Derive Copy wherever sensible
Copy is now opt-in, see [1]. To keep the current library functionality it is
derived for all sensibly copyable types.
[1]: 096a28607f
This commit is contained in:
parent
223dc316ad
commit
11a2b84ee0
|
@ -18,7 +18,7 @@ use structs::rot::{Rot2, Rot3, Rot4};
|
||||||
///
|
///
|
||||||
/// This is the composition of a rotation followed by a translation.
|
/// This is the composition of a rotation followed by a translation.
|
||||||
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
|
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub struct Iso2<N> {
|
pub struct Iso2<N> {
|
||||||
/// The rotation applicable by this isometry.
|
/// The rotation applicable by this isometry.
|
||||||
pub rotation: Rot2<N>,
|
pub rotation: Rot2<N>,
|
||||||
|
@ -30,7 +30,7 @@ pub struct Iso2<N> {
|
||||||
///
|
///
|
||||||
/// This is the composition of a rotation followed by a translation.
|
/// This is the composition of a rotation followed by a translation.
|
||||||
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
|
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub struct Iso3<N> {
|
pub struct Iso3<N> {
|
||||||
/// The rotation applicable by this isometry.
|
/// The rotation applicable by this isometry.
|
||||||
pub rotation: Rot3<N>,
|
pub rotation: Rot3<N>,
|
||||||
|
@ -41,7 +41,7 @@ pub struct Iso3<N> {
|
||||||
/// Four dimensional isometry.
|
/// Four dimensional isometry.
|
||||||
///
|
///
|
||||||
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
|
/// Isometries conserve angles and distances, hence do not allow shearing nor scaling.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub struct Iso4<N> {
|
pub struct Iso4<N> {
|
||||||
/// The rotation applicable by this isometry.
|
/// The rotation applicable by this isometry.
|
||||||
pub rotation: Rot4<N>,
|
pub rotation: Rot4<N>,
|
||||||
|
|
|
@ -17,7 +17,7 @@ use linalg;
|
||||||
|
|
||||||
|
|
||||||
/// Special identity matrix. All its operation are no-ops.
|
/// Special identity matrix. All its operation are no-ops.
|
||||||
#[deriving(Eq, PartialEq, Decodable, Clone, Rand, Show)]
|
#[deriving(Eq, PartialEq, Decodable, Clone, Rand, Show, Copy)]
|
||||||
pub struct Identity;
|
pub struct Identity;
|
||||||
|
|
||||||
impl Identity {
|
impl Identity {
|
||||||
|
@ -29,7 +29,7 @@ impl Identity {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Square matrix of dimension 1.
|
/// Square matrix of dimension 1.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Mat1<N> {
|
pub struct Mat1<N> {
|
||||||
pub m11: N
|
pub m11: N
|
||||||
}
|
}
|
||||||
|
@ -73,7 +73,7 @@ outer_impl!(Vec1, Mat1)
|
||||||
eigen_qr_impl!(Mat1, Vec1)
|
eigen_qr_impl!(Mat1, Vec1)
|
||||||
|
|
||||||
/// Square matrix of dimension 2.
|
/// Square matrix of dimension 2.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Mat2<N> {
|
pub struct Mat2<N> {
|
||||||
pub m11: N, pub m21: N,
|
pub m11: N, pub m21: N,
|
||||||
pub m12: N, pub m22: N
|
pub m12: N, pub m22: N
|
||||||
|
@ -121,7 +121,7 @@ outer_impl!(Vec2, Mat2)
|
||||||
eigen_qr_impl!(Mat2, Vec2)
|
eigen_qr_impl!(Mat2, Vec2)
|
||||||
|
|
||||||
/// Square matrix of dimension 3.
|
/// Square matrix of dimension 3.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Mat3<N> {
|
pub struct Mat3<N> {
|
||||||
pub m11: N, pub m21: N, pub m31: N,
|
pub m11: N, pub m21: N, pub m31: N,
|
||||||
pub m12: N, pub m22: N, pub m32: N,
|
pub m12: N, pub m22: N, pub m32: N,
|
||||||
|
@ -203,7 +203,7 @@ outer_impl!(Vec3, Mat3)
|
||||||
eigen_qr_impl!(Mat3, Vec3)
|
eigen_qr_impl!(Mat3, Vec3)
|
||||||
|
|
||||||
/// Square matrix of dimension 4.
|
/// Square matrix of dimension 4.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Mat4<N> {
|
pub struct Mat4<N> {
|
||||||
pub m11: N, pub m21: N, pub m31: N, pub m41: N,
|
pub m11: N, pub m21: N, pub m31: N, pub m41: N,
|
||||||
pub m12: N, pub m22: N, pub m32: N, pub m42: N,
|
pub m12: N, pub m22: N, pub m32: N, pub m42: N,
|
||||||
|
@ -303,7 +303,7 @@ outer_impl!(Vec4, Mat4)
|
||||||
eigen_qr_impl!(Mat4, Vec4)
|
eigen_qr_impl!(Mat4, Vec4)
|
||||||
|
|
||||||
/// Square matrix of dimension 5.
