Merge pull request #782 from dimforge/dev

Release v0.23.0
This commit is contained in:
Sébastien Crozet 2020-10-26 09:50:46 +01:00 committed by GitHub
commit 04e4e11154
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
60 changed files with 1689 additions and 454 deletions

View File

@ -47,10 +47,10 @@ jobs:
- checkout
- run:
name: test
command: cargo test --all-features
command: cargo test --features arbitrary --features serde-serialize --features abomonation-serialize --features sparse --features debug --features io --features compare --features libm
- run:
name: test nalgebra-glm
command: cargo test -p nalgebra-glm --all-features
command: cargo test -p nalgebra-glm --features arbitrary --features serde-serialize --features abomonation-serialize --features sparse --features debug --features io --features compare --features libm
build-wasm:
executor: rust-executor
steps:

4
.github/FUNDING.yml vendored
View File

@ -1,7 +1,7 @@
# These are supported funding model platforms
github: [ "sebcrozet" ] # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
patreon: sebcrozet # Replace with a single Patreon username
github: [ "dimforge" ] # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
patreon: # Replace with a single Patreon username
open_collective: # Replace with a single Open Collective username
ko_fi: # Replace with a single Ko-fi username
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel

View File

@ -4,15 +4,37 @@ documented here.
This project adheres to [Semantic Versioning](https://semver.org/).
## [0.22.0] - WIP
## [0.23.0] - WIP
### Added
* The `.inverse_transform_unit_vector(v)` was added to `Rotation2/3`, `Isometry2/3`, `UnitQuaternion`, and `UnitComplex`.
It applies the corresponding rotation to a unit vector `Unit<Vector2/3>`.
* The `Point.map(f)` and `Point.apply(f)` to apply a function to each component of the point, similarly to `Vector.map(f)`
and `Vector.apply(f)`.
* The `Quaternion::from([N; 4])` conversion to build a quaternion from an array of four elements.
* The `Isometry::from(Translation)` conversion to build an isometry from a translation.
* The `Vector::ith_axis(i)` which build a unit vector, e.g., `Unit<Vector3<f32>>` with its i-th component set to 1.0 and the
others set to zero.
* The `Isometry.lerp_slerp` and `Isometry.try_lerp_slerp` methods to interpolate between two isometries using linear
interpolation for the translational part, and spherical interpolation for the rotational part.
* The `Rotation2.slerp`, `Rotation3.slerp`, and `UnitQuaternion.slerp` method for
spherical interpolation.
## [0.22.0]
In this release, we are using the new version 0.2 of simba. One major change of that version is that the
use of `libm` is now opt-in when building targetting `no-std` environment. If you are using floating-point
operations with nalgebra in a `no-std` environment, you will need to enable the new `libm` feature
of nalgebra for your code to compile again.
### Added
* The `libm` feature that enables `libm` when building for `no-std` environment.
* The `libm-force` feature that enables `libm` even when building for a not `no-std` environment.
* `Cholesky::new_unchecked` which build a Cholesky decomposition without checking that its input is
positive-definite. It can be use with SIMD types.
* The `Default` trait is now implemented for matrices, and quaternions. They are all filled with zeros,
except for `UnitQuaternion` which is initialized with the identity.
* Matrix exponential `matrix.exp()`.
* The `Vector::ith(i, x)` that builds a vector filled with zeros except for the `i`-th component set to `x`.
## [0.21.0]
In this release, we are no longer relying on traits from the __alga__ crate for our generic code.

View File

@ -1,6 +1,6 @@
[package]
name = "nalgebra"
version = "0.21.1"
version = "0.23.0"
authors = [ "Sébastien Crozet <developer@crozet.re>" ]
description = "Linear algebra library with transformations and statically-sized or dynamically-sized matrices."
@ -10,7 +10,7 @@ repository = "https://github.com/rustsim/nalgebra"
readme = "README.md"
categories = [ "science" ]
keywords = [ "linear", "algebra", "matrix", "vector", "math" ]
license = "BSD-3-Clause"
license = "Apache-2.0"
edition = "2018"
exclude = ["/ci/*", "/.travis.yml", "/Makefile"]
@ -24,32 +24,36 @@ default = [ "std" ]
std = [ "matrixmultiply", "rand/std", "rand_distr", "simba/std" ]
stdweb = [ "rand/stdweb" ]
arbitrary = [ "quickcheck" ]
serde-serialize = [ "serde", "serde_derive", "num-complex/serde" ]
serde-serialize = [ "serde", "num-complex/serde" ]
abomonation-serialize = [ "abomonation" ]
sparse = [ ]
debug = [ "approx/num-complex", "rand/std" ]
alloc = [ ]
io = [ "pest", "pest_derive" ]
compare = [ "matrixcompare-core" ]
libm = [ "simba/libm" ]
libm-force = [ "simba/libm_force" ]
[dependencies]
typenum = "1.11"
generic-array = "0.13"
typenum = "1.12"
generic-array = "0.14"
rand = { version = "0.7", default-features = false }
num-traits = { version = "0.2", default-features = false }
num-complex = { version = "0.2", default-features = false }
num-rational = { version = "0.2", default-features = false }
approx = { version = "0.3", default-features = false }
simba = { version = "0.1", default-features = false }
num-complex = { version = "0.3", default-features = false }
num-rational = { version = "0.3", default-features = false }
approx = { version = "0.4", default-features = false }
simba = { version = "0.3", default-features = false }
alga = { version = "0.9", default-features = false, optional = true }
rand_distr = { version = "0.2", optional = true }
rand_distr = { version = "0.3", optional = true }
matrixmultiply = { version = "0.2", optional = true }
serde = { version = "1.0", optional = true }
serde_derive = { version = "1.0", optional = true }
serde = { version = "1.0", features = [ "derive" ], optional = true }
abomonation = { version = "0.7", optional = true }
mint = { version = "0.5", optional = true }
quickcheck = { version = "0.9", optional = true }
pest = { version = "2.0", optional = true }
pest_derive = { version = "2.0", optional = true }
pest = { version = "2", optional = true }
pest_derive = { version = "2", optional = true }
matrixcompare-core = { version = "0.1", optional = true }
[dev-dependencies]
serde_json = "1.0"
@ -61,6 +65,9 @@ rand_isaac = "0.2"
### https://github.com/rust-lang/cargo/issues/4866
#criterion = "0.2.10"
# For matrix comparison macro
matrixcompare = "0.1.3"
[workspace]
members = [ "nalgebra-lapack", "nalgebra-glm" ]
@ -71,6 +78,3 @@ path = "benches/lib.rs"
[profile.bench]
lto = true
#[patch.crates-io]
#simba = { path = "../simba" }

218
LICENSE
View File

@ -1,27 +1,201 @@
Copyright (c) 2013, Sébastien Crozet
All rights reserved.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
1. Definitions.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
3. Neither the name of the author nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2020 Sébastien Crozet
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -1,5 +1,5 @@
all:
cargo test --features "debug arbitrary serde-serialize abomonation-serialize"
cargo test --features "debug arbitrary serde-serialize abomonation-serialize compare"
# cargo check --features "debug arbitrary serde-serialize"
doc:
@ -9,4 +9,4 @@ bench:
cargo bench
test:
cargo test --features "debug arbitrary serde-serialize abomonation-serialize"
cargo test --features "debug arbitrary serde-serialize abomonation-serialize compare"

View File

@ -5,14 +5,14 @@
<a href="https://discord.gg/vt9DJSW">
<img src="https://img.shields.io/discord/507548572338880513.svg?logo=discord&colorB=7289DA">
</a>
<a href="https://travis-ci.org/rustsim/nalgebra">
<img src="https://travis-ci.org/rustsim/nalgebra.svg?branch=master" alt="Build status">
<a href="https://travis-ci.org/dimforge/nalgebra">
<img src="https://travis-ci.org/dimforge/nalgebra.svg?branch=master" alt="Build status">
</a>
<a href="https://crates.io/crates/nalgebra">
<img src="https://meritbadge.herokuapp.com/nalgebra?style=flat-square" alt="crates.io">
</a>
<a href="https://opensource.org/licenses/BSD-3-Clause">
<img src="https://img.shields.io/badge/license-BSD%203--Clause-blue.svg?style=flat">
<a href="https://opensource.org/licenses/Apache-2.0">
<img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg">
</a>
</p>
<p align = "center">
@ -29,11 +29,3 @@
</p>
-----
<p align = "center">
 <i>Click this button if you wish to donate to support the development of</i> <b>nalgebra</b>:
</p>
<p align = "center">
<a href="https://www.patreon.com/bePatron?u=7111380" ><img src="https://c5.patreon.com/external/logo/become_a_patron_button.png" alt="Become a Patron!" /></a>
</p>

82
examples/matrixcompare.rs Normal file
View File

@ -0,0 +1,82 @@
extern crate nalgebra as na;
use matrixcompare::comparators::{AbsoluteElementwiseComparator, ExactElementwiseComparator};
use matrixcompare::compare_matrices;
use na::{MatrixMN, U3, U4};
fn compare_integers_fail() {
println!("Comparing two integer matrices.");
#[rustfmt::skip]
let a = MatrixMN::<_, U3, U4>::from_row_slice(&[
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, -2, 11
]);
#[rustfmt::skip]
let b = MatrixMN::<_, U3, U4>::from_row_slice(&[
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11
]);
if let Err(err) = compare_matrices(a, b, &ExactElementwiseComparator) {
println!("{}", err);
}
}
fn compare_different_size() {
println!("Comparing matrices of different size.");
#[rustfmt::skip]
let a = MatrixMN::<_, U3, U3>::from_row_slice(&[
0, 1, 2,
4, 5, 6,
8, 9, 10,
]);
#[rustfmt::skip]
let b = MatrixMN::<_, U3, U4>::from_row_slice(&[
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11
]);
if let Err(err) = compare_matrices(a, b, &ExactElementwiseComparator) {
println!("{}", err);
}
}
fn compare_f64_abs_tol_fail() {
println!("Comparing two f64 matrices.");
#[rustfmt::skip]
let a = MatrixMN::<f64, U3, U3>::from_row_slice(&[
0.0, 1.0, 2.0 + 1e-10,
4.0, 5.0, 6.0,
8.0, 9.0, 10.0,
]);
#[rustfmt::skip]
let b = MatrixMN::<_, U3, U3>::from_row_slice(&[
0.0, 1.0, 2.0,
4.0, 5.0, 6.0,
8.0, 9.0, 10.0
]);
let cmp = AbsoluteElementwiseComparator { tol: 1e-12 };
if let Err(err) = compare_matrices(a, b, &cmp) {
println!("{}", err);
}
}
fn main() {
// This example mostly serves the purpose of demonstrating the kind of error messages
// that are given upon comparison failure.
// The more typical use case is using `assert_matrix_eq!` in tests.
compare_integers_fail();
println!("======================================================");
compare_f64_abs_tol_fail();
println!("======================================================");
compare_different_size();
}

54
examples/reshaping.rs Normal file
View File

@ -0,0 +1,54 @@
#![cfg_attr(rustfmt, rustfmt_skip)]
extern crate nalgebra as na;
use na::{DMatrix, Dynamic, Matrix2x3, Matrix3x2, U2, U3};
fn main() {
// Matrices can be reshaped in-place without moving or copying values.
let m1 = Matrix2x3::new(
1.1, 1.2, 1.3,
2.1, 2.2, 2.3
);
let m2 = Matrix3x2::new(
1.1, 2.2,
2.1, 1.3,
1.2, 2.3
);
let m3 = m1.reshape_generic(U3, U2);
assert_eq!(m3, m2);
// Note that, for statically sized matrices, invalid reshapes will not compile:
//let m4 = m3.reshape_generic(U3, U3);
// If dynamically sized matrices are used, the reshaping is checked at run-time.
let dm1 = DMatrix::from_row_slice(
4,
3,
&[
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0
],
);
let dm2 = DMatrix::from_row_slice(
6,
2,
&[
1.0, 0.0,
0.0, 1.0,
0.0, 0.0,
0.0, 1.0,
0.0, 0.0,
0.0, 0.0,
],
);
let dm3 = dm1.reshape_generic(Dynamic::new(6), Dynamic::new(2));
assert_eq!(dm3, dm2);
// Invalid reshapings of dynamic matrices will panic at run-time.
//let dm4 = dm3.reshape_generic(Dynamic::new(6), Dynamic::new(6));
}

