Add doc-tests to most of quaternion.rs.

This commit is contained in:
sebcrozet 2018-10-27 16:28:09 +02:00 committed by Sébastien Crozet
parent 98b0b842e9
commit 1dd6bcce6a
1 changed files with 157 additions and 2 deletions

View File

@ -703,6 +703,14 @@ impl<N: Real> UnitQuaternion<N> {
/// Linear interpolation between two unit quaternions.
///
/// The result is not normalized.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Quaternion};
/// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
/// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
/// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0));
/// ```
#[inline]
pub fn lerp(&self, other: &UnitQuaternion<N>, t: N) -> Quaternion<N> {
self.as_ref().lerp(other.as_ref(), t)
@ -711,6 +719,14 @@ impl<N: Real> UnitQuaternion<N> {
/// Normalized linear interpolation between two unit quaternions.
///
/// This is the same as `self.lerp` except that the result is normalized.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Quaternion};
/// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
/// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
/// assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0)));
/// ```
#[inline]
pub fn nlerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
let mut res = self.lerp(other, t);
@ -722,7 +738,7 @@ impl<N: Real> UnitQuaternion<N> {
/// Spherical linear interpolation between two unit quaternions.
///
/// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
/// is not well-defined).
/// is not well-defined). Use `.try_slerp` instead to avoid the panic.
#[inline]
pub fn slerp(&self, other: &UnitQuaternion<N>, t: N) -> UnitQuaternion<N> {
Unit::new_unchecked(Quaternion::from_vector(
@ -762,12 +778,37 @@ impl<N: Real> UnitQuaternion<N> {
}
/// Inverts this quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axisangle = Vector3::new(0.1, 0.2, 0.3);
/// let mut rot = UnitQuaternion::new(axisangle);
/// rot.inverse_mut();
/// assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity());
/// assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity());
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// The rotation axis of this unit quaternion or `None` if the rotation is zero.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);
/// assert_eq!(rot.axis(), Some(axis));
///
/// // Case with a zero angle.
/// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
/// assert!(rot.axis().is_none());
/// ```
#[inline]
pub fn axis(&self) -> Option<Unit<Vector3<N>>> {
let v = if self.quaternion().scalar() >= N::zero() {
@ -780,6 +821,16 @@ impl<N: Real> UnitQuaternion<N> {
}
/// The rotation axis of this unit quaternion multiplied by the rotation angle.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axisangle = Vector3::new(0.1, 0.2, 0.3);
/// let rot = UnitQuaternion::new(axisangle);
/// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_axis(&self) -> Vector3<N> {
if let Some(axis) = self.axis() {
@ -792,6 +843,19 @@ impl<N: Real> UnitQuaternion<N> {
/// The rotation axis and angle in ]0, pi] of this unit quaternion.
///
/// Returns `None` if the angle is zero.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);
/// assert_eq!(rot.axis_angle(), Some((axis, angle)));
///
/// // Case with a zero angle.
/// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
/// assert!(rot.axis_angle().is_none());
/// ```
#[inline]
pub fn axis_angle(&self) -> Option<(Unit<Vector3<N>>, N)> {
if let Some(axis) = self.axis() {
@ -814,6 +878,16 @@ impl<N: Real> UnitQuaternion<N> {
/// Note that this function yields a `Quaternion<N>` because it looses the unit property.
/// The vector part of the return value corresponds to the axis-angle representation (divided
/// by 2.0) of this unit quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{Vector3, UnitQuaternion};
/// let axisangle = Vector3::new(0.1, 0.2, 0.3);
/// let q = UnitQuaternion::new(axisangle);
/// assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn ln(&self) -> Quaternion<N> {
if let Some(v) = self.axis() {
@ -827,6 +901,19 @@ impl<N: Real> UnitQuaternion<N> {
///
/// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and
/// angle `self.angle() × n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
/// assert_eq!(pow.angle(), 2.4);
/// ```
#[inline]
pub fn powf(&self, n: N) -> UnitQuaternion<N> {
if let Some(v) = self.axis() {
@ -837,6 +924,23 @@ impl<N: Real> UnitQuaternion<N> {
}
/// Builds a rotation matrix from this unit quaternion.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3, Matrix3};
/// let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let rot = q.to_rotation_matrix();
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
///
/// // The translation part should not have changed.
/// assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn to_rotation_matrix(&self) -> Rotation<N, U3> {
let i = self.as_ref()[0];
@ -870,13 +974,64 @@ impl<N: Real> UnitQuaternion<N> {
/// Converts this unit quaternion into its equivalent Euler angles.
///
/// The angles are produced in the form (roll, yaw, pitch).
/// The angles are produced in the form (roll, pitch, yaw).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::UnitQuaternion;
/// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.to_euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
#[inline]
#[deprecated(note = "This is renamed to use `.euler_angles()`.")]
pub fn to_euler_angles(&self) -> (N, N, N) {
self.to_rotation_matrix().to_euler_angles()
}
/// Retrieves the euler angles corresponding to this unit quaternion.
///
/// The angles are produced in the form (roll, pitch, yaw).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use nalgebra::UnitQuaternion;
/// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn euler_angles(&self) -> (N, N, N) {
self.to_rotation_matrix().to_euler_angles()
}
/// Converts this unit quaternion into its equivalent homogeneous transformation matrix.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # extern crate nalgebra;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3, Matrix4};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
/// 0.5, 0.8660254, 0.0, 0.0,
/// 0.0, 0.0, 1.0, 0.0,
/// 0.0, 0.0, 0.0, 1.0);
///
/// // The translation part should not have changed.
/// assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, U4> {
self.to_rotation_matrix().to_homogeneous()