, S> {
} }
*/ */
impl<N: Scalar + Copy + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> { impl<N: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
/// Perform a sparse axpy operation: `self = alpha * x + beta * self` operation. /// Perform a sparse axpy operation: `self = alpha * x + beta * self` operation.
pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N) pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N)
where where
@ -88,18 +88,18 @@ impl<N: Scalar + Copy + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D
unsafe { unsafe {
let k = x.data.row_index_unchecked(i); let k = x.data.row_index_unchecked(i);
let y = self.vget_unchecked_mut(k); let y = self.vget_unchecked_mut(k);
*y = alpha * *x.data.get_value_unchecked(i); *y = alpha.inlined_clone() * x.data.get_value_unchecked(i).inlined_clone();
} }
} }
} else { } else {
// Needed to be sure even components not present on `x` are multiplied. // Needed to be sure even components not present on `x` are multiplied.
*self *= beta; *self *= beta.inlined_clone();
for i in 0..x.len() { for i in 0..x.len() {
unsafe { unsafe {
let k = x.data.row_index_unchecked(i); let k = x.data.row_index_unchecked(i);
let y = self.vget_unchecked_mut(k); let y = self.vget_unchecked_mut(k);
*y += alpha * *x.data.get_value_unchecked(i); *y += alpha.inlined_clone() * x.data.get_value_unchecked(i).inlined_clone();
} }
} }
} }
@ -126,7 +126,7 @@ impl<N: Scalar + Copy + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<N, R2, C2, S2>> impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<N, R2, C2, S2>>
for &'a CsMatrix<N, R1, C1, S1> for &'a CsMatrix<N, R1, C1, S1>
where where
N: Scalar + Copy + ClosedAdd + ClosedMul + Zero, N: Scalar + ClosedAdd + ClosedMul + Zero,
R1: Dim, R1: Dim,
C1: Dim, C1: Dim,
R2: Dim, R2: Dim,
@ -159,14 +159,14 @@ where
for (i, beta) in rhs.data.column_entries(j) { for (i, beta) in rhs.data.column_entries(j) {
for (k, val) in self.data.column_entries(i) { for (k, val) in self.data.column_entries(i) {
workspace[k] += val * beta; workspace[k] += val.inlined_clone() * beta.inlined_clone();
} }
} }
for (i, val) in workspace.as_mut_slice().iter_mut().enumerate() { for (i, val) in workspace.as_mut_slice().iter_mut().enumerate() {
if !val.is_zero() { if !val.is_zero() {
res.data.i[nz] = i; res.data.i[nz] = i;
res.data.vals[nz] = *val; res.data.vals[nz] = val.inlined_clone();
*val = N::zero(); *val = N::zero();
nz += 1; nz += 1;
} }
@ -219,7 +219,7 @@ where
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<N, R2, C2, S2>> impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<N, R2, C2, S2>>
for &'a CsMatrix<N, R1, C1, S1> for &'a CsMatrix<N, R1, C1, S1>
where where
N: Scalar + Copy + ClosedAdd + ClosedMul + One, N: Scalar + ClosedAdd + ClosedMul + One,
R1: Dim, R1: Dim,
C1: Dim, C1: Dim,
R2: Dim, R2: Dim,
@ -273,7 +273,7 @@ where
res.data.i[range.clone()].sort(); res.data.i[range.clone()].sort();
for p in range { for p in range {
res.data.vals[p] = workspace[res.data.i[p]] res.data.vals[p] = workspace[res.data.i[p]].inlined_clone()
} }
} }
@ -287,7 +287,7 @@ where
impl<'a, 'b, N, R, C, S> Mul<N> for CsMatrix<N, R, C, S> impl<'a, 'b, N, R, C, S> Mul<N> for CsMatrix<N, R, C, S>
where where
N: Scalar + Copy + ClosedAdd + ClosedMul + Zero, N: Scalar + ClosedAdd + ClosedMul + Zero,
R: Dim, R: Dim,
C: Dim, C: Dim,
S: CsStorageMut<N, R, C>, S: CsStorageMut<N, R, C>,
@ -296,7 +296,7 @@ where
fn mul(mut self, rhs: N) -> Self::Output { fn mul(mut self, rhs: N) -> Self::Output {
for e in self.values_mut() { for e in self.values_mut() {
*e *= rhs *e *= rhs.inlined_clone()
} }
self self