|
/// Square matrix of dimension 5.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Mat5<N> {
|
pub struct Mat5<N> {
|
||||||
pub m11: N, pub m21: N, pub m31: N, pub m41: N, pub m51: N,
|
pub m11: N, pub m21: N, pub m31: N, pub m41: N, pub m51: N,
|
||||||
pub m12: N, pub m22: N, pub m32: N, pub m42: N, pub m52: N,
|
pub m12: N, pub m22: N, pub m32: N, pub m42: N, pub m52: N,
|
||||||
|
@ -417,7 +417,7 @@ outer_impl!(Vec5, Mat5)
|
||||||
eigen_qr_impl!(Mat5, Vec5)
|
eigen_qr_impl!(Mat5, Vec5)
|
||||||
|
|
||||||
/// Square matrix of dimension 6.
|
/// Square matrix of dimension 6.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Mat6<N> {
|
pub struct Mat6<N> {
|
||||||
pub m11: N, pub m21: N, pub m31: N, pub m41: N, pub m51: N, pub m61: N,
|
pub m11: N, pub m21: N, pub m31: N, pub m41: N, pub m51: N, pub m61: N,
|
||||||
pub m12: N, pub m22: N, pub m32: N, pub m42: N, pub m52: N, pub m62: N,
|
pub m12: N, pub m22: N, pub m32: N, pub m42: N, pub m52: N, pub m62: N,
|
||||||
|
|
|
@ -5,7 +5,7 @@ use structs::{Pnt3, Vec3, Mat4};
|
||||||
/// A 3D orthographic projection stored without any matrix.
|
/// A 3D orthographic projection stored without any matrix.
|
||||||
///
|
///
|
||||||
/// Reading or modifying its individual properties is cheap but applying the transformation is costly.
|
/// Reading or modifying its individual properties is cheap but applying the transformation is costly.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub struct Ortho3<N> {
|
pub struct Ortho3<N> {
|
||||||
width: N,
|
width: N,
|
||||||
height: N,
|
height: N,
|
||||||
|
@ -16,7 +16,7 @@ pub struct Ortho3<N> {
|
||||||
/// A 3D orthographic projection stored as a 4D matrix.
|
/// A 3D orthographic projection stored as a 4D matrix.
|
||||||
///
|
///
|
||||||
/// Reading or modifying its individual properties is costly but applying the transformation is cheap.
|
/// Reading or modifying its individual properties is costly but applying the transformation is cheap.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub struct OrthoMat3<N> {
|
pub struct OrthoMat3<N> {
|
||||||
mat: Mat4<N>
|
mat: Mat4<N>
|
||||||
}
|
}
|
||||||
|
|
|
@ -4,7 +4,7 @@ use structs::{Pnt3, Vec3, Mat4};
|
||||||
/// A 3D perspective projection stored without any matrix.
|
/// A 3D perspective projection stored without any matrix.
|
||||||
///
|
///
|
||||||
/// Reading or modifying its individual properties is cheap but applying the transformation is costly.
|
/// Reading or modifying its individual properties is cheap but applying the transformation is costly.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub struct Persp3<N> {
|
pub struct Persp3<N> {
|
||||||
aspect: N,
|
aspect: N,
|
||||||
fov: N,
|
fov: N,
|
||||||
|
@ -15,7 +15,7 @@ pub struct Persp3<N> {
|
||||||
/// A 3D perspective projection stored as a 4D matrix.
|
/// A 3D perspective projection stored as a 4D matrix.
|
||||||
///
|
///
|
||||||
/// Reading or modifying its individual properties is costly but applying the transformation is cheap.
|
/// Reading or modifying its individual properties is costly but applying the transformation is cheap.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub struct PerspMat3<N> {
|
pub struct PerspMat3<N> {
|
||||||
mat: Mat4<N>
|
mat: Mat4<N>
|
||||||
}
|
}
|
||||||
|
|
|
@ -14,7 +14,7 @@ use structs::vec::{Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
|
||||||
|
|
||||||
|
|
||||||
/// Point of dimension 0.
|
/// Point of dimension 0.
|
||||||
#[deriving(Eq, PartialEq, Decodable, Clone, Rand, Show)]
|
#[deriving(Eq, PartialEq, Decodable, Clone, Rand, Show, Copy)]
|
||||||
pub struct Pnt0<N>;
|
pub struct Pnt0<N>;
|
||||||
|
|
||||||
impl<N> Pnt0<N> {
|
impl<N> Pnt0<N> {
|
||||||
|
@ -32,7 +32,7 @@ impl<N> Pnt0<N> {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Point of dimension 1.
