Improve clarity of Rotation doc comments
The doc comments for `Rotation` incorreclty refer to quaternion instead of a rotation matrix. No code change, purely documentation.
This commit is contained in:
parent
80c7064bf4
commit
25341e40f0
|
@ -15,9 +15,15 @@ where
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
/// ```
|
/// ```
|
||||||
/// # use nalgebra::Quaternion;
|
/// # use nalgebra::{Rotation2, Rotation3};
|
||||||
/// let rot1 = Quaternion::identity();
|
/// let rot1 = Rotation2::identity();
|
||||||
/// let rot2 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
/// let rot2 = Rotation2::new(f32::consts::FRAC_PI_2);
|
||||||
|
///
|
||||||
|
/// assert_eq!(rot1 * rot2, rot2);
|
||||||
|
/// assert_eq!(rot2 * rot1, rot2);
|
||||||
|
///
|
||||||
|
/// let rot1 = Rotation3::identity();
|
||||||
|
/// let rot2 = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2);
|
||||||
///
|
///
|
||||||
/// assert_eq!(rot1 * rot2, rot2);
|
/// assert_eq!(rot1 * rot2, rot2);
|
||||||
/// assert_eq!(rot2 * rot1, rot2);
|
/// assert_eq!(rot2 * rot1, rot2);
|
||||||
|
|
|
@ -60,7 +60,7 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||||
impl<T: SimdRealField> Rotation2<T> {
|
impl<T: SimdRealField> Rotation2<T> {
|
||||||
/// Builds a rotation from a basis assumed to be orthonormal.
|
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||||
///
|
///
|
||||||
/// In order to get a valid unit-quaternion, the input must be an
|
/// In order to get a valid rotation matrix, the input must be an
|
||||||
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||||
/// all orthogonal to each other. These invariants are not checked
|
/// all orthogonal to each other. These invariants are not checked
|
||||||
/// by this method.
|
/// by this method.
|
||||||
|
@ -204,7 +204,7 @@ impl<T: SimdRealField> Rotation2<T> {
|
||||||
*self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
|
*self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the angle
|
/// Raise the rotation to a given floating power, i.e., returns the rotation with the angle
|
||||||
/// of `self` multiplied by `n`.
|
/// of `self` multiplied by `n`.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
|
@ -660,7 +660,7 @@ where
|
||||||
other * self.inverse()
|
other * self.inverse()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the same
|
/// Raise the rotation to a given floating power, i.e., returns the rotation with the same
|
||||||
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
|
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
|
@ -692,7 +692,7 @@ where
|
||||||
|
|
||||||
/// Builds a rotation from a basis assumed to be orthonormal.
|
/// Builds a rotation from a basis assumed to be orthonormal.
|
||||||
///
|
///
|
||||||
/// In order to get a valid unit-quaternion, the input must be an
|
/// In order to get a valid rotation matrix, the input must be an
|
||||||
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
/// orthonormal basis, i.e., all vectors are normalized, and the are
|
||||||
/// all orthogonal to each other. These invariants are not checked
|
/// all orthogonal to each other. These invariants are not checked
|
||||||
/// by this method.
|
/// by this method.
|
||||||
|
@ -846,7 +846,7 @@ impl<T: SimdRealField> Rotation3<T> {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The rotation axis and angle in ]0, pi] of this unit quaternion.
|
/// The rotation axis and angle in ]0, pi] of this rotation matrix.
|
||||||
///
|
///
|
||||||
/// Returns `None` if the angle is zero.
|
/// Returns `None` if the angle is zero.
|
||||||
///
|
///
|
||||||
|
|
Loading…
Reference in New Issue