Mote Point::lerp to the point.rs file.
This commit is contained in:
parent
f7cd897fd6
commit
1e38e6f595
|
@ -1,7 +1,6 @@
|
|||
use crate::storage::Storage;
|
||||
use crate::{
|
||||
Allocator, DefaultAllocator, Dim, DimName, OPoint, OVector, One, RealField, Scalar, Unit,
|
||||
Vector, Zero,
|
||||
Allocator, DefaultAllocator, Dim, OVector, One, RealField, Scalar, Unit, Vector, Zero,
|
||||
};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
|
||||
|
||||
|
@ -59,31 +58,6 @@ impl<T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Stor
|
|||
}
|
||||
}
|
||||
|
||||
/// # Interpolation
|
||||
impl<T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: DimName> OPoint<T, D>
|
||||
where
|
||||
DefaultAllocator: Allocator<T, D>,
|
||||
{
|
||||
/// Returns `self * (1.0 - t) + rhs.coords * t`, i.e., the linear blend of the points x and y using the scalar value a.
|
||||
///
|
||||
/// The value for a is not restricted to the range `[0, 1]`.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Point3;
|
||||
/// let x = Point3::new(1.0, 2.0, 3.0);
|
||||
/// let y = Point3::new(10.0, 20.0, 30.0);
|
||||
/// assert_eq!(x.lerp(&y, 0.1), Point3::new(1.9, 3.8, 5.7));
|
||||
/// ```
|
||||
#[must_use]
|
||||
pub fn lerp(&self, rhs: &OPoint<T, D>, t: T) -> OPoint<T, D> {
|
||||
OPoint {
|
||||
coords: self.coords.lerp(&rhs.coords, t),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// # Interpolation between two unit vectors
|
||||
impl<T: RealField, D: Dim, S: Storage<T, D>> Unit<Vector<T, D, S>> {
|
||||
/// Computes the spherical linear interpolation between two unit vectors.
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
||||
use num::One;
|
||||
use num::{One, Zero};
|
||||
use std::cmp::Ordering;
|
||||
use std::fmt;
|
||||
use std::hash;
|
||||
|
@ -13,6 +13,7 @@ use crate::base::allocator::Allocator;
|
|||
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
||||
use crate::base::iter::{MatrixIter, MatrixIterMut};
|
||||
use crate::base::{Const, DefaultAllocator, OVector, Scalar};
|
||||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
|
||||
use std::mem::MaybeUninit;
|
||||
|
||||
/// A point in an euclidean space.
|
||||
|
@ -221,6 +222,31 @@ where
|
|||
unsafe { res.assume_init() }
|
||||
}
|
||||
|
||||
/// Linear interpolation between two points.
|
||||
///
|
||||
/// Returns `self * (1.0 - t) + rhs.coords * t`, i.e., the linear blend of the points
|
||||
/// `self` and `rhs` using the scalar value `t`.
|
||||
///
|
||||
/// The value for a is not restricted to the range `[0, 1]`.
|
||||
///
|
||||
/// # Examples:
|
||||
///
|
||||
/// ```
|
||||
/// # use nalgebra::Point3;
|
||||
/// let a = Point3::new(1.0, 2.0, 3.0);
|
||||
/// let b = Point3::new(10.0, 20.0, 30.0);
|
||||
/// assert_eq!(a.lerp(&b, 0.1), Point3::new(1.9, 3.8, 5.7));
|
||||
/// ```
|
||||
#[must_use]
|
||||
pub fn lerp(&self, rhs: &OPoint<T, D>, t: T) -> OPoint<T, D>
|
||||
where
|
||||
T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul,
|
||||
{
|
||||
OPoint {
|
||||
coords: self.coords.lerp(&rhs.coords, t),
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new point with the given coordinates.
|
||||
#[deprecated(note = "Use Point::from(vector) instead.")]
|
||||
#[inline]
|
||||
|
|
Loading…
Reference in New Issue