View File

@ -1,6 +1,6 @@
[package]
name = "nalgebra-glm"
version = "0.7.0"
version = "0.9.0"
authors = ["sebcrozet <developer@crozet.re>"]
description = "A computer-graphics oriented API for nalgebra, inspired by the C++ GLM library."
@ -23,6 +23,6 @@ abomonation-serialize = [ "nalgebra/abomonation-serialize" ]
[dependencies]
num-traits = { version = "0.2", default-features = false }
approx = { version = "0.3", default-features = false }
simba = { version = "0.1", default-features = false }
nalgebra = { path = "..", version = "0.21", default-features = false }
approx = { version = "0.4", default-features = false }
simba = { version = "0.3", default-features = false }
nalgebra = { path = "..", version = "0.23", default-features = false }

View File

@ -530,7 +530,7 @@ pub fn perspective_lh_no<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
"The aspect ratio must not be zero."
);
let one = N::one();
@ -566,7 +566,7 @@ pub fn perspective_lh_zo<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
"The aspect ratio must not be zero."
);
let one = N::one();
@ -632,7 +632,7 @@ pub fn perspective_rh_no<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
"The aspect ratio must not be zero."
);
let negone = -N::one();
@ -669,7 +669,7 @@ pub fn perspective_rh_zo<N: RealField>(aspect: N, fovy: N, near: N, far: N) -> T
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
"The aspect ratio must not be zero."
);
let negone = -N::one();

View File

@ -1,6 +1,6 @@
[package]
name = "nalgebra-lapack"
version = "0.13.0"
version = "0.14.0"
authors = [ "Sébastien Crozet <developer@crozet.re>", "Andrew Straw <strawman@astraw.com>" ]
description = "Linear algebra library with transformations and satically-sized or dynamically-sized matrices."
@ -23,10 +23,10 @@ accelerate = ["lapack-src/accelerate"]
intel-mkl = ["lapack-src/intel-mkl"]
[dependencies]
nalgebra = { version = "0.21", path = ".." }
nalgebra = { version = "0.22" } # , path = ".." }
num-traits = "0.2"
num-complex = { version = "0.2", default-features = false }
simba = "0.1"
simba = "0.2"
serde = { version = "1.0", optional = true }
serde_derive = { version = "1.0", optional = true }
lapack = { version = "0.16", default-features = false }
@ -34,7 +34,7 @@ lapack-src = { version = "0.5", default-features = false }
# clippy = "*"
[dev-dependencies]
nalgebra = { version = "0.21", path = "..", features = [ "arbitrary" ] }
nalgebra = { version = "0.22", features = [ "arbitrary" ] } # path = ".." }
quickcheck = "0.9"
approx = "0.3"
rand = "0.7"

View File

@ -1,3 +0,0 @@
unstable_features = true
indent_style = "Block"
where_single_line = true

View File

@ -24,7 +24,9 @@ use typenum::Prod;
use crate::base::allocator::Allocator;
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{DimName, U1};
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Owned, Storage, StorageMut};
use crate::base::storage::{
ContiguousStorage, ContiguousStorageMut, Owned, ReshapableStorage, Storage, StorageMut,
};
use crate::base::Scalar;
/*
@ -267,6 +269,25 @@ where
{
}
impl<N, R1, C1, R2, C2> ReshapableStorage<N, R1, C1, R2, C2> for ArrayStorage<N, R1, C1>
where
N: Scalar,
R1: DimName,
C1: DimName,
R1::Value: Mul<C1::Value>,
Prod<R1::Value, C1::Value>: ArrayLength<N>,
R2: DimName,
C2: DimName,
R2::Value: Mul<C2::Value, Output = Prod<R1::Value, C1::Value>>,
Prod<R2::Value, C2::Value>: ArrayLength<N>,
{
type Output = ArrayStorage<N, R2, C2>;
fn reshape_generic(self, _: R2, _: C2) -> Self::Output {
ArrayStorage { data: self.data }
}
}
/*
*
* Allocation-less serde impls.

View File

@ -284,7 +284,16 @@ where
{
assert!(
self.nrows() == rhs.nrows(),
"Dot product dimensions mismatch."
"Dot product dimensions mismatch for shapes {:?} and {:?}: left rows != right rows.",
self.shape(),
rhs.shape(),
);
assert!(
self.ncols() == rhs.ncols(),
"Dot product dimensions mismatch for shapes {:?} and {:?}: left cols != right cols.",
self.shape(),
rhs.shape(),
);
// So we do some special cases for common fixed-size vectors of dimension lower than 8
@ -361,8 +370,8 @@ where
while self.nrows() - i >= 8 {
acc0 += unsafe {
conjugate(self.get_unchecked((i + 0, j)).inlined_clone())
* rhs.get_unchecked((i + 0, j)).inlined_clone()
conjugate(self.get_unchecked((i, j)).inlined_clone())
* rhs.get_unchecked((i, j)).inlined_clone()
};
acc1 += unsafe {
conjugate(self.get_unchecked((i + 1, j)).inlined_clone())
@ -496,8 +505,9 @@ where
ShapeConstraint: DimEq<C, R2> + DimEq<R, C2>,
{
let (nrows, ncols) = self.shape();
assert!(
(ncols, nrows) == rhs.shape(),
assert_eq!(
(ncols, nrows),
rhs.shape(),
"Transposed dot product dimension mismatch."
);

View File

@ -11,11 +11,12 @@ use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameDiff, DimNameSub, U1};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{
DefaultAllocator, Matrix3, Matrix4, MatrixN, Scalar, SquareMatrix, Unit, Vector, Vector3,
VectorN,
DefaultAllocator, Matrix3, Matrix4, MatrixN, Scalar, SquareMatrix, Unit, Vector, Vector2,
Vector3, VectorN,
};
use crate::geometry::{
Isometry, IsometryMatrix3, Orthographic3, Perspective3, Point, Point3, Rotation2, Rotation3,
Isometry, IsometryMatrix3, Orthographic3, Perspective3, Point, Point2, Point3, Rotation2,
Rotation3,
};
use simba::scalar::{ClosedAdd, ClosedMul, RealField};
@ -70,6 +71,26 @@ impl<N: RealField> Matrix3<N> {
pub fn new_rotation(angle: N) -> Self {
Rotation2::new(angle).to_homogeneous()
}
/// Creates a new homogeneous matrix that applies a scaling factor for each dimension with respect to point.
///
/// Can be used to implement "zoom_to" functionality.
#[inline]
pub fn new_nonuniform_scaling_wrt_point(scaling: &Vector2<N>, pt: &Point2<N>) -> Self {
let _0 = N::zero();
let _1 = N::one();
Matrix3::new(
scaling.x,
_0,
pt.x - pt.x * scaling.x,
_0,
scaling.y,
pt.y - pt.y * scaling.y,
_0,
_0,
_1,
)
}
}
impl<N: RealField> Matrix4<N> {
@ -90,6 +111,33 @@ impl<N: RealField> Matrix4<N> {
Isometry::rotation_wrt_point(rot, pt).to_homogeneous()
}
/// Creates a new homogeneous matrix that applies a scaling factor for each dimension with respect to point.
///
/// Can be used to implement "zoom_to" functionality.
#[inline]
pub fn new_nonuniform_scaling_wrt_point(scaling: &Vector3<N>, pt: &Point3<N>) -> Self {
let _0 = N::zero();
let _1 = N::one();
Matrix4::new(
scaling.x,
_0,
_0,
pt.x - pt.x * scaling.x,
_0,
scaling.y,
_0,
pt.y - pt.y * scaling.y,
_0,
_0,
scaling.z,
pt.z - pt.z * scaling.z,
_0,
_0,
_0,
_1,
)
}
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
///
/// Returns the identity matrix if the given argument is zero.

View File

@ -1011,6 +1011,20 @@ where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, R>,
{
/// The column vector with `val` as its i-th component.
#[inline]
pub fn ith(i: usize, val: N) -> Self {
let mut res = Self::zeros();
res[i] = val;
res
}
/// The column unit vector with `N::one()` as its i-th component.
#[inline]
pub fn ith_axis(i: usize) -> Unit<Self> {
Unit::new_unchecked(Self::ith(i, N::one()))
}
/// The column vector with a 1 as its first component, and zero elsewhere.
#[inline]
pub fn x() -> Self

View File

@ -23,7 +23,7 @@ impl Dynamic {
/// A dynamic size equal to `value`.
#[inline]
pub fn new(value: usize) -> Self {
Self { value: value }
Self { value }
}
}

View File

@ -13,7 +13,7 @@ use crate::base::dimension::Dynamic;
use crate::base::dimension::{
Dim, DimAdd, DimDiff, DimMin, DimMinimum, DimName, DimSub, DimSum, U1,
};
use crate::base::storage::{Storage, StorageMut};
use crate::base::storage::{ReshapableStorage, Storage, StorageMut};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::DMatrix;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, RowVector, Scalar, Vector};
@ -745,7 +745,7 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
self.resize_generic(R2::name(), C2::name(), val)
}
/// Resizes `self` such that it has dimensions `new_nrows × now_ncols`.
/// Resizes `self` such that it has dimensions `new_nrows × new_ncols`.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
@ -813,6 +813,80 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
}
}
impl<N, R, C, S> Matrix<N, R, C, S>
where
N: Scalar,
R: Dim,
C: Dim,
{
/// Reshapes `self` such that it has dimensions `new_nrows × new_ncols`.
///
/// This will reinterpret `self` as if it is a matrix with `new_nrows` rows and `new_ncols`
/// columns. The arrangements of the component in the output matrix are the same as what
/// would be obtained by `Matrix::from_slice_generic(self.as_slice(), new_nrows, new_ncols)`.
///
/// If `self` is a dynamically-sized matrix, then its components are neither copied nor moved.
/// If `self` is staticyll-sized, then a copy may happen in some situations.
/// This function will panic if the given dimensions are such that the number of elements of
/// the input matrix are not equal to the number of elements of the output matrix.
///
/// # Examples
///
/// ```
/// # use nalgebra::{Matrix3x2, Matrix2x3, DMatrix, U2, U3, Dynamic};
///
/// let m1 = Matrix2x3::new(
/// 1.1, 1.2, 1.3,
/// 2.1, 2.2, 2.3
/// );
/// let m2 = Matrix3x2::new(
/// 1.1, 2.2,
/// 2.1, 1.3,
/// 1.2, 2.3
/// );
/// let reshaped = m1.reshape_generic(U3, U2);
/// assert_eq!(reshaped, m2);
///
/// let dm1 = DMatrix::from_row_slice(
/// 4,
/// 3,
/// &[
/// 1.0, 0.0, 0.0,
/// 0.0, 0.0, 1.0,
/// 0.0, 0.0, 0.0,
/// 0.0, 1.0, 0.0
/// ],
/// );
/// let dm2 = DMatrix::from_row_slice(
/// 6,
/// 2,
/// &[
/// 1.0, 0.0,
/// 0.0, 1.0,
/// 0.0, 0.0,
/// 0.0, 1.0,
/// 0.0, 0.0,
/// 0.0, 0.0,
/// ],
/// );
/// let reshaped = dm1.reshape_generic(Dynamic::new(6), Dynamic::new(2));
/// assert_eq!(reshaped, dm2);
/// ```
pub fn reshape_generic<R2, C2>(
self,
new_nrows: R2,
new_ncols: C2,
) -> Matrix<N, R2, C2, S::Output>
where
R2: Dim,
C2: Dim,
S: ReshapableStorage<N, R, C, R2, C2>,
{
let data = self.data.reshape_generic(new_nrows, new_ncols);
Matrix::from_data(data)
}
}
#[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar> DMatrix<N> {
/// Resizes this matrix in-place.