|
/// Point of dimension 1.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Pnt1<N> {
|
pub struct Pnt1<N> {
|
||||||
/// First component of the point.
|
/// First component of the point.
|
||||||
pub x: N
|
pub x: N
|
||||||
|
@ -70,7 +70,7 @@ pnt_from_homogeneous_impl!(Pnt1, Pnt2, y, x)
|
||||||
num_float_pnt_impl!(Pnt1, Vec1)
|
num_float_pnt_impl!(Pnt1, Vec1)
|
||||||
|
|
||||||
/// Point of dimension 2.
|
/// Point of dimension 2.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Pnt2<N> {
|
pub struct Pnt2<N> {
|
||||||
/// First component of the point.
|
/// First component of the point.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -110,7 +110,7 @@ pnt_from_homogeneous_impl!(Pnt2, Pnt3, z, x, y)
|
||||||
num_float_pnt_impl!(Pnt2, Vec2)
|
num_float_pnt_impl!(Pnt2, Vec2)
|
||||||
|
|
||||||
/// Point of dimension 3.
|
/// Point of dimension 3.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Pnt3<N> {
|
pub struct Pnt3<N> {
|
||||||
/// First component of the point.
|
/// First component of the point.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -152,7 +152,7 @@ pnt_from_homogeneous_impl!(Pnt3, Pnt4, w, x, y, z)
|
||||||
num_float_pnt_impl!(Pnt3, Vec3)
|
num_float_pnt_impl!(Pnt3, Vec3)
|
||||||
|
|
||||||
/// Point of dimension 4.
|
/// Point of dimension 4.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Pnt4<N> {
|
pub struct Pnt4<N> {
|
||||||
/// First component of the point.
|
/// First component of the point.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -196,7 +196,7 @@ pnt_from_homogeneous_impl!(Pnt4, Pnt5, a, x, y, z, w)
|
||||||
num_float_pnt_impl!(Pnt4, Vec4)
|
num_float_pnt_impl!(Pnt4, Vec4)
|
||||||
|
|
||||||
/// Point of dimension 5.
|
/// Point of dimension 5.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Pnt5<N> {
|
pub struct Pnt5<N> {
|
||||||
/// First component of the point.
|
/// First component of the point.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -242,7 +242,7 @@ pnt_from_homogeneous_impl!(Pnt5, Pnt6, b, x, y, z, w, a)
|
||||||
num_float_pnt_impl!(Pnt5, Vec5)
|
num_float_pnt_impl!(Pnt5, Vec5)
|
||||||
|
|
||||||
/// Point of dimension 6.
|
/// Point of dimension 6.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Pnt6<N> {
|
pub struct Pnt6<N> {
|
||||||
/// First component of the point.
|
/// First component of the point.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
|
|
@ -14,7 +14,7 @@ use traits::structure::{Cast, Indexable, Iterable, IterableMut, Dim, Shape, Base
|
||||||
use traits::geometry::{Norm, Cross, Rotation, Rotate, Transform};
|
use traits::geometry::{Norm, Cross, Rotation, Rotate, Transform};
|
||||||
|
|
||||||
/// A quaternion.
|
/// A quaternion.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Quat<N> {
|
pub struct Quat<N> {
|
||||||
/// The scalar component of the quaternion.
|
/// The scalar component of the quaternion.
|
||||||
pub w: N,
|
pub w: N,
|
||||||
|
@ -139,7 +139,7 @@ impl<N: ApproxEq<N> + BaseFloat + Clone> Div<Quat<N>, Quat<N>> for Quat<N> {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// A unit quaternion that can represent a 3D rotation.
|
/// A unit quaternion that can represent a 3D rotation.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Show, Copy)]
|
||||||
pub struct UnitQuat<N> {
|
pub struct UnitQuat<N> {
|
||||||
q: Quat<N>
|
q: Quat<N>
|
||||||
}
|
}
|
||||||
|
|
|
@ -13,7 +13,7 @@ use structs::mat::{Mat2, Mat3, Mat4, Mat5};
|
||||||
|
|
||||||
|
|
||||||
/// Two dimensional rotation matrix.
|
/// Two dimensional rotation matrix.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Hash)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Hash, Copy)]
|
||||||
pub struct Rot2<N> {
|
pub struct Rot2<N> {
|
||||||
submat: Mat2<N>
|
submat: Mat2<N>
|
||||||
}
|
}
|
||||||
|
@ -90,7 +90,7 @@ impl<N: BaseFloat> AbsoluteRotate<Vec2<N>> for Rot2<N> {
|
||||||
* 3d rotation
|
* 3d rotation
|
||||||
*/
|
*/
|
||||||
/// Three dimensional rotation matrix.
