nalgebra/tests/matrix_inverse.rs

122 lines
4.6 KiB
Rust
Raw Permalink Normal View History

#[macro_use]
extern crate approx;
extern crate nalgebra as na;
use na::{Matrix1, Matrix2, Matrix3, Matrix5};
#[test]
fn matrix1_try_inverse() {
let a = Matrix1::new(3.0);
let a_inv = a.try_inverse().expect("Matrix is invertible");
assert_relative_eq!(a_inv, Matrix1::new(1.0 / 3.0));
}
#[test]
fn matrix2_try_inverse() {
let a = Matrix2::new( 5.0, -2.0,
-10.0, 1.0);
let expected_inverse = Matrix2::new(-0.2 / 3.0, -2.0 / 15.0,
-2.0 / 3.0, -1.0 / 3.0);
let a_inv = a.try_inverse()
.expect("Matrix is invertible");
assert_relative_eq!(a_inv, expected_inverse);
}
#[test]
fn matrix3_try_inverse() {
let a = Matrix3::new(-3.0, 2.0, 0.0,
-6.0, 9.0, -2.0,
9.0, -6.0, 4.0);
let expected_inverse = Matrix3::new(-0.40, 0.4 / 3.0, 0.2 / 3.00,
-0.10, 0.2, 0.10,
0.75, 0.0, 0.25);
let a_inv = a.try_inverse()
.expect("Matrix is invertible");
assert_relative_eq!(a_inv, expected_inverse);
}
#[test]
fn matrix5_try_inverse() {
// Dimension 5 is chosen so that the inversion
// happens by Gaussian elimination
// (at the time of writing dimensions <= 3 are implemented
// as analytic formulas, but we choose 5 in the case that 4
// also gets an analytic implementation)
let a = Matrix5::new(-2.0, 0.0, 2.0, 5.0, -5.0,
-6.0, 4.0, 4.0, 13.0, -15.0,
4.0, 16.0, -14.0, -19.0, 12.0,
12.0, 12.0, -22.0, -35.0, 34.0,
-8.0, 4.0, 12.0, 27.0, -31.0);
let expected_inverse = Matrix5::new(
3.9333e+00, -1.5667e+00, 2.6667e-01, 6.6667e-02, 3.0000e-01,
-1.2033e+01, 3.9667e+00, -1.1167e+00, 2.8333e-01, -1.0000e-01,
-1.8233e+01, 5.7667e+00, -1.5667e+00, 2.3333e-01, -2.0000e-01,
-4.3333e+00, 1.6667e+00, -6.6667e-01, 3.3333e-01, -4.6950e-19,
-1.3400e+01, 4.6000e+00, -1.4000e+00, 4.0000e-01, -2.0000e-01);
let a_inv = a.try_inverse().expect("Matrix is invertible");
assert_relative_eq!(a_inv, expected_inverse, max_relative=1e-4);
}
#[test]
fn matrix1_try_inverse_scaled_identity() {
// A perfectly invertible matrix with
// very small coefficients
let a = Matrix1::new(1.0e-20);
let expected_inverse = Matrix1::new(1.0e20);
let a_inv = a.try_inverse().expect("Matrix is invertible");
assert_relative_eq!(a_inv, expected_inverse);
}
#[test]
fn matrix2_try_inverse_scaled_identity() {
// A perfectly invertible matrix with
// very small coefficients
let a = Matrix2::new(1.0e-20, 0.0,
0.0, 1.0e-20);
let expected_inverse = Matrix2::new(1.0e20, 0.0,
0.0, 1.0e20);
let a_inv = a.try_inverse().expect("Matrix is invertible");
assert_relative_eq!(a_inv, expected_inverse);
}
#[test]
fn matrix3_try_inverse_scaled_identity() {
// A perfectly invertible matrix with
// very small coefficients
let a = Matrix3::new(1.0e-20, 0.0, 0.0,
0.0, 1.0e-20, 0.0,
0.0, 0.0, 1.0e-20);
let expected_inverse = Matrix3::new(1.0e20, 0.0, 0.0,
0.0, 1.0e20, 0.0,
0.0, 0.0, 1.0e20);
let a_inv = a.try_inverse().expect("Matrix is invertible");
assert_relative_eq!(a_inv, expected_inverse);
}
#[test]
fn matrix5_try_inverse_scaled_identity() {
// A perfectly invertible matrix with
// very small coefficients
let a = Matrix5::new(1.0e-20, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0e-20, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0e-20, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0e-20, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0e-20);
let expected_inverse = Matrix5::new(1.0e+20, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0e+20, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0e+20, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0e+20, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0e+20);;
let a_inv = a.try_inverse().expect("Matrix is invertible");
assert_relative_eq!(a_inv, expected_inverse);
}