View File

@ -159,13 +159,39 @@ impl<N: Scalar, R: Dim, C: Dim, S: Abomonation> Abomonation for Matrix<N, R, C,
}
}
#[cfg(feature = "compare")]
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> matrixcompare_core::Matrix<N>
for Matrix<N, R, C, S>
{
fn rows(&self) -> usize {
self.nrows()
}
fn cols(&self) -> usize {
self.ncols()
}
fn access(&self) -> matrixcompare_core::Access<N> {
matrixcompare_core::Access::Dense(self)
}
}
#[cfg(feature = "compare")]
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> matrixcompare_core::DenseAccess<N>
for Matrix<N, R, C, S>
{
fn fetch_single(&self, row: usize, col: usize) -> N {
self.index((row, col)).clone()
}
}
impl<N: Scalar, R: Dim, C: Dim, S> Matrix<N, R, C, S> {
/// Creates a new matrix with the given data without statically checking that the matrix
/// dimension matches the storage dimension.
#[inline]
pub unsafe fn from_data_statically_unchecked(data: S) -> Matrix<N, R, C, S> {
Matrix {
data: data,
data,
_phantoms: PhantomData,
}
}
@ -538,8 +564,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
assert!(
(nrows.value(), ncols.value()) == rhs.shape(),
assert_eq!(
(nrows.value(), ncols.value()),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
@ -578,9 +605,14 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
let mut res = unsafe { MatrixMN::new_uninitialized_generic(nrows, ncols) };
assert!(
(nrows.value(), ncols.value()) == b.shape()
&& (nrows.value(), ncols.value()) == c.shape(),
assert_eq!(
(nrows.value(), ncols.value()),
b.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
assert_eq!(
(nrows.value(), ncols.value()),
c.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
@ -636,8 +668,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
let mut res = init;
assert!(
(nrows.value(), ncols.value()) == rhs.shape(),
assert_eq!(
(nrows.value(), ncols.value()),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
@ -884,8 +917,9 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
{
let (nrows, ncols) = self.shape();
assert!(
(nrows, ncols) == rhs.shape(),
assert_eq!(
(nrows, ncols),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
@ -922,12 +956,14 @@ impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
{
let (nrows, ncols) = self.shape();
assert!(
(nrows, ncols) == b.shape(),
assert_eq!(
(nrows, ncols),
b.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
assert!(
(nrows, ncols) == c.shape(),
assert_eq!(
(nrows, ncols),
c.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
@ -1427,8 +1463,9 @@ where
#[inline]
fn lt(&self, right: &Self) -> bool {
assert!(
self.shape() == right.shape(),
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.lt(b))
@ -1436,8 +1473,9 @@ where
#[inline]
fn le(&self, right: &Self) -> bool {
assert!(
self.shape() == right.shape(),
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.le(b))
@ -1445,8 +1483,9 @@ where
#[inline]
fn gt(&self, right: &Self) -> bool {
assert!(
self.shape() == right.shape(),
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.gt(b))
@ -1454,8 +1493,9 @@ where
#[inline]
fn ge(&self, right: &Self) -> bool {
assert!(
self.shape() == right.shape(),
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.ge(b))
@ -1602,7 +1642,11 @@ impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N
+ SameNumberOfRows<R2, U2>
+ SameNumberOfColumns<C2, U1>,
{
assert!(self.shape() == (2, 1), "2D perpendicular product ");
assert!(
self.shape() == (2, 1),
"2D perpendicular product requires (2, 1) vector but found {:?}",
self.shape()
);
unsafe {
self.get_unchecked((0, 0)).inlined_clone() * b.get_unchecked((1, 0)).inlined_clone()
@ -1626,13 +1670,11 @@ impl<N: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: Storage<N
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let shape = self.shape();
assert!(
shape == b.shape(),
"Vector cross product dimension mismatch."
);
assert_eq!(shape, b.shape(), "Vector cross product dimension mismatch.");
assert!(
(shape.0 == 3 && shape.1 == 1) || (shape.0 == 1 && shape.1 == 3),
"Vector cross product dimension mismatch."
"Vector cross product dimension mismatch: must be (3, 1) or (1, 3) but found {:?}.",
shape
);
if shape.0 == 3 {

View File

@ -154,8 +154,8 @@ macro_rules! componentwise_binop_impl(
out: &mut Matrix<N, R3, C3, SC>)
where SB: Storage<N, R2, C2>,
SC: StorageMut<N, R3, C3> {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert!(self.shape() == out.shape(), "Matrix addition/subtraction output dimensions mismatch.");
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert_eq!(self.shape(), out.shape(), "Matrix addition/subtraction output dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// FIXME: use specialization instead?
@ -188,7 +188,7 @@ macro_rules! componentwise_binop_impl(
C2: Dim,
SA: StorageMut<N, R1, C1>,
SB: Storage<N, R2, C2> {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// FIXME: use specialization instead?
@ -218,7 +218,7 @@ macro_rules! componentwise_binop_impl(
where R2: Dim,
C2: Dim,
SB: StorageMut<N, R2, C2> {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// FIXME: use specialization instead?
@ -277,7 +277,7 @@ macro_rules! componentwise_binop_impl(
#[inline]
fn $method(self, rhs: &'b Matrix<N, R2, C2, SB>) -> Self::Output {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
let mut res = self.into_owned_sum::<R2, C2>();
res.$method_assign_statically_unchecked(rhs);
res
@ -296,7 +296,7 @@ macro_rules! componentwise_binop_impl(
#[inline]
fn $method(self, rhs: Matrix<N, R2, C2, SB>) -> Self::Output {
let mut rhs = rhs.into_owned_sum::<R1, C1>();
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
self.$method_assign_statically_unchecked_rhs(&mut rhs);
rhs
}
@ -728,11 +728,21 @@ where
assert!(
nrows1 == nrows2,
"Matrix multiplication dimensions mismatch."
"Matrix multiplication dimensions mismatch {:?} and {:?}: left rows != right rows.",
self.shape(),
rhs.shape()
);
assert!(
nrows3 == ncols1 && ncols3 == ncols2,
"Matrix multiplication output dimensions mismatch."
ncols1 == nrows3,
"Matrix multiplication output dimensions mismatch {:?} and {:?}: left cols != right rows.",
self.shape(),
out.shape()
);
assert!(
ncols2 == ncols3,
"Matrix multiplication output dimensions mismatch {:?} and {:?}: left cols != right cols",
rhs.shape(),
out.shape()
);
for i in 0..ncols1 {

View File

@ -171,7 +171,7 @@ pub unsafe trait StorageMut<N: Scalar, R: Dim, C: Dim = U1>: Storage<N, R, C> {
/// A matrix storage that is stored contiguously in memory.
///
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols[`, the value
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols - 1]`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorage<N: Scalar, R: Dim, C: Dim = U1>:
@ -181,10 +181,26 @@ pub unsafe trait ContiguousStorage<N: Scalar, R: Dim, C: Dim = U1>:
/// A mutable matrix storage that is stored contiguously in memory.
///
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols[`, the value
/// The storage requirement means that for any value of `i` in `[0, nrows * ncols - 1]`, the value
/// `.get_unchecked_linear` returns one of the matrix component. This trait is unsafe because
/// failing to comply to this may cause Undefined Behaviors.
pub unsafe trait ContiguousStorageMut<N: Scalar, R: Dim, C: Dim = U1>:
ContiguousStorage<N, R, C> + StorageMut<N, R, C>
{
}
/// A matrix storage that can be reshaped in-place.
pub trait ReshapableStorage<N, R1, C1, R2, C2>: Storage<N, R1, C1>
where
N: Scalar,
R1: Dim,
C1: Dim,
R2: Dim,
C2: Dim,
{
/// The reshaped storage type.
type Output: Storage<N, R2, C2>;
/// Reshapes the storage into the output storage type.
fn reshape_generic(self, nrows: R2, ncols: C2) -> Self::Output;
}

View File

@ -8,7 +8,9 @@ use crate::base::allocator::Allocator;
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{Dim, DimName, Dynamic, U1};
use crate::base::storage::{ContiguousStorage, ContiguousStorageMut, Owned, Storage, StorageMut};
use crate::base::storage::{
ContiguousStorage, ContiguousStorageMut, Owned, ReshapableStorage, Storage, StorageMut,
};
use crate::base::{Scalar, Vector};
#[cfg(feature = "abomonation-serialize")]
@ -41,11 +43,7 @@ impl<N, R: Dim, C: Dim> VecStorage<N, R, C> {
nrows.value() * ncols.value() == data.len(),
"Data storage buffer dimension mismatch."
);
Self {
data: data,
nrows: nrows,
ncols: ncols,
}
Self { data, nrows, ncols }
}
/// The underlying data storage.
@ -229,6 +227,42 @@ unsafe impl<N: Scalar, C: Dim> ContiguousStorageMut<N, Dynamic, C> for VecStorag
{
}
impl<N, C1, C2> ReshapableStorage<N, Dynamic, C1, Dynamic, C2> for VecStorage<N, Dynamic, C1>
where
N: Scalar,
C1: Dim,
C2: Dim,
{
type Output = VecStorage<N, Dynamic, C2>;
fn reshape_generic(self, nrows: Dynamic, ncols: C2) -> Self::Output {
assert_eq!(nrows.value() * ncols.value(), self.data.len());
VecStorage {
data: self.data,
nrows,
ncols,
}
}
}
impl<N, C1, R2> ReshapableStorage<N, Dynamic, C1, R2, Dynamic> for VecStorage<N, Dynamic, C1>
where
N: Scalar,
C1: Dim,
R2: DimName,
{
type Output = VecStorage<N, R2, Dynamic>;
fn reshape_generic(self, nrows: R2, ncols: Dynamic) -> Self::Output {
assert_eq!(nrows.value() * ncols.value(), self.data.len());
VecStorage {
data: self.data,
nrows,
ncols,
}
}
}
unsafe impl<N: Scalar, R: DimName> StorageMut<N, R, Dynamic> for VecStorage<N, R, Dynamic>
where
DefaultAllocator: Allocator<N, R, Dynamic, Buffer = Self>,
@ -244,6 +278,42 @@ where
}
}
impl<N, R1, C2> ReshapableStorage<N, R1, Dynamic, Dynamic, C2> for VecStorage<N, R1, Dynamic>
where
N: Scalar,
R1: DimName,
C2: Dim,
{
type Output = VecStorage<N, Dynamic, C2>;
fn reshape_generic(self, nrows: Dynamic, ncols: C2) -> Self::Output {
assert_eq!(nrows.value() * ncols.value(), self.data.len());
VecStorage {
data: self.data,
nrows,
ncols,
}
}
}
impl<N, R1, R2> ReshapableStorage<N, R1, Dynamic, R2, Dynamic> for VecStorage<N, R1, Dynamic>
where
N: Scalar,
R1: DimName,
R2: DimName,
{
type Output = VecStorage<N, R2, Dynamic>;
fn reshape_generic(self, nrows: R2, ncols: Dynamic) -> Self::Output {
assert_eq!(nrows.value() * ncols.value(), self.data.len());
VecStorage {
data: self.data,
nrows,
ncols,
}
}
}
#[cfg(feature = "abomonation-serialize")]
impl<N: Abomonation, R: Dim, C: Dim> Abomonation for VecStorage<N, R, C> {
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {

View File

@ -1,6 +1,6 @@
use crate::allocator::Allocator;
use crate::geometry::{Rotation, UnitComplex, UnitQuaternion};
use crate::{DefaultAllocator, DimName, Point, Scalar, SimdRealField, VectorN, U2, U3};
use crate::{DefaultAllocator, DimName, Point, Scalar, SimdRealField, Unit, VectorN, U2, U3};
use simba::scalar::ClosedMul;
@ -24,6 +24,13 @@ pub trait AbstractRotation<N: Scalar, D: DimName>: PartialEq + ClosedMul + Clone
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
where
DefaultAllocator: Allocator<N, D>;
/// Apply the inverse rotation to the given unit vector.
fn inverse_transform_unit_vector(&self, v: &Unit<VectorN<N, D>>) -> Unit<VectorN<N, D>>
where
DefaultAllocator: Allocator<N, D>,
{
Unit::new_unchecked(self.inverse_transform_vector(&**v))
}
/// Apply the inverse rotation to the given point.
fn inverse_transform_point(&self, p: &Point<N, D>) -> Point<N, D>
where
@ -74,6 +81,14 @@ where
self.inverse_transform_vector(v)
}
#[inline]
fn inverse_transform_unit_vector(&self, v: &Unit<VectorN<N, D>>) -> Unit<VectorN<N, D>>
where
DefaultAllocator: Allocator<N, D>,
{
self.inverse_transform_unit_vector(v)
}
#[inline]
fn inverse_transform_point(&self, p: &Point<N, D>) -> Point<N, D>
where