|
/// Three dimensional rotation matrix.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Hash)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Hash, Copy)]
|
||||||
pub struct Rot3<N> {
|
pub struct Rot3<N> {
|
||||||
submat: Mat3<N>
|
submat: Mat3<N>
|
||||||
}
|
}
|
||||||
|
@ -288,7 +288,7 @@ impl<N: BaseFloat> AbsoluteRotate<Vec3<N>> for Rot3<N> {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Four dimensional rotation matrix.
|
/// Four dimensional rotation matrix.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Hash)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Hash, Copy)]
|
||||||
pub struct Rot4<N> {
|
pub struct Rot4<N> {
|
||||||
submat: Mat4<N>
|
submat: Mat4<N>
|
||||||
}
|
}
|
||||||
|
|
|
@ -15,7 +15,7 @@ use structs::pnt::{Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6};
|
||||||
|
|
||||||
|
|
||||||
/// Vector of dimension 0.
|
/// Vector of dimension 0.
|
||||||
#[deriving(Eq, PartialEq, Decodable, Clone, Rand, Zero, Show)]
|
#[deriving(Eq, PartialEq, Decodable, Clone, Rand, Zero, Show, Copy)]
|
||||||
pub struct Vec0<N>;
|
pub struct Vec0<N>;
|
||||||
|
|
||||||
impl<N> Vec0<N> {
|
impl<N> Vec0<N> {
|
||||||
|
@ -33,7 +33,7 @@ impl<N> Vec0<N> {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Vector of dimension 1.
|
/// Vector of dimension 1.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
|
||||||
pub struct Vec1<N> {
|
pub struct Vec1<N> {
|
||||||
/// First component of the vector.
|
/// First component of the vector.
|
||||||
pub x: N
|
pub x: N
|
||||||
|
@ -82,7 +82,7 @@ num_float_vec_impl!(Vec1)
|
||||||
absolute_vec_impl!(Vec1, x)
|
absolute_vec_impl!(Vec1, x)
|
||||||
|
|
||||||
/// Vector of dimension 2.
|
/// Vector of dimension 2.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show, Copy)]
|
||||||
pub struct Vec2<N> {
|
pub struct Vec2<N> {
|
||||||
/// First component of the vector.
|
/// First component of the vector.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -133,7 +133,7 @@ num_float_vec_impl!(Vec2)
|
||||||
absolute_vec_impl!(Vec2, x, y)
|
absolute_vec_impl!(Vec2, x, y)
|
||||||
|
|
||||||
/// Vector of dimension 3.
|
/// Vector of dimension 3.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show, Copy)]
|
||||||
pub struct Vec3<N> {
|
pub struct Vec3<N> {
|
||||||
/// First component of the vector.
|
/// First component of the vector.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -187,7 +187,7 @@ absolute_vec_impl!(Vec3, x, y, z)
|
||||||
|
|
||||||
|
|
||||||
/// Vector of dimension 4.
|
/// Vector of dimension 4.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show, Copy)]
|
||||||
pub struct Vec4<N> {
|
pub struct Vec4<N> {
|
||||||
/// First component of the vector.
|
/// First component of the vector.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -242,7 +242,7 @@ num_float_vec_impl!(Vec4)
|
||||||
absolute_vec_impl!(Vec4, x, y, z, w)
|
absolute_vec_impl!(Vec4, x, y, z, w)
|
||||||
|
|
||||||
/// Vector of dimension 5.
|
/// Vector of dimension 5.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show, Copy)]
|
||||||
pub struct Vec5<N> {
|
pub struct Vec5<N> {
|
||||||
/// First component of the vector.
|
/// First component of the vector.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
@ -299,7 +299,7 @@ num_float_vec_impl!(Vec5)
|
||||||
absolute_vec_impl!(Vec5, x, y, z, w, a)
|
absolute_vec_impl!(Vec5, x, y, z, w, a)
|
||||||
|
|
||||||
/// Vector of dimension 6.
|
/// Vector of dimension 6.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show, Copy)]
|
||||||
pub struct Vec6<N> {
|
pub struct Vec6<N> {
|
||||||
/// First component of the vector.
|
/// First component of the vector.
|
||||||
pub x: N,
|
pub x: N,
|
||||||
|
|
|
@ -4,7 +4,7 @@ use std::num::{Float, SignedInt};
|
||||||
use traits::structure::SquareMat;
|
use traits::structure::SquareMat;
|
||||||
|
|
||||||
/// Result of a partial ordering.
|
/// Result of a partial ordering.
|
||||||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show)]
|
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Show, Copy)]
|
||||||
pub enum POrdering {
|
pub enum POrdering {
|
||||||
/// Result of a strict comparison.
|
/// Result of a strict comparison.
|
||||||
PartialLess,
|
PartialLess,
|
||||||
|
|
Loading…
Reference in New Issue