View File

@ -14,10 +14,12 @@ use simba::scalar::{RealField, SubsetOf};
use simba::simd::SimdRealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1, U2, U3};
use crate::base::storage::Owned;
use crate::base::{DefaultAllocator, MatrixN, Scalar, VectorN};
use crate::geometry::{AbstractRotation, Point, Translation};
use crate::base::{DefaultAllocator, MatrixN, Scalar, Unit, VectorN};
use crate::geometry::{
AbstractRotation, Point, Rotation2, Rotation3, Translation, UnitComplex, UnitQuaternion,
};
/// A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.
#[repr(C)]
@ -82,21 +84,23 @@ where
}
}
impl<N: Scalar + Copy, D: DimName + Copy, R: AbstractRotation<N, D> + Copy> Copy
for Isometry<N, D, R>
impl<N: Scalar + Copy, D: DimName + Copy, R: Copy> Copy for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
{
}
impl<N: Scalar, D: DimName, R: AbstractRotation<N, D> + Clone> Clone for Isometry<N, D, R>
impl<N: Scalar, D: DimName, R: Clone> Clone for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn clone(&self) -> Self {
Self::from_parts(self.translation.clone(), self.rotation.clone())
Self {
rotation: self.rotation.clone(),
translation: self.translation.clone(),
}
}
}
@ -348,6 +352,237 @@ where
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.rotation.inverse_transform_vector(v)
}
/// Transform the given unit vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
/// assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_unit_vector(&self, v: &Unit<VectorN<N, D>>) -> Unit<VectorN<N, D>> {
self.rotation.inverse_transform_unit_vector(v)
}
}
impl<N: SimdRealField> Isometry<N, U3, UnitQuaternion<N>> {
/// Interpolates between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.
///
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
///
/// # Examples:
///
/// ```
/// # use nalgebra::{Vector3, Translation3, Isometry3, UnitQuaternion};
///
/// let t1 = Translation3::new(1.0, 2.0, 3.0);
/// let t2 = Translation3::new(4.0, 8.0, 12.0);
/// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
/// let iso1 = Isometry3::from_parts(t1, q1);
/// let iso2 = Isometry3::from_parts(t2, q2);
///
/// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
///
/// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
/// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
pub fn lerp_slerp(&self, other: &Self, t: N) -> Self
where
N: RealField,
{
let tr = self.translation.vector.lerp(&other.translation.vector, t);
let rot = self.rotation.slerp(&other.rotation, t);
Self::from_parts(tr.into(), rot)
}
/// Attempts to interpolate between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.
///
/// Retuns `None` if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined).
///
/// # Examples:
///
/// ```
/// # use nalgebra::{Vector3, Translation3, Isometry3, UnitQuaternion};
///
/// let t1 = Translation3::new(1.0, 2.0, 3.0);
/// let t2 = Translation3::new(4.0, 8.0, 12.0);
/// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
/// let iso1 = Isometry3::from_parts(t1, q1);
/// let iso2 = Isometry3::from_parts(t2, q2);
///
/// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
///
/// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
/// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
pub fn try_lerp_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self>
where
N: RealField,
{
let tr = self.translation.vector.lerp(&other.translation.vector, t);
let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?;
Some(Self::from_parts(tr.into(), rot))
}
}
impl<N: SimdRealField> Isometry<N, U3, Rotation3<N>> {
/// Interpolates between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.
///
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
///
/// # Examples:
///
/// ```
/// # use nalgebra::{Vector3, Translation3, Rotation3, IsometryMatrix3};
///
/// let t1 = Translation3::new(1.0, 2.0, 3.0);
/// let t2 = Translation3::new(4.0, 8.0, 12.0);
/// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
/// let iso1 = IsometryMatrix3::from_parts(t1, q1);
/// let iso2 = IsometryMatrix3::from_parts(t2, q2);
///
/// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
///
/// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
/// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
pub fn lerp_slerp(&self, other: &Self, t: N) -> Self
where
N: RealField,
{
let tr = self.translation.vector.lerp(&other.translation.vector, t);
let rot = self.rotation.slerp(&other.rotation, t);
Self::from_parts(tr.into(), rot)
}
/// Attempts to interpolate between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.
///
/// Retuns `None` if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined).
///
/// # Examples:
///
/// ```
/// # use nalgebra::{Vector3, Translation3, Rotation3, IsometryMatrix3};
///
/// let t1 = Translation3::new(1.0, 2.0, 3.0);
/// let t2 = Translation3::new(4.0, 8.0, 12.0);
/// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
/// let iso1 = IsometryMatrix3::from_parts(t1, q1);
/// let iso2 = IsometryMatrix3::from_parts(t2, q2);
///
/// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
///
/// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
/// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
pub fn try_lerp_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self>
where
N: RealField,
{
let tr = self.translation.vector.lerp(&other.translation.vector, t);
let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?;
Some(Self::from_parts(tr.into(), rot))
}
}
impl<N: SimdRealField> Isometry<N, U2, UnitComplex<N>> {
/// Interpolates between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.
///
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
///
/// # Examples:
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector2, Translation2, UnitComplex, Isometry2};
///
/// let t1 = Translation2::new(1.0, 2.0);
/// let t2 = Translation2::new(4.0, 8.0);
/// let q1 = UnitComplex::new(std::f32::consts::FRAC_PI_4);
/// let q2 = UnitComplex::new(-std::f32::consts::PI);
/// let iso1 = Isometry2::from_parts(t1, q1);
/// let iso2 = Isometry2::from_parts(t2, q2);
///
/// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
///
/// assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
/// assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
/// ```
#[inline]
pub fn lerp_slerp(&self, other: &Self, t: N) -> Self
where
N: RealField,
{
let tr = self.translation.vector.lerp(&other.translation.vector, t);
let rot = self.rotation.slerp(&other.rotation, t);
Self::from_parts(tr.into(), rot)
}
}
impl<N: SimdRealField> Isometry<N, U2, Rotation2<N>> {
/// Interpolates between two isometries using a linear interpolation for the translation part,
/// and a spherical interpolation for the rotation part.
///
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
///
/// # Examples:
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector2, Translation2, Rotation2, IsometryMatrix2};
///
/// let t1 = Translation2::new(1.0, 2.0);
/// let t2 = Translation2::new(4.0, 8.0);
/// let q1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
/// let q2 = Rotation2::new(-std::f32::consts::PI);
/// let iso1 = IsometryMatrix2::from_parts(t1, q1);
/// let iso2 = IsometryMatrix2::from_parts(t2, q2);
///
/// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
///
/// assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
/// assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
/// ```
#[inline]
pub fn lerp_slerp(&self, other: &Self, t: N) -> Self
where
N: RealField,
{
let tr = self.translation.vector.lerp(&other.translation.vector, t);
let rot = self.rotation.slerp(&other.rotation, t);
Self::from_parts(tr.into(), rot)
}
}
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation

View File

@ -13,3 +13,15 @@ pub type IsometryMatrix2<N> = Isometry<N, U2, Rotation2<N>>;
/// A 3-dimensional direct isometry using a rotation matrix for its rotational part. Also known as a rigid-body motion, or as an element of SE(3).
pub type IsometryMatrix3<N> = Isometry<N, U3, Rotation3<N>>;
// This tests that the types correctly implement `Copy`, without having to run tests
// (when targeting no-std for example).
#[allow(dead_code)]
fn ensure_copy() {
fn is_copy<T: Copy>() {}
is_copy::<IsometryMatrix2<f32>>();
is_copy::<IsometryMatrix3<f32>>();
is_copy::<Isometry2<f32>>();
is_copy::<Isometry3<f32>>();
}

View File

@ -151,6 +151,17 @@ where
}
}
impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> From<Translation<N, D>>
for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn from(tra: Translation<N, D>) -> Self {
Self::from_parts(tra, R::identity())
}
}
impl<N: SimdRealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>>
where
D: DimNameAdd<U1>,

View File

@ -149,6 +149,7 @@ isometry_binop_impl_all!(
[ref ref] => {
let shift = self.rotation.transform_vector(&rhs.translation.vector);
#[allow(clippy::suspicious_arithmetic_impl)]
Isometry::from_parts(Translation::from(&self.translation.vector + shift),
self.rotation.clone() * rhs.rotation.clone()) // FIXME: too bad we have to clone.
};
@ -157,10 +158,10 @@ isometry_binop_impl_all!(
isometry_binop_impl_all!(
Div, div;
self: Isometry<N, D, R>, rhs: Isometry<N, D, R>, Output = Isometry<N, D, R>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.inverse();
[ref ref] => self * rhs.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// Isometry ×= Translation
@ -289,6 +290,7 @@ isometry_binop_impl_all!(
[ref val] => self * &right;
[val ref] => &self * right;
[ref ref] => {
#[allow(clippy::suspicious_arithmetic_impl)]
let new_tr = &self.translation.vector + self.rotation.transform_vector(&right.vector);
Isometry::from_parts(Translation::from(new_tr), self.rotation.clone())
};
@ -427,10 +429,10 @@ isometry_from_composition_impl_all!(
self: Rotation<N, D>, right: Isometry<N, D, Rotation<N, D>>,
Output = Isometry<N, D, Rotation<N, D>>;
// FIXME: don't call inverse explicitly?
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Isometry × UnitQuaternion
@ -479,10 +481,10 @@ isometry_from_composition_impl_all!(
self: UnitQuaternion<N>, right: Isometry<N, U3, UnitQuaternion<N>>,
Output = Isometry<N, U3, UnitQuaternion<N>>;
// FIXME: don't call inverse explicitly?
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Translation × Rotation

View File

@ -139,7 +139,7 @@ impl<N: RealField> Orthographic3<N> {
/// ```
#[inline]
pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self {
Self { matrix: matrix }
Self { matrix }
}
/// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
@ -151,7 +151,7 @@ impl<N: RealField> Orthographic3<N> {
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
"The aspect ratio must not be zero."
);
let half: N = crate::convert(0.5);

View File

@ -75,7 +75,7 @@ impl<N: RealField> Perspective3<N> {
);
assert!(
!relative_eq!(aspect, N::zero()),
"The apsect ratio must not be zero."
"The aspect ratio must not be zero."
);
let matrix = Matrix4::identity();
@ -97,7 +97,7 @@ impl<N: RealField> Perspective3<N> {
/// projection.
#[inline]
pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self {
Self { matrix: matrix }
Self { matrix }
}
/// Retrieves the inverse of the underlying homogeneous matrix.
@ -294,7 +294,7 @@ impl<N: RealField + Arbitrary> Arbitrary for Perspective3<N> {
impl<N: RealField> From<Perspective3<N>> for Matrix4<N> {
#[inline]
fn from(orth: Perspective3<N>) -> Self {
orth.into_inner()
fn from(pers: Perspective3<N>) -> Self {
pers.into_inner()
}
}

View File

@ -102,6 +102,45 @@ impl<N: Scalar, D: DimName> Point<N, D>
where
DefaultAllocator: Allocator<N, D>,
{
/// Returns a point containing the result of `f` applied to each of its entries.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let p = Point3::new(1.1, 2.1, 3.1);
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
/// ```
#[inline]
pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, f: F) -> Point<N2, D>
where
DefaultAllocator: Allocator<N2, D>,
{
self.coords.map(f).into()
}
/// Replaces each component of `self` by the result of a closure `f` applied on it.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let mut p = Point2::new(1.0, 2.0);
/// p.apply(|e| e * 10.0);
/// assert_eq!(p, Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let mut p = Point3::new(1.0, 2.0, 3.0);
/// p.apply(|e| e * 10.0);
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
/// ```
#[inline]
pub fn apply<F: FnMut(N) -> N>(&mut self, f: F) {
self.coords.apply(f)
}
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
/// end of it.
///
@ -135,7 +174,7 @@ where
#[deprecated(note = "Use Point::from(vector) instead.")]
#[inline]
pub fn from_coordinates(coords: VectorN<N, D>) -> Self {
Self { coords: coords }
Self { coords }
}
/// The dimension of this point.

View File

@ -1,4 +1,3 @@
use std::mem;
use std::ops::{Deref, DerefMut};
use crate::base::allocator::Allocator;
@ -22,7 +21,7 @@ macro_rules! deref_impl(
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { mem::transmute(self) }
&*self.coords
}
}
@ -30,7 +29,7 @@ macro_rules! deref_impl(
where DefaultAllocator: Allocator<N, $D> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { mem::transmute(self) }
&mut *self.coords
}
}
}

View File

@ -389,6 +389,7 @@ where
/// ```
#[inline]
pub fn outer(&self, other: &Self) -> Self {
#[allow(clippy::eq_op)]
(self * other - other * self).half()
}
@ -1542,6 +1543,26 @@ where
pub fn inverse_transform_vector(&self, v: &Vector3<N>) -> Vector3<N> {
self.inverse() * v
}
/// Rotate a vector by the inverse of this unit quaternion. This may be
/// cheaper than inverting the unit quaternion and transforming the
/// vector.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
///
/// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<N>>) -> Unit<Vector3<N>> {
self.inverse() * v
}
}
impl<N: RealField> Default for UnitQuaternion<N> {

View File

@ -374,7 +374,8 @@ where
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction.
/// direction. Returns `None` if both `a` and `b` are collinear and point to opposite directions, as then the
/// rotation desired is not unique.
///
/// # Example
/// ```
@ -491,18 +492,18 @@ where
// The cosinus may be out of [-1, 1] because of inaccuracies.
if cos <= -N::one() {
return None;
None
} else if cos >= N::one() {
return Some(Self::identity());
Some(Self::identity())
} else {
return Some(Self::from_axis_angle(&axis, cos.acos() * s));
Some(Self::from_axis_angle(&axis, cos.acos() * s))
}
} else if na.dot(&nb) < N::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
return None;
None
} else {
// Zero
Some(Self::identity())

View File

@ -265,6 +265,15 @@ impl<N: Scalar + SimdValue> From<Vector4<N>> for Quaternion<N> {
}
}
impl<N: Scalar + SimdValue> From<[N; 4]> for Quaternion<N> {
#[inline]
fn from(coords: [N; 4]) -> Self {
Self {
coords: coords.into(),
}
}
}
impl<N: Scalar + PrimitiveSimdValue> From<[Quaternion<N::Element>; 2]> for Quaternion<N>
where
N: From<[<N as SimdValue>::Element; 2]>,

View File

@ -124,8 +124,7 @@ quaternion_op_impl!(
Add, add;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from(self.coords + rhs.coords);
);
Quaternion::from(self.coords + rhs.coords); );
// Quaternion - Quaternion
quaternion_op_impl!(
@ -153,8 +152,7 @@ quaternion_op_impl!(
Sub, sub;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
Quaternion::from(self.coords - rhs.coords);
);
Quaternion::from(self.coords - rhs.coords); );
// Quaternion × Quaternion
quaternion_op_impl!(
@ -186,8 +184,7 @@ quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: Quaternion<N>, rhs: Quaternion<N>, Output = Quaternion<N>;
&self * &rhs;
);
&self * &rhs; );
// UnitQuaternion × UnitQuaternion
quaternion_op_impl!(
@ -215,15 +212,14 @@ quaternion_op_impl!(
Mul, mul;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self * &rhs;
);
&self * &rhs; );
// UnitQuaternion ÷ UnitQuaternion
quaternion_op_impl!(
Div, div;
(U4, U1), (U4, U1);
self: &'a UnitQuaternion<N>, rhs: &'b UnitQuaternion<N>, Output = UnitQuaternion<N>;
self * rhs.inverse();
#[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
'a, 'b);
quaternion_op_impl!(
@ -244,8 +240,7 @@ quaternion_op_impl!(
Div, div;
(U4, U1), (U4, U1);
self: UnitQuaternion<N>, rhs: UnitQuaternion<N>, Output = UnitQuaternion<N>;
&self / &rhs;
);
&self / &rhs; );
// UnitQuaternion × Rotation
quaternion_op_impl!(
@ -278,8 +273,7 @@ Mul, mul;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self * UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
self * UnitQuaternion::<N>::from_rotation_matrix(&rhs); );
// UnitQuaternion ÷ Rotation
quaternion_op_impl!(
@ -312,8 +306,7 @@ Div, div;
(U4, U1), (U3, U3);
self: UnitQuaternion<N>, rhs: Rotation<N, U3>,
Output = UnitQuaternion<N> => U3, U3;
self / UnitQuaternion::<N>::from_rotation_matrix(&rhs);
);
self / UnitQuaternion::<N>::from_rotation_matrix(&rhs); );
// Rotation × UnitQuaternion
quaternion_op_impl!(
@ -346,8 +339,7 @@ Mul, mul;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) * rhs;
);
UnitQuaternion::<N>::from_rotation_matrix(&self) * rhs; );
// Rotation ÷ UnitQuaternion
quaternion_op_impl!(
@ -380,8 +372,7 @@ Div, div;
(U3, U3), (U4, U1);
self: Rotation<N, U3>, rhs: UnitQuaternion<N>,
Output = UnitQuaternion<N> => U3, U3;
UnitQuaternion::<N>::from_rotation_matrix(&self) / rhs;
);
UnitQuaternion::<N>::from_rotation_matrix(&self) / rhs; );
// UnitQuaternion × Vector
quaternion_op_impl!(
@ -419,8 +410,7 @@ Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Vector<N, U3, SB>,
Output = Vector3<N> => U3, U4;
&self * &rhs;
);
&self * &rhs; );
// UnitQuaternion × Point
quaternion_op_impl!(
@ -452,8 +442,7 @@ Mul, mul;
(U4, U1), (U3, U1);
self: UnitQuaternion<N>, rhs: Point3<N>,
Output = Point3<N> => U3, U4;
Point3::from(self * rhs.coords);
);
Point3::from(self * rhs.coords); );
// UnitQuaternion × Unit<Vector>
quaternion_op_impl!(
@ -485,8 +474,7 @@ Mul, mul;
(U4, U1), (U3, U1) for SB: Storage<N, U3> ;
self: UnitQuaternion<N>, rhs: Unit<Vector<N, U3, SB>>,
Output = Unit<Vector3<N>> => U3, U4;
Unit::new_unchecked(self * rhs.into_inner());
);
Unit::new_unchecked(self * rhs.into_inner()); );
macro_rules! scalar_op_impl(
($($Op: ident, $op: ident, $OpAssign: ident, $op_assign: ident);* $(;)*) => {$(

View File

@ -19,7 +19,7 @@ use simba::simd::SimdRealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN, Scalar, VectorN};
use crate::base::{DefaultAllocator, MatrixN, Scalar, Unit, VectorN};
use crate::geometry::Point;
/// A rotation matrix.
@ -255,7 +255,7 @@ where
"Unable to create a rotation from a non-square matrix."
);
Self { matrix: matrix }
Self { matrix }
}
/// Transposes `self`.
@ -441,6 +441,25 @@ where
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.matrix().tr_mul(v)
}
/// Rotate the given vector by the inverse of this rotation. This may be
/// cheaper than inverting the rotation and then transforming the given
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::z() * f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
///
/// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_unit_vector(&self, v: &Unit<VectorN<N, D>>) -> Unit<VectorN<N, D>> {
Unit::new_unchecked(self.inverse_transform_vector(&**v))
}
}
impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D> where DefaultAllocator: Allocator<N, D, D> {}

View File

@ -59,10 +59,10 @@ md_impl_all!(
Div, div;
(D, D), (D, D) for D: DimName;
self: Rotation<N, D>, right: Rotation<N, D>, Output = Rotation<N, D>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Rotation × Matrix
@ -98,10 +98,10 @@ md_impl_all!(
where DefaultAllocator: Allocator<N, R1, D2>
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
self: Matrix<N, R1, C1, SA>, right: Rotation<N, D2>, Output = MatrixMN<N, R1, D2>;
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Rotation × Point

View File

@ -236,6 +236,31 @@ impl<N: SimdRealField> Rotation2<N> {
pub fn scaled_axis(&self) -> VectorN<N, U1> {
Vector1::new(self.angle())
}
/// Spherical linear interpolation between two rotation matrices.
///
/// # Examples:
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::geometry::Rotation2;
///
/// let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
/// let rot2 = Rotation2::new(-std::f32::consts::PI);
///
/// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
///
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self
where
N::Element: SimdRealField,
{
let c1 = UnitComplex::from(*self);
let c2 = UnitComplex::from(*other);
c1.slerp(&c2, t).into()
}
}
impl<N: SimdRealField> Distribution<Rotation2<N>> for Standard
@ -862,6 +887,53 @@ where
Self::identity()
}
}
/// Spherical linear interpolation between two rotation matrices.
///
/// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_slerp` instead to avoid the panic.
///
/// # Examples:
///
/// ```
/// # use nalgebra::geometry::Rotation3;
///
/// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
///
/// let q = q1.slerp(&q2, 1.0 / 3.0);
///
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self
where
N: RealField,
{
let q1 = UnitQuaternion::from(*self);
let q2 = UnitQuaternion::from(*other);
q1.slerp(&q2, t).into()
}
/// Computes the spherical linear interpolation between two rotation matrices or returns `None`
/// if both rotations are approximately 180 degrees apart (in which case the interpolation is
/// not well-defined).
///
/// # Arguments
/// * `self`: the first rotation to interpolate from.
/// * `other`: the second rotation to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
/// * `epsilon`: the value below which the sinus of the angle separating both rotations
/// must be to return `None`.
#[inline]
pub fn try_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self>
where
N: RealField,
{
let q1 = Rotation3::from(*self);
let q2 = Rotation3::from(*other);
q1.try_slerp(&q2, t, epsilon).map(|q| q.into())
}
}
impl<N: SimdRealField> Distribution<Rotation3<N>> for Standard

View File

@ -158,15 +158,14 @@ similarity_binop_impl_all!(
similarity_binop_impl_all!(
Div, div;
self: Similarity<N, D, R>, rhs: Similarity<N, D, R>, Output = Similarity<N, D, R>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.inverse();
[ref ref] => self * rhs.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// Similarity ×= Translation
similarity_binop_assign_impl_all!(
MulAssign, mul_assign;
self: Similarity<N, D, R>, rhs: Translation<N, D>;
[val] => *self *= &rhs;
@ -281,6 +280,7 @@ similarity_binop_impl_all!(
[ref ref] => {
let shift = self.isometry.rotation.transform_vector(&rhs.translation.vector) * self.scaling();
Similarity::from_parts(
#[allow(clippy::suspicious_arithmetic_impl)]
Translation::from(&self.isometry.translation.vector + shift),
self.isometry.rotation.clone() * rhs.rotation.clone(),
self.scaling())
@ -290,10 +290,10 @@ similarity_binop_impl_all!(
similarity_binop_impl_all!(
Div, div;
self: Similarity<N, D, R>, rhs: Isometry<N, D, R>, Output = Similarity<N, D, R>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.inverse();
[ref ref] => self * rhs.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// Isometry × Similarity
@ -322,10 +322,10 @@ similarity_binop_impl_all!(
similarity_binop_impl_all!(
Div, div;
self: Isometry<N, D, R>, rhs: Similarity<N, D, R>, Output = Similarity<N, D, R>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.inverse();
[ref ref] => self * rhs.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// Similarity × Point
@ -364,6 +364,7 @@ similarity_binop_impl_all!(
[ref ref] => {
let shift = self.isometry.rotation.transform_vector(&right.vector) * self.scaling();
Similarity::from_parts(
#[allow(clippy::suspicious_arithmetic_impl)]
Translation::from(&self.isometry.translation.vector + shift),
self.isometry.rotation.clone(),
self.scaling())
@ -495,10 +496,10 @@ similarity_from_composition_impl_all!(
self: Rotation<N, D>, right: Similarity<N, D, Rotation<N, D>>,
Output = Similarity<N, D, Rotation<N, D>>;
// FIXME: don't call inverse explicitly?
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Similarity × UnitQuaternion
@ -556,10 +557,10 @@ similarity_from_composition_impl_all!(
self: UnitQuaternion<N>, right: Similarity<N, U3, UnitQuaternion<N>>,
Output = Similarity<N, U3, UnitQuaternion<N>>;
// FIXME: don't call inverse explicitly?
[val val] => self * right.inverse();
[ref val] => self * right.inverse();
[val ref] => self * right.inverse();
[ref ref] => self * right.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Similarity × UnitComplex

View File

@ -245,7 +245,7 @@ where
#[inline]
pub fn from_matrix_unchecked(matrix: MatrixN<N, DimNameSum<D, U1>>) -> Self {
Transform {
matrix: matrix,
matrix,
_phantom: PhantomData,
}
}

View File

@ -143,6 +143,7 @@ md_impl_all!(
if C::has_normalizer() {
let normalizer = self.matrix().fixed_slice::<U1, D>(D::dim(), 0);
#[allow(clippy::suspicious_arithmetic_impl)]
let n = normalizer.tr_dot(&rhs.coords) + unsafe { *self.matrix().get_unchecked((D::dim(), D::dim())) };
if !n.is_zero() {
@ -293,10 +294,10 @@ md_impl_all!(
Div, div where N: RealField;
(DimNameSum<D, U1>, DimNameSum<D, U1>), (DimNameSum<D, U1>, DimNameSum<D, U1>) for D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: SubTCategoryOf<TProjective>;
self: Transform<N, D, CA>, rhs: Transform<N, D, CB>, Output = Transform<N, D, CA::Representative>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.clone().inverse();
[ref ref] => self * rhs.clone().inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.clone().inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.clone().inverse() };
);
// Transform ÷ Rotation
@ -304,10 +305,10 @@ md_impl_all!(
Div, div where N: RealField;
(DimNameSum<D, U1>, DimNameSum<D, U1>), (D, D) for D: DimNameAdd<U1>, C: TCategoryMul<TAffine>;
self: Transform<N, D, C>, rhs: Rotation<N, D>, Output = Transform<N, D, C::Representative>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.inverse();
[ref ref] => self * rhs.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// Rotation ÷ Transform
@ -315,10 +316,10 @@ md_impl_all!(
Div, div where N: RealField;
(D, D), (DimNameSum<D, U1>, DimNameSum<D, U1>) for D: DimNameAdd<U1>, C: TCategoryMul<TAffine>;
self: Rotation<N, D>, rhs: Transform<N, D, C>, Output = Transform<N, D, C::Representative>;
[val val] => self.inverse() * rhs;
[ref val] => self.inverse() * rhs;
[val ref] => self.inverse() * rhs;
[ref ref] => self.inverse() * rhs;
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
);
// Transform ÷ UnitQuaternion
@ -326,10 +327,10 @@ md_impl_all!(
Div, div where N: RealField;
(U4, U4), (U4, U1) for C: TCategoryMul<TAffine>;
self: Transform<N, U3, C>, rhs: UnitQuaternion<N>, Output = Transform<N, U3, C::Representative>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.inverse();
[ref ref] => self * rhs.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// UnitQuaternion ÷ Transform
@ -337,10 +338,10 @@ md_impl_all!(
Div, div where N: RealField;
(U4, U1), (U4, U4) for C: TCategoryMul<TAffine>;
self: UnitQuaternion<N>, rhs: Transform<N, U3, C>, Output = Transform<N, U3, C::Representative>;
[val val] => self.inverse() * rhs;
[ref val] => self.inverse() * rhs;
[val ref] => self.inverse() * rhs;
[ref ref] => self.inverse() * rhs;
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
);
// // Transform ÷ Isometry
@ -402,10 +403,10 @@ md_impl_all!(
Div, div where N: RealField;
(DimNameSum<D, U1>, DimNameSum<D, U1>), (D, U1) for D: DimNameAdd<U1>, C: TCategoryMul<TAffine>;
self: Transform<N, D, C>, rhs: Translation<N, D>, Output = Transform<N, D, C::Representative>;
[val val] => self * rhs.inverse();
[ref val] => self * rhs.inverse();
[val ref] => self * rhs.inverse();
[ref ref] => self * rhs.inverse();
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// Translation ÷ Transform
@ -414,10 +415,10 @@ md_impl_all!(
(D, U1), (DimNameSum<D, U1>, DimNameSum<D, U1>)
for D: DimNameAdd<U1>, C: TCategoryMul<TAffine>;
self: Translation<N, D>, rhs: Transform<N, D, C>, Output = Transform<N, D, C::Representative>;
[val val] => self.inverse() * rhs;
[ref val] => self.inverse() * rhs;
[val ref] => self.inverse() * rhs;
[ref ref] => self.inverse() * rhs;
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self.inverse() * rhs };
);
// Transform ×= Transform

View File

@ -119,7 +119,7 @@ where
#[inline]
#[deprecated(note = "Use `::from` instead.")]
pub fn from_vector(vector: VectorN<N, D>) -> Translation<N, D> {
Translation { vector: vector }
Translation { vector }
}
/// Inverts `self`.

View File

@ -13,44 +13,50 @@ use crate::geometry::{Point, Translation};
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: &'a Translation<N, D>, right: &'b Translation<N, D>, Output = Translation<N, D>;
Translation::from(&self.vector + &right.vector); 'a, 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(&self.vector + &right.vector) };
'a, 'b);
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: &'a Translation<N, D>, right: Translation<N, D>, Output = Translation<N, D>;
Translation::from(&self.vector + right.vector); 'a);
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(&self.vector + right.vector) };
'a);
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: Translation<N, D>, right: &'b Translation<N, D>, Output = Translation<N, D>;
Translation::from(self.vector + &right.vector); 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(self.vector + &right.vector) };
'b);
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: Translation<N, D>, right: Translation<N, D>, Output = Translation<N, D>;
Translation::from(self.vector + right.vector); );
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(self.vector + right.vector) }; );
// Translation ÷ Translation
// FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
add_sub_impl!(Div, div, ClosedSub;
(D, U1), (D, U1) -> (D) for D: DimName;
self: &'a Translation<N, D>, right: &'b Translation<N, D>, Output = Translation<N, D>;
Translation::from(&self.vector - &right.vector); 'a, 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(&self.vector - &right.vector) };
'a, 'b);
add_sub_impl!(Div, div, ClosedSub;
(D, U1), (D, U1) -> (D) for D: DimName;
self: &'a Translation<N, D>, right: Translation<N, D>, Output = Translation<N, D>;
Translation::from(&self.vector - right.vector); 'a);
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(&self.vector - right.vector) };
'a);
add_sub_impl!(Div, div, ClosedSub;
(D, U1), (D, U1) -> (D) for D: DimName;
self: Translation<N, D>, right: &'b Translation<N, D>, Output = Translation<N, D>;
Translation::from(self.vector - &right.vector); 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(self.vector - &right.vector) };
'b);
add_sub_impl!(Div, div, ClosedSub;
(D, U1), (D, U1) -> (D) for D: DimName;
self: Translation<N, D>, right: Translation<N, D>, Output = Translation<N, D>;
Translation::from(self.vector - right.vector); );
#[allow(clippy::suspicious_arithmetic_impl)] { Translation::from(self.vector - right.vector) }; );
// Translation × Point
// FIXME: we don't handle properly non-zero origins here. Do we want this to be the intended
@ -58,107 +64,45 @@ add_sub_impl!(Div, div, ClosedSub;
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: &'a Translation<N, D>, right: &'b Point<N, D>, Output = Point<N, D>;
right + &self.vector; 'a, 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { right + &self.vector };
'a, 'b);
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: &'a Translation<N, D>, right: Point<N, D>, Output = Point<N, D>;
right + &self.vector; 'a);
#[allow(clippy::suspicious_arithmetic_impl)] { right + &self.vector };
'a);
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: Translation<N, D>, right: &'b Point<N, D>, Output = Point<N, D>;
right + self.vector; 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { right + self.vector };
'b);
add_sub_impl!(Mul, mul, ClosedAdd;
(D, U1), (D, U1) -> (D) for D: DimName;
self: Translation<N, D>, right: Point<N, D>, Output = Point<N, D>;
right + self.vector; );
#[allow(clippy::suspicious_arithmetic_impl)] { right + self.vector }; );
// Translation *= Translation
add_sub_assign_impl!(MulAssign, mul_assign, ClosedAdd;
(D, U1), (D, U1) for D: DimName;
self: Translation<N, D>, right: &'b Translation<N, D>;
self.vector += &right.vector; 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { self.vector += &right.vector };
'b);
add_sub_assign_impl!(MulAssign, mul_assign, ClosedAdd;
(D, U1), (D, U1) for D: DimName;
self: Translation<N, D>, right: Translation<N, D>;
self.vector += right.vector; );
#[allow(clippy::suspicious_arithmetic_impl)] { self.vector += right.vector }; );
add_sub_assign_impl!(DivAssign, div_assign, ClosedSub;
(D, U1), (D, U1) for D: DimName;
self: Translation<N, D>, right: &'b Translation<N, D>;
self.vector -= &right.vector; 'b);
#[allow(clippy::suspicious_arithmetic_impl)] { self.vector -= &right.vector };
'b);
add_sub_assign_impl!(DivAssign, div_assign, ClosedSub;
(D, U1), (D, U1) for D: DimName;
self: Translation<N, D>, right: Translation<N, D>;
self.vector -= right.vector; );
/*
// Translation × Matrix
add_sub_impl!(Mul, mul;
(D1, D1), (R2, C2) for D1, R2, C2;
self: &'a Translation<N, D1>, right: &'b Matrix<N, R2, C2>, Output = MatrixMN<N, D1, C2>;
self.vector() * right; 'a, 'b);
add_sub_impl!(Mul, mul;
(D1, D1), (R2, C2) for D1, R2, C2;
self: &'a Translation<N, D1>, right: Matrix<N, R2, C2>, Output = MatrixMN<N, D1, C2>;
self.vector() * right; 'a);
add_sub_impl!(Mul, mul;
(D1, D1), (R2, C2) for D1, R2, C2;
self: Translation<N, D1>, right: &'b Matrix<N, R2, C2>, Output = MatrixMN<N, D1, C2>;
self.unwrap() * right; 'b);
add_sub_impl!(Mul, mul;
(D1, D1), (R2, C2) for D1, R2, C2;
self: Translation<N, D1>, right: Matrix<N, R2, C2>, Output = MatrixMN<N, D1, C2>;
self.unwrap() * right; );
// Matrix × Translation
add_sub_impl!(Mul, mul;
(R1, C1), (D2, D2) for R1, C1, D2;
self: &'a Matrix<N, R1, C1>, right: &'b Translation<N, D2>, Output = MatrixMN<N, R1, D2>;
self * right.vector(); 'a, 'b);
add_sub_impl!(Mul, mul;
(R1, C1), (D2, D2) for R1, C1, D2;
self: &'a Matrix<N, R1, C1>, right: Translation<N, D2>, Output = MatrixMN<N, R1, D2>;
self * right.unwrap(); 'a);
add_sub_impl!(Mul, mul;
(R1, C1), (D2, D2) for R1, C1, D2;
self: Matrix<N, R1, C1>, right: &'b Translation<N, D2>, Output = MatrixMN<N, R1, D2>;
self * right.vector(); 'b);
add_sub_impl!(Mul, mul;
(R1, C1), (D2, D2) for R1, C1, D2;
self: Matrix<N, R1, C1>, right: Translation<N, D2>, Output = MatrixMN<N, R1, D2>;
self * right.unwrap(); );
// Matrix *= Translation
md_assign_impl!(MulAssign, mul_assign;
(R1, C1), (C1, C1) for R1, C1;
self: Matrix<N, R1, C1>, right: &'b Translation<N, C1>;
self.mul_assign(right.vector()); 'b);
md_assign_impl!(MulAssign, mul_assign;
(R1, C1), (C1, C1) for R1, C1;
self: Matrix<N, R1, C1>, right: Translation<N, C1>;
self.mul_assign(right.unwrap()); );
md_assign_impl!(DivAssign, div_assign;
(R1, C1), (C1, C1) for R1, C1;
self: Matrix<N, R1, C1>, right: &'b Translation<N, C1>;
self.mul_assign(right.inverse().vector()); 'b);
md_assign_impl!(DivAssign, div_assign;
(R1, C1), (C1, C1) for R1, C1;
self: Matrix<N, R1, C1>, right: Translation<N, C1>;
self.mul_assign(right.inverse().unwrap()); );
*/
#[allow(clippy::suspicious_arithmetic_impl)] { self.vector -= right.vector }; );

View File

@ -360,6 +360,43 @@ where
pub fn inverse_transform_vector(&self, v: &Vector2<N>) -> Vector2<N> {
self.inverse() * v
}
/// Rotate the given vector by the inverse of this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitComplex, Vector2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_unit_vector(&Vector2::x_axis());
/// assert_relative_eq!(transformed_vector, -Vector2::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector2<N>>) -> Unit<Vector2<N>> {
self.inverse() * v
}
/// Spherical linear interpolation between two rotations represented as unit complex numbers.
///
/// # Examples:
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::geometry::UnitComplex;
///
/// let rot1 = UnitComplex::new(std::f32::consts::FRAC_PI_4);
/// let rot2 = UnitComplex::new(-std::f32::consts::PI);
///
/// let rot = rot1.slerp(&rot2, 1.0 / 3.0);
///
/// assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
/// ```
#[inline]
pub fn slerp(&self, other: &Self, t: N) -> Self {
Self::new(self.angle() * (N::one() - t) + other.angle() * t)
}
}
impl<N: RealField + fmt::Display> fmt::Display for UnitComplex<N> {

View File

@ -96,6 +96,7 @@ where
#[inline]
fn div(self, rhs: Self) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.into_inner() * rhs.conjugate().into_inner())
}
}
@ -108,6 +109,7 @@ where
#[inline]
fn div(self, rhs: UnitComplex<N>) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.complex() * rhs.conjugate().into_inner())
}
}
@ -120,6 +122,7 @@ where
#[inline]
fn div(self, rhs: &'b UnitComplex<N>) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.into_inner() * rhs.conjugate().into_inner())
}
}
@ -132,6 +135,7 @@ where
#[inline]
fn div(self, rhs: &'b UnitComplex<N>) -> Self::Output {
#[allow(clippy::suspicious_arithmetic_impl)]
Unit::new_unchecked(self.complex() * rhs.conjugate().into_inner())
}
}
@ -206,7 +210,7 @@ complex_op_impl_all!(
[val val] => &self / &rhs;
[ref val] => self / &rhs;
[val ref] => &self / rhs;
[ref ref] => self * UnitComplex::from_rotation_matrix(rhs).inverse();
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * UnitComplex::from_rotation_matrix(rhs).inverse() };
);
// Rotation × UnitComplex
@ -228,7 +232,7 @@ complex_op_impl_all!(
[val val] => &self / &rhs;
[ref val] => self / &rhs;
[val ref] => &self / rhs;
[ref ref] => UnitComplex::from_rotation_matrix(self) * rhs.inverse();
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { UnitComplex::from_rotation_matrix(self) * rhs.inverse() };
);
// UnitComplex × Point

View File

@ -15,7 +15,7 @@ Simply add the following to your `Cargo.toml` file:
```.ignore
[dependencies]
nalgebra = "0.18"
nalgebra = "0.21"
```
@ -90,11 +90,9 @@ an optimized set of tools for computer graphics and physics. Those features incl
#[cfg(feature = "arbitrary")]
extern crate quickcheck;
#[cfg(feature = "serde")]
extern crate serde;
#[cfg(feature = "serde")]
#[cfg(feature = "serde-serialize")]
#[macro_use]
extern crate serde_derive;
extern crate serde;
#[cfg(feature = "abomonation-serialize")]
extern crate abomonation;

View File

@ -8,7 +8,7 @@ use simba::simd::SimdComplexField;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vector};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum, Dynamic, U1};
use crate::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum, U1};
use crate::storage::{Storage, StorageMut};
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
@ -364,7 +364,7 @@ where
}
}
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where
DefaultAllocator: Allocator<N, D, D>,
{

View File

@ -10,10 +10,12 @@ use crate::{
convert, try_convert, ComplexField, MatrixN, RealField,
};
use crate::num::Zero;
// https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/sparse/linalg/matfuncs.py
struct ExpmPadeHelper<N, D>
where
N: RealField,
N: ComplexField,
D: DimMin<D>,
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), DimMinimum<D, D>>,
{
@ -27,20 +29,20 @@ where
a8: Option<MatrixN<N, D>>,
a10: Option<MatrixN<N, D>>,
d4_exact: Option<N>,
d6_exact: Option<N>,
d8_exact: Option<N>,
d10_exact: Option<N>,
d4_exact: Option<N::RealField>,
d6_exact: Option<N::RealField>,
d8_exact: Option<N::RealField>,
d10_exact: Option<N::RealField>,
d4_approx: Option<N>,
d6_approx: Option<N>,
d8_approx: Option<N>,
d10_approx: Option<N>,
d4_approx: Option<N::RealField>,
d6_approx: Option<N::RealField>,
d8_approx: Option<N::RealField>,
d10_approx: Option<N::RealField>,
}
impl<N, D> ExpmPadeHelper<N, D>
where
N: RealField,
N: ComplexField,
D: DimMin<D>,
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), DimMinimum<D, D>>,
{
@ -110,7 +112,7 @@ where
}
}
fn d4_tight(&mut self) -> N {
fn d4_tight(&mut self) -> N::RealField {
if self.d4_exact.is_none() {
self.calc_a4();
self.d4_exact = Some(one_norm(self.a4.as_ref().unwrap()).powf(convert(0.25)));
@ -118,7 +120,7 @@ where
self.d4_exact.unwrap()
}
fn d6_tight(&mut self) -> N {
fn d6_tight(&mut self) -> N::RealField {
if self.d6_exact.is_none() {
self.calc_a6();
self.d6_exact = Some(one_norm(self.a6.as_ref().unwrap()).powf(convert(1.0 / 6.0)));
@ -126,7 +128,7 @@ where
self.d6_exact.unwrap()
}
fn d8_tight(&mut self) -> N {
fn d8_tight(&mut self) -> N::RealField {
if self.d8_exact.is_none() {
self.calc_a8();
self.d8_exact = Some(one_norm(self.a8.as_ref().unwrap()).powf(convert(1.0 / 8.0)));
@ -134,7 +136,7 @@ where
self.d8_exact.unwrap()
}
fn d10_tight(&mut self) -> N {
fn d10_tight(&mut self) -> N::RealField {
if self.d10_exact.is_none() {
self.calc_a10();
self.d10_exact = Some(one_norm(self.a10.as_ref().unwrap()).powf(convert(1.0 / 10.0)));
@ -142,7 +144,7 @@ where
self.d10_exact.unwrap()
}
fn d4_loose(&mut self) -> N {
fn d4_loose(&mut self) -> N::RealField {
if self.use_exact_norm {
return self.d4_tight();
}
@ -159,7 +161,7 @@ where
self.d4_approx.unwrap()
}
fn d6_loose(&mut self) -> N {
fn d6_loose(&mut self) -> N::RealField {
if self.use_exact_norm {
return self.d6_tight();
}
@ -176,7 +178,7 @@ where
self.d6_approx.unwrap()
}
fn d8_loose(&mut self) -> N {
fn d8_loose(&mut self) -> N::RealField {
if self.use_exact_norm {
return self.d8_tight();
}
@ -193,7 +195,7 @@ where
self.d8_approx.unwrap()
}
fn d10_loose(&mut self) -> N {
fn d10_loose(&mut self) -> N::RealField {
if self.use_exact_norm {
return self.d10_tight();
}
@ -359,15 +361,20 @@ where
fn ell<N, D>(a: &MatrixN<N, D>, m: u64) -> u64
where
N: RealField,
N: ComplexField,
D: Dim,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
DefaultAllocator: Allocator<N, D, D>
+ Allocator<N, D>
+ Allocator<N::RealField, D>
+ Allocator<N::RealField, D, D>,
{
// 2m choose m = (2m)!/(m! * (2m-m)!)
let a_abs_onenorm = onenorm_matrix_power_nonm(&a.abs(), 2 * m + 1);
let a_abs = a.map(|x| x.abs());
if a_abs_onenorm == N::zero() {
let a_abs_onenorm = onenorm_matrix_power_nonm(&a_abs, 2 * m + 1);
if a_abs_onenorm == <N as ComplexField>::RealField::zero() {
return 0;
}
@ -399,27 +406,33 @@ where
q.lu().solve(&p).unwrap()
}
fn one_norm<N, D>(m: &MatrixN<N, D>) -> N
fn one_norm<N, D>(m: &MatrixN<N, D>) -> N::RealField
where
N: RealField,
N: ComplexField,
D: Dim,
DefaultAllocator: Allocator<N, D, D>,
{
let mut max = N::zero();
let mut max = <N as ComplexField>::RealField::zero();
for i in 0..m.ncols() {
let col = m.column(i);
max = max.max(col.iter().fold(N::zero(), |a, b| a + b.abs()));
max = max.max(
col.iter()
.fold(<N as ComplexField>::RealField::zero(), |a, b| a + b.abs()),
);
}
max
}
impl<N: RealField, D> MatrixN<N, D>
impl<N: ComplexField, D> MatrixN<N, D>
where
D: DimMin<D, Output = D>,
DefaultAllocator:
Allocator<N, D, D> + Allocator<(usize, usize), DimMinimum<D, D>> + Allocator<N, D>,
DefaultAllocator: Allocator<N, D, D>
+ Allocator<(usize, usize), DimMinimum<D, D>>
+ Allocator<N, D>
+ Allocator<N::RealField, D>
+ Allocator<N::RealField, D, D>,
{
/// Computes exponential of this matrix
pub fn exp(&self) -> Self {
@ -430,19 +443,19 @@ where
let mut h = ExpmPadeHelper::new(self.clone(), true);
let eta_1 = N::max(h.d4_loose(), h.d6_loose());
let eta_1 = N::RealField::max(h.d4_loose(), h.d6_loose());
if eta_1 < convert(1.495585217958292e-002) && ell(&h.a, 3) == 0 {
let (u, v) = h.pade3();
return solve_p_q(u, v);
}
let eta_2 = N::max(h.d4_tight(), h.d6_loose());
let eta_2 = N::RealField::max(h.d4_tight(), h.d6_loose());
if eta_2 < convert(2.539398330063230e-001) && ell(&h.a, 5) == 0 {
let (u, v) = h.pade5();
return solve_p_q(u, v);
}
let eta_3 = N::max(h.d6_tight(), h.d8_loose());
let eta_3 = N::RealField::max(h.d6_tight(), h.d8_loose());
if eta_3 < convert(9.504178996162932e-001) && ell(&h.a, 7) == 0 {
let (u, v) = h.pade7();
return solve_p_q(u, v);
@ -452,11 +465,11 @@ where
return solve_p_q(u, v);
}
let eta_4 = N::max(h.d8_loose(), h.d10_loose());
let eta_5 = N::min(eta_3, eta_4);
let eta_4 = N::RealField::max(h.d8_loose(), h.d10_loose());
let eta_5 = N::RealField::min(eta_3, eta_4);
let theta_13 = convert(4.25);
let mut s = if eta_5 == N::zero() {
let mut s = if eta_5 == N::RealField::zero() {
0
} else {
let l2 = try_convert((eta_5 / theta_13).log2().ceil()).unwrap();

View File

@ -60,11 +60,7 @@ where
let mut q = PermutationSequence::identity_generic(min_nrows_ncols);
if min_nrows_ncols.value() == 0 {
return Self {
lu: matrix,
p: p,
q: q,
};
return Self { lu: matrix, p, q };
}
for i in 0..min_nrows_ncols.value() {
@ -90,11 +86,7 @@ where
}
}
Self {
lu: matrix,
p: p,
q: q,
}
Self { lu: matrix, p, q }
}
#[doc(hidden)]

View File

@ -96,7 +96,7 @@ where
let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
if min_nrows_ncols.value() == 0 {
return LU { lu: matrix, p: p };
return LU { lu: matrix, p };
}
for i in 0..min_nrows_ncols.value() {
@ -117,7 +117,7 @@ where
}
}
LU { lu: matrix, p: p }
LU { lu: matrix, p }
}
#[doc(hidden)]

View File

@ -5,6 +5,10 @@ mod bidiagonal;
mod cholesky;
mod convolution;
mod determinant;
// FIXME: this should not be needed. However, the exp uses
// explicit float operations on `f32` and `f64`. We need to
// get rid of these to allow exp to be used on a no-std context.
#[cfg(feature = "std")]
mod exp;
mod full_piv_lu;
pub mod givens;
@ -27,6 +31,7 @@ mod symmetric_tridiagonal;
pub use self::bidiagonal::*;
pub use self::cholesky::*;
pub use self::convolution::*;
#[cfg(feature = "std")]
pub use self::exp::*;
pub use self::full_piv_lu::*;
pub use self::hessenberg::*;

View File

@ -57,20 +57,14 @@ where
let mut diag = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
if min_nrows_ncols.value() == 0 {
return QR {
qr: matrix,
diag: diag,
};
return QR { qr: matrix, diag };
}
for ite in 0..min_nrows_ncols.value() {
householder::clear_column_unchecked(&mut matrix, &mut diag[ite], ite, 0, None);
}
QR {
qr: matrix,
diag: diag,
}
QR { qr: matrix, diag }
}
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.

View File

@ -73,10 +73,8 @@ where
pub fn try_new(m: MatrixN<N, D>, eps: N::RealField, max_niter: usize) -> Option<Self> {
let mut work = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
Self::do_decompose(m, &mut work, eps, max_niter, true).map(|(q, t)| Schur {
q: q.unwrap(),
t: t,
})
Self::do_decompose(m, &mut work, eps, max_niter, true)
.map(|(q, t)| Schur { q: q.unwrap(), t })
}
fn do_decompose(
@ -138,9 +136,9 @@ where
let m = end - 1;
let n = end;
let h11 = t[(start + 0, start + 0)];
let h12 = t[(start + 0, start + 1)];
let h21 = t[(start + 1, start + 0)];
let h11 = t[(start, start)];
let h12 = t[(start, start + 1)];
let h21 = t[(start + 1, start)];
let h22 = t[(start + 1, start + 1)];
let h32 = t[(start + 2, start + 1)];
@ -163,7 +161,7 @@ where
if not_zero {
if k > start {
t[(k + 0, k - 1)] = norm;
t[(k, k - 1)] = norm;
t[(k + 1, k - 1)] = N::zero();
t[(k + 2, k - 1)] = N::zero();
}

View File

@ -218,9 +218,9 @@ where
}
}
diagonal[k + 0] = subm[(0, 0)];
diagonal[k] = subm[(0, 0)];
diagonal[k + 1] = subm[(1, 1)];
off_diagonal[k + 0] = subm[(0, 1)];
off_diagonal[k] = subm[(0, 1)];
if k != n - 1 {
off_diagonal[k + 1] = subm[(1, 2)];
@ -244,7 +244,7 @@ where
let u2 = u2.map(|u2| GivensRotation::new_unchecked(u2.c(), N::from_real(u2.s())));
let v2 = v2.map(|v2| GivensRotation::new_unchecked(v2.c(), N::from_real(v2.s())));
diagonal[start + 0] = s[0];
diagonal[start] = s[0];
diagonal[start + 1] = s[1];
off_diagonal[start] = N::RealField::zero();

View File

@ -192,7 +192,7 @@ where
let eigvals = m.eigenvalues().unwrap();
let basis = Vector2::new(eigvals.x - diag[start + 1], off_diag[start]);
diag[start + 0] = eigvals[0];
diag[start] = eigvals[0];
diag[start + 1] = eigvals[1];
if let Some(ref mut q) = q {

59
tests/core/cg.rs Normal file
View File

@ -0,0 +1,59 @@
use na::{Matrix3, Matrix4, Point2, Point3, Vector2, Vector3};
/// See Example 3.4 of "Graphics and Visualization: Principles & Algorithms"
/// by Theoharis, Papaioannou, Platis, Patrikalakis.
#[test]
fn test_scaling_wrt_point_1() {
let a = Point2::new(0.0, 0.0);
let b = Point2::new(1.0, 1.0);
let c = Point2::new(5.0, 2.0);
let scaling = Vector2::new(2.0, 2.0);
let scale_about = Matrix3::new_nonuniform_scaling_wrt_point(&scaling, &c);
let expected_a = Point2::new(-5.0, -2.0);
let expected_b = Point2::new(-3.0, 0.0);
let result_a = scale_about.transform_point(&a);
let result_b = scale_about.transform_point(&b);
let result_c = scale_about.transform_point(&c);
assert!(expected_a == result_a);
assert!(expected_b == result_b);
assert!(c == result_c);
}
/// Based on the same example as the test above.
#[test]
fn test_scaling_wrt_point_2() {
let a = Point3::new(0.0, 0.0, 1.0);
let b = Point3::new(1.0, 1.0, 1.0);
let c = Point3::new(5.0, 2.0, 1.0);
let scaling = Vector3::new(2.0, 2.0, 1.0);
let scale_about = Matrix4::new_nonuniform_scaling_wrt_point(&scaling, &c);
let expected_a = Point3::new(-5.0, -2.0, 1.0);
let expected_b = Point3::new(-3.0, 0.0, 1.0);
let result_a = scale_about.transform_point(&a);
let result_b = scale_about.transform_point(&b);
let result_c = scale_about.transform_point(&c);
assert!(expected_a == result_a);
assert!(expected_b == result_b);
assert!(c == result_c);
}
/// Based on https://github.com/emlowry/AiE/blob/50bae4068edb686cf8ffacdf6fab8e7cb22e7eb1/Year%201%20Classwork/MathTest/Matrix4x4TestGroup.cpp#L145
#[test]
fn test_scaling_wrt_point_3() {
let about = Point3::new(2.0, 1.0, -2.0);
let scale = Vector3::new(2.0, 0.5, -1.0);
let pt = Point3::new(1.0, 2.0, 3.0);
let scale_about = Matrix4::new_nonuniform_scaling_wrt_point(&scale, &about);
let expected = Point3::new(0.0, 1.5, -7.0);
let result = scale_about.transform_point(&pt);
assert!(result == expected);
}

View File

@ -0,0 +1,85 @@
//! Tests for `matrixcompare` integration.
//!
//! The `matrixcompare` crate itself is responsible for testing the actual comparison.
//! The tests here only check that the necessary trait implementations are correctly implemented,
//! in addition to some sanity checks with example input.
use nalgebra::{DMatrix, MatrixMN, U4, U5};
use matrixcompare::{assert_matrix_eq, DenseAccess};
#[cfg(feature = "arbitrary")]
quickcheck! {
fn fetch_single_is_equivalent_to_index_f64(matrix: DMatrix<f64>) -> bool {
for i in 0 .. matrix.nrows() {
for j in 0 .. matrix.ncols() {
if matrix.fetch_single(i, j) != *matrix.index((i, j)) {
return false;
}
}
}
true
}
fn matrixcompare_shape_agrees_with_matrix(matrix: DMatrix<f64>) -> bool {
matrix.nrows() == <DMatrix<f64> as matrixcompare::Matrix<f64>>::rows(&matrix)
&&
matrix.ncols() == <DMatrix<f64> as matrixcompare::Matrix<f64>>::cols(&matrix)
}
}
#[test]
fn assert_matrix_eq_dense_positive_comparison() {
#[rustfmt::skip]
let a = MatrixMN::<_, U4, U5>::from_row_slice(&[
1210, 1320, 1430, 1540, 1650,
2310, 2420, 2530, 2640, 2750,
3410, 3520, 3630, 3740, 3850,
4510, 4620, 4730, 4840, 4950,
]);
#[rustfmt::skip]
let b = MatrixMN::<_, U4, U5>::from_row_slice(&[
1210, 1320, 1430, 1540, 1650,
2310, 2420, 2530, 2640, 2750,
3410, 3520, 3630, 3740, 3850,
4510, 4620, 4730, 4840, 4950,
]);
// Test matrices of static size
assert_matrix_eq!(a, b);
assert_matrix_eq!(&a, b);
assert_matrix_eq!(a, &b);
assert_matrix_eq!(&a, &b);
// Test matrices of dynamic size
let a_dyn = a.index((0..4, 0..5));
let b_dyn = b.index((0..4, 0..5));
assert_matrix_eq!(a_dyn, b_dyn);
assert_matrix_eq!(a_dyn, &b_dyn);
assert_matrix_eq!(&a_dyn, b_dyn);
assert_matrix_eq!(&a_dyn, &b_dyn);
}
#[test]
#[should_panic]
fn assert_matrix_eq_dense_negative_comparison() {
#[rustfmt::skip]
let a = MatrixMN::<_, U4, U5>::from_row_slice(&[
1210, 1320, 1430, 1540, 1650,
2310, 2420, 2530, 2640, 2750,
3410, 3520, 3630, 3740, 3850,
4510, 4620, -4730, 4840, 4950,
]);
#[rustfmt::skip]
let b = MatrixMN::<_, U4, U5>::from_row_slice(&[
1210, 1320, 1430, 1540, 1650,
2310, 2420, 2530, 2640, 2750,
3410, 3520, 3630, 3740, 3850,
4510, 4620, 4730, 4840, 4950,
]);
assert_matrix_eq!(a, b);
}

View File

@ -1,6 +1,7 @@
#[cfg(feature = "abomonation-serialize")]
mod abomonation;
mod blas;
mod cg;
mod conversion;
mod edition;
mod empty;
@ -10,5 +11,8 @@ mod matrix_slice;
mod mint;
mod serde;
#[cfg(feature = "compare")]
mod matrixcompare;
#[cfg(feature = "arbitrary")]
pub mod helper;

View File

@ -126,4 +126,51 @@ mod tests {
assert!(relative_eq!(f, m.exp(), epsilon = 1.0e-7));
}
#[test]
fn exp_complex() {
use nalgebra::{Complex, DMatrix, DVector, Matrix2, RealField};
{
let z = Matrix2::<Complex<f64>>::zeros();
let identity = Matrix2::<Complex<f64>>::identity();
assert!((z.exp() - identity).norm() < 1e-7);
}
{
let a = Matrix2::<Complex<f64>>::new(
Complex::<f64>::new(0.0, 1.0),
Complex::<f64>::new(0.0, 2.0),
Complex::<f64>::new(0.0, -1.0),
Complex::<f64>::new(0.0, 3.0),
);
let b = Matrix2::<Complex<f64>>::new(
Complex::<f64>::new(0.42645929666726, 1.89217550966333),
Complex::<f64>::new(-2.13721484276556, -0.97811251808259),
Complex::<f64>::new(1.06860742138278, 0.48905625904129),
Complex::<f64>::new(-1.7107555460983, 0.91406299158075),
);
assert!((a.exp() - b).norm() < 1.0e-07);
}
{
let d1 = Complex::<f64>::new(0.0, <f64 as RealField>::pi());
let d2 = Complex::<f64>::new(0.0, <f64 as RealField>::frac_pi_2());
let d3 = Complex::<f64>::new(0.0, <f64 as RealField>::frac_pi_4());
let m = DMatrix::<Complex<f64>>::from_diagonal(&DVector::from_row_slice(&[d1, d2, d3]));
let res = DMatrix::<Complex<f64>>::from_diagonal(&DVector::from_row_slice(&[
d1.exp(),
d2.exp(),
d3.exp(),
]));
assert!((m.exp() - res).norm() < 1e-07);
}